Эндотелиальные клетки сосудов: функции, строение и роль. Определение функции эндотелия Из одного слоя клеток эндотелия состоят

1 Губарева Е.А. 1 Туровая А.Ю. 1 Богданова Ю.А. 1 Апсалямова С.О. 1 Мерзлякова С.Н. 1

1 ГБОУ ВПО «Кубанский государственный медицинский университет Министерства здравоохранения и социального развития Российской Федерации», Краснодар

В обзоре рассмотрена проблема физиологических функций эндотелия сосудов. История изучения функций сосудистого эндотелия начата с 1980 года, когда был открыт оксид азота Р. Фуршготом и И. Завадски. В 1998 году была сформирована теоретическая основа для нового направления фундаментальных и клинических исследований – разработки участия эндотелия в патогенезе артериальной гипертензии и других сердечно-сосудистых заболеваний, а также способов эффективной коррекции его дисфункции. В статье рассмотрены основные работы по физиологической роли эндотелинов, оксида азота, ангиотензина II и других биологически активных эндотелиальных веществ. Очерчен круг проблем, связанных с изучением поврежденного эндотелия, как потенциального маркера развития многочисленных заболеваний.

биологически активные вещества

дилятаторы

констрикторы

оксид азота

эндотелий

1. Гомазков О.А. Эндотелий – эндокринное дерево // Nature. – 2000. – № 5.

2. Меньщикова Е.В., Зенков Н.К. Окислительный стресс при воспалении // Успехи соврем. биол. – 1997. – Т. 117. – С. 155–171.

3. Одыванова Л.Р., Сосунов А.А., Гатчев Я. Окись азота (NO) в нервной системе // Успехи соврем. биол. – 1997. – №3. – С. 374‒389.

4. Реутов В.П. Цикл окиси азота в организме млекопитающих // Успехи соврем. биол. – 1995. – № 35. – С. 189–228.

5. Cooke J.P. Asymmetrical dimethylarginine: the Uber marker? // Circulation. – 2004. – № 109. – Р. 1813.

6. Davignon J., Ganz P. Role of endothelial dysfunction in atherosclerosis// Circulation. – 2004. – № 109. – Р. 27.

7. De Caterina R. Endothelial dysfunctions: common denominators in vascular disease // Current Opinion in Lipidology. – 2000. Vol. 11, № 1. – Р. 9–23.

8. Kawashima S. The two faces of endothelial nitric oxide synthase in the pathophysiology of atherosclerosis // Endothelium. – 2004. Vol. 11, № 2. – Р. 99–107.

9. Libby P. Inflammation in atherosclerosis// Nature. – 2002. – Vol. 420, № 6917. – Р. 868–874.

10. Tan K.C.B., Chow W.S., Ai V.H.G. Effects of angiotensin II receptor antagonist on endothelial vasomotor function and urinary albumin excretion in type 2 diabetic patients with microalbuminuria// Diabetes Metabolism Research and Reviews. – 2002. – Vol. 18, № 1. – Р. 71–76.

Эндотелий - активный эндокринный орган, самый большой в организме, диффузно рассеянный вместе с сосудами по всем тканям. Эндотелий, по классическому определению гистологов, - однослойный пласт специализированных клеток, выстилающих изнутри все сердечно-сосудистое дерево, весом около 1,8 кг. Один триллион клеток со сложнейшими биохимическими функциями, включающий системы синтеза белков и низкомолекулярных веществ, рецепторы, ионные каналы .

Эндотелиоциты синтезируют субстанции, важные для контроля свертывания крови, регуляции сосудистого тонуса, артериального давления, фильтрационной функции почек, сократительной активности сердца, метаболического обеспечения мозга. Эндотелий способен реагировать на механическое воздействие протекающей крови, величину давления крови в просвете сосуда и степень напряжения мышечного слоя сосуда. Клетки эндотелия чувствительны к химическим воздействиям, которые могут приводить к повышенной агрегации и адгезии циркулирующих клеток крови, развитию тромбоза, оседанию липидных конгломератов (табл. 1).

Все эндотелиальные факторы делятся на вызывающие сокращение и расслабление мышечного слоя сосудистой стенки (констрикторы и дилятаторы). Основные констрикторы представлены ниже.

Большой эндотелин - неактивный предшественник эндотелина, содержащий 38 аминокислотных остатков, обладает менее выраженной вазоконстрикторной (по сравнению с эндотелином) активностью in vitro. Конечный процессинг большого эндотелина осуществляется при участии эндотелинпревращающего фермента.

Эндотелин (ЭТ). Японский исследователь М. Янагасава и соавт. (1988) описали новый эндотелиальный пептид, активно сокращающий гладкомышечные клетки сосудов. Открытый пептид, названный ЭТ, сразу стал предметом интенсивного изучения. ЭТ- сегодня один из самых популярных в списке биоактивных регуляторов. Это - вещество с наиболее мощной сосудосуживающей активностью образуется в эндотелии. В организме присутствуют несколько форм пептида, различающихся небольшими нюансами химического строения, но весьма не схожих по локализации в организме и физиологической активности. Синтез ЭТ стимулируют тромбин, адреналин, ангиотензин (АТ), интерлейкины, клеточные ростовые факторы и др. В большинстве случаев ЭТ секретируется из эндотелия «внутрь», к мышечным клеткам, где расположены чувствительные к нему ЕТА-рецепторы. Меньшая часть синтезируемого пептида, взаимодействуя с рецепторами ЕТВ-типа, стимулирует синтез NO. Таким образом, один и тот же фактор регулирует две противоположные сосудистые реакции (констрикцию и дилятацию), реализуемые различными химическими механизмами.

Таблица 1

Факторы, синтезируемые в эндотелии и регулирующие его функцию

Факторы, вызывающие сокращение и расслабление мышечного слоя сосудистой стенки

Констрикторы

Дилятаторы

Большой эндотелин (бЭТ)

Оксид азота (NO)

Ангиотензин II (АТ II)

Большой эндотелин (бЭТ)

Тромбоксан А2 (ТхА2)

Простациклин (PGI2)

Простагландин Н2 (PGН2)

Эндотелиновый фактор деполяризации (EDHF)

Ангиотензин I (АТ I)

Адреномедулин

Факторы прогоагуляционные и антикоагуляционные

Протромбогенные

Антитромбогенные

Тромбоцитарный фактор роста (ТФРβ)

Оксид азота (NO)

Ингибитор тканевого активатора плазминогена (ИТАП)

Тканевой активатор плазминогена (ТАП)

Фактор Виллебранда (VIII фактор свертывания)

Простациклин (PGI2)

Ангиотензин IV (АТ IV)

Тромбомодулин

Эндотелин I (ЭТ I)

Фибронектин

Тромбоспондин

Фактор активации тромбоцитов (ФАТ)

Факторы, влияющие на рост сосудов и гладкомышечных клеток

Стимуляторы

Ингибиторы

Эндотелин I (ЭТ I)

Оксид азота (NO)

Ангиотензин II (АТ II)

Простациклин (PGI2)

Супероксидные радикалы

Натриуретический пептид С

Эндотелиальный фактор роста (ECGF)

Гепариноподобные ингибиторы роста

Факторы провоспалительные и противовоспалительные

Провоспалительные

Противовоспалительные

Фактор некроза опухоли α (ФНО-α)

Оксид азота (NO)

Супероксидные радикалы

С-реактивный белок (С-РБ)

Для ЭТ выявлены подтипы рецепторов, не схожие по клеточной локализации и запускающие «сигнальные» биохимические реакции. Четко прослеживается биологическая закономерность, когда одно и то же вещество, в частности, ЭТ регулирует различные физиологические процессы (табл. 2).

ЭТ - это группа полипептидов, состоящая из трех изомеров (ЭТ-1, ЭТ-2, ЭТ-3), отличающихся некоторыми вариациями и последовательностью расположения аминокислот. Имеется большое сходство между структурой ЭТ и некоторыми нейротоксическими пептидами (яды скорпиона, роющей змеи).

Основной механизм действия всех ЭТ заключается в увеличении содержания в цитоплазме гладкомышечных клеток сосудов ионов кальция, что вызывает:

  • стимуляцию всех фаз гемостаза, начиная с агрегации тромбоцитов и заканчивая образованием красного тромба;
  • сокращение и рост гладких мышц сосудов, приводящие к вазоконстрикции и утолщению стенки сосудов и уменьшению их диаметра.

Таблица 2

Подтипы рецепторов ЭТ: локализация, физиологические эффекты
и участие вторичных посредников

Эффекты ЭТ неоднозначны и определяются рядом причин. Наиболее активен изомер - ЭТ-1. Он образуется не только в эндотелии, но и в гладких мышцах сосудов, нейронах, глие, мезенгиальных клетках почек, печени и других органах. Полупериод жизни - 10-20 мин, в плазме крови - 4-7 мин. ЭТ-1 причастен к ряду патологических процессов: инфаркту миокарда, нарушению ритма сердца, легочной и системной гипертезии, атеросклерозу и др. .

Поврежденный эндотелий синтезирует большое количество ЭТ, вызывающего вазоконстрикцию . Большие дозы ЭТ приводят к значительным изменениям системной гемодинамики: снижению частоты сердечных сокращений и ударного объема сердца, увеличению на 50 % сосудистого сопротивления в большом круге кровообращения и на 130 % в малом .

Ангиотензин II (AT II) - физиологически активный пептид прогипертензивного действия. Это гормон, образующийся в крови человека при активации ренин-ангиотензиновой системы, участвует в регуляции артериального давления и водно-солевого обмена. Этот гормон вызывает сужение выносящих артериол почечных клубочков . Он увеличивает реабсорбцию в почечных канальцах натрия и воды. АТ II суживает артерии и вены, а также стимулирует выработку таких гормонов, как вазопрессин и альдостерон, что приводит к повышению давления. Сосудосуживающая активность АТ II определяется его взаимодействием с AT I рецептором .

Тромбоксан А2 (ТхА 2) - способствует быстрой агрегации тромбоцитов, увеличивая доступность их рецепторов для фибриногена, чем активирует коагуляцию, вызывает вазоспазм и бронхоспазм. Кроме того, TхA2 является медиатором в опухолеобразовании, тромбозах и астме. ТхА2 вырабатывается также гладкими мышцами сосудов, тромбоцитами. Одним из факторов, стимулирующих выделение ТхА2, является кальций, который в большом количестве выделяется из тромбоцитов в начале их агрегации. ТхА2 сам увеличивает содержание кальция в цитоплазме тромбоцитов. Кроме того, кальций активирует сократительные белки тромбоцитов, что усиливает их агрегацию и дегрануляцию. Он активирует фосфолипазу А2, превращающую арахидоновую кислоту в простагландины G2, Н2 - вазоконстрикторы .

Простагландин H2 (PGH2) - обладает ярко выраженной биологической активностью. Он стимулирует агрегацию тромбоцитов и вызывает сокращение гладких мышц с формированием вазоспазма.

Группа веществ под названием дилятаторы, представлена следующими биологически активными веществами.

Оксид азота (NO) - это низкомолекулярная и не несущая заряда молекула, способная быстро диффундировать и свободно проникать через плотные клеточные слои и межклеточное пространство. По строению NO содержит неспаренный электрон, имеет высокую химическую активность и легко реагирует со многими клеточными структурами и химическими компонентами, что обусловливает исключительное многообразие ее биологических эффектов. NO способен вызывать различные и даже противоположные эффекты в клетках-мишенях, что зависит от наличия дополнительных факторов: окислительно-восстановительного и пролиферативного статуса и ряда прочих условий. NO влияет на эффекторные системы, контролирующие пролиферацию, апоптоз и дифференцировку клеток, а также на их устойчивость к стрессовым воздействиям. NO выполняет функции посредника в передаче паракринного сигнала. Действие NO вызывает быстрый и относительно кратковременный ответ в клетках-мишенях, обусловленный снижением уровня кальция, а также долговременные эффекты, обусловленные индукцией определенных генов. В клетках-мишенях NO и ее активные производные, такие как пероксинитрит, действуют на белки, содержащие гем, железосерные центры и активные тиолы, также ингибируют железосерные ферменты. Кроме того, NO рассматривают как один из мессенджеров внутри и межклеточной сигнализации в центральной и периферической нервной системе и рассматривают как регулятор пролиферации лимфоцитов. Эндогенный NO - важный компонент системы регуляции кальциевого гомеостаза в клетках и соответственно активности Са 2+ -зависимых протеинкиназ. Образование NO в организме происходит при ферментативном окислении L-аргинина. Синтез NO осуществляется семейством цитохром ‒ P-450-подобных гемопротеинов - NO-синтаз.

По определению ряда исследователей - NO - «двуликий Янус»:

  • NO как усиливает процессы перекисного окисления липидов (ПОЛ) в мембранах клеток и липопротеинах сыворотки, так и ингибирует их;
  • NO вызывает вазодилятацию, но может вызывать и вазоконстрикцию ;
  • NO индуцирует апоптоз, но оказывает защитный эффект в отношении апоптоза, индуцированного другими агентами;
  • NO способен модулировать развитие воспалительной реакции и ингибировать окислительное фосфорилирование в митохондриях и синтез АТФ .

Простациклин (PGI2) - образуется преимущественно в эндотелии. Синтез простациклина происходит постоянно. Он подавляет агрегацию тромбоцитов, кроме того, оказывает вазодилятирующее действие за счет стимуляции специфических рецепторов гладкомышечных клеток сосудов, что приводит к повышению активности в них аденилатциклазы и к увеличению образования в них цАМФ.

Эндотелий зависимый гиперполяризующий фактор (EDHF) - по своей структуре он не идентифицирован, как NO или простациклин. EDHF вызывает гиперполяризацию гладкомышечного слоя артериальной стенки и соответственно его релаксацию. G. Edwards и соавт. (1998) было установлено, что EDHF не что иное как К+, который выделяется эндотелиоцитами в миоэндотелиальное пространство стенки артерии при действии на последнюю адекватного раздражителя. EDHF способен играть важную роль в регуляции артериального давления.

Адреномедулин содержится в сосудистой стенке, обоих предсердиях и желудочках сердца, спинномозговой жидкости. Имеются указания на то, что адреномедулин может синтезироваться легкими и почками. Адреномедулин стимулирует продукцию эндотелием NO, что способствует вазодилятации, расширяет сосуды почек и увеличивает скорость клубочковой фильтрации и диурез, повышает натрийурез, снижает пролиферацию гладкомышечных клеток, препятствует развитию гипертрофии и ремоделирования миокарда и сосудов, ингибирует синтез альдостерона и ЭТ.

Следующая функция сосудистого эндотелия - участие в реакциях гемостаза за счет выделения протромбогенных и антитромбогенных факторов.

Группа протромбогенных факторов представлена следующими агентами.

Тромбоцитарный фактор роста (PDGF) является наиболее хорошо изученным представителем группы белковых факторов роста. PDGF может изменять пролиферативный статус клетки, влияя на интенсивность белкового синтеза, но, не затрагивая при этом усиления транскрипции генов раннего ответа, как c-myc и c-fos. Сами тромбоциты не синтезируют белок. Синтез и процессинг PDGF осуществляется в мегакариоцитах - клетках костного мозга, предшественниках тромбоцитов - и запасается в α-гранулах тромбоцитов. Пока PDGF находится внутри тромбоцитов, он недоступен для других клеток, однако при взаимодействии с тромбином происходит активация тромбоцитов с последующим высвобождением содержимого в сыворотку. Тромбоциты являются главным источником PDGF в организме, но вместе с тем показано, что некоторые другие клетки также могут синтезировать и секретировать этот фактор: это в основном клетки мезенхимального происхождения.

Ингибитор тканевого активатора плазминогена-1 (ИТАП-1) - продуцируется эндотелиоцитами, клетками гладких мышц, мегакариоцитами и мезотелиальными клетками; депонируется в тромбоцитах в неактивной форме и является серпином. Уровень ИТАП-1 в крови регулируется очень точно и возрастает при многих патологических состояниях. Его продукция стимулируется тромбином, трансформирующим фактором роста β, тромбоцитарным фактором роста, ИЛ-1, ФНО-α, инсулиноподобным фактором роста, глюкокортикоидами. Основная функция ИТАП-1 - ограничить фибринолитическую активность местом расположения гемостатической пробки за счет ингибирования ТАП. Это выполняется легко за счет большего содержания его в сосудистой стенке по сравнению с тканевым активатором плазминогена. Таким образом, на месте повреждения активированные тромбоциты выделяют избыточное количество ИТАП-1, предотвращая преждевременный лизис фибрина.

Ингибитор тканевого активатора плазминогена 2 (ИТАП-2) - основной ингибитор урокиназы.

Фактор фон Виллебранда (VIII - vWF) - синтезируется в эндотелии и мегакариоцитах; стимулирует начало тромбообразования: способствует прикреплению рецепторов тромбоцитов к коллагену и фибронектину сосудов, усиливает адгезию и агрегацию тромбоцитов. Синтез и выделение этого фактора возрастает под влиянием вазопрессина, при повреждении эндотелия. Поскольку все стрессорные состояния увеличивают выделение вазопрессина, то при стрессах, экстремальных состояниях тромбогенность сосудов возрастает.

АТ II быстро метаболизируется (период полураспада - 12 мин) при участии аминопептидазы А с образованием АТ III и далее под влиянием аминопептидазы N - ангиотензина IV, обладающих биологической активностью. АТ IV, предположительно, участвует в регуляции гемостаза, опосредует угнетение клубочковой фильтрации.

Важная роль отводится фибронектину - гликопротеиду, состоящему из двух цепей, соединенных дисульфидными связями. Вырабатывается он всеми клетками сосудистой стенки, тромбоцитами. Фибронектин является рецептором для фибринстабилизирующего фактора. Способствует адгезии тромбоцитов, участвуя в образовании белого тромба; связывает гепарин. Присоединяясь к фибрину, фибронектин уплотняет тромб. Под действием фибронектина клетки гладких мышц, эпителиоцитов, фибробластов повышают свою чувствительность к факторам роста, что может вызвать утолщение мышечной стенки сосудов и повышение общего периферического сопротивления сосудов.

Тромбоспондин - гликопротеид, который не только вырабатывается эндотелием сосудов, но находится и в тромбоцитах. Он образует комплексы с коллагеном, гепарином, являясь сильным агрегирующим фактором, опосредующим адгезию тромбоцитов к субэндотелию.

Фактор активации тромбоцитов (ФАТ) - образуется в различных клетках (лейкоциты, эндотелиальные клетки, тучные клетки, нейтрофилы, моноциты, макрофаги, эозинофилы и тромбоциты), относится к веществам с сильным биологическим действием.

ФАТ задействован в патогенезе аллергических реакций немедленного типа. Он стимулирует агрегацию тромбоцитов с последующей активацией фактора XII (фактора Хагемана). Активированный фактор XII, в свою очередь, активирует образование кининов, наибольшее значение из которых имеет брадикинин.

Группа антитромбогенных факторов представлена нижеперечисленными биологически активными веществами.

Тканевой активатор плазминогена (tPA, фактор III, тромбопластин, ТАП) - сериновая протеаза катализирует превращение неактивного профермента плазминогена в активный фермент плазмин и является важным компонентом системы фибринолиза. ТАП является одним из ферментов, наиболее часто вовлекаемых в процессы деструкции базальной мембраны, внеклеточного матрикса и инвазии клеток. Он продуцируется эндотелием и локализован в стенке сосудов. ТАП представляет собой фосфолипопротеин, эндотелиальный активатор, высвобождаемый в кровоток под действием разных стимулов.

Основные функции сводятся к инициации активации внешнего механизма свертывания крови. Он обладает высоким сродством к циркулирующему в крови ф.VII. В присутствии ионов Са2+ ТАП образует комплекс с ф.VII, вызывая его конформационные изменения и превращая последний в сериновую протеиназу ф.VIIа. Возникающий комплекс (ф.VIIа-Т.ф.) превращает ф.Х в сериновую протеиназу ф.Ха. Комплекс ТАП-фактор VII способен активировать как фактор X, так и фактор IX, что, в конечном итоге, способствует образованию тромбина.

Тромбомодулин - протеогликан, содержащийся в сосудах и являющийся рецептором для тромбина. Эквимолярный комплекс тромбин-тромбомодулин не вызывает превращения фибриногена в фибрин, ускоряет инактивацию тромбина антитромбином III и активирует протеин C, один из физиологических антикоагулянтов крови (ингибиторов свертывания крови). В комплексе с тромбином тромбомодулин функционирует в качестве кофактора. Связанный с тромбомодулином тромбин в результате изменения конформации активного центра приобретает повышенную чувствительность в отношении инактивации его антитромбином III и полностью теряет способность взаимодействовать с фибриногеном и активировать тромбоциты.

Жидкое состояние крови поддерживается благодаря ее движению, адсорбции факторов свертывания эндотелием и, наконец, благодаря естественным антикоагулянтам. Важнейшие из них - это антитромбин III, протеин С, протеин S и ингибитор внешнего механизма свертывания.

Антитромбин III (АТ III) - нейтрализует активность тромбина и других активированных факторов свертывания крови (фактора XIIa, фактора XIa, фактора Xa и фактора IXa). В отсутствие гепарина комплексирование АТ III с тромбином протекает медленно. При связывании остатков лизина АТ III с гепарином в ее молекуле происходят конформационные сдвиги, способствующие быстрому взаимодействию реактивного места АТ III с активным центром тромбина. Это свойство гепарина лежит в основе его антикоагулянтного действия. АТ III образует комплексы с активированными факторами свертывания крови, блокируя их действие. Эта реакция в сосудистой стенке и на эндотелиальных клетках ускоряется гепариноподобными молекулами.

Протеин С - синтезируемый в печени витамин-К-зависимый белок, который связывается с тромбомодулином и превращается тромбином в активную протеазу. Взаимодействуя с протеином S, активированный протеин С разрушает фактор Va и фактор VIIIa, прекращая образование фибрина. Активированный протеин С может также стимулировать фибринолиз. Уровень протеина С не столь жестко связан с наклонностью к тромбозам, как уровень АТ III. Кроме того, протеин С стимулирует выделение тканевого активатора плазминогена эндотелиальными клетками. Кофактором протеина С служит протеин S.

Протеин S - фактор протромбинового комплекса, кофактор протеина С. Снижение уровня АТ III, протеина С и протеина S или их структурные аномалии ведут к повышению свертываемости крови. Протеин S - витамин К - зависимый одноцепочечный плазменный протеин, является кофактором активированного протеина С, вместе с которым регулирует скорость свертывания крови. Протеин S синтезируется в гепатоцитах, эндотелиальных клетках мегакариоцитах, клетках Лейдинга, а также в клетках мозга. Протеин S функционирует как неэнзиматический кофактор активированного белка C, сериновая протеаза, участвующая в протеолитической деградации факторов Va и VIIIa.

Все факторы, влияющие на рост сосудов и гладкомышечных клеток, делятся на стимуляторы и ингибиторы. Основные стимуляторы представлены ниже.

Ключевой активной формой кислорода является супероксид анион-радикал (Ō2), образующийся при присоединении одного электрона к молекуле кислорода в основном состоянии. Ō2 представляет опасность тем, что способен повреждать белки, содержащие железо-серные кластеры, такие как аконитаза, сукцинатдегидрогеназа и НАДН-убихинон оксидоредуктаза. При кислых значениях рН Ō2 может протонироваться с образованием более реакционноспособного пероксидного радикала. Присоединение двух электронов к молекуле кислорода или одного электрона к Ō2 приводит к образованию Н2О2, которая является окислителем умеренной силы.

Опасность любых реакционно-активных соединений в значительной степени зависит от их стабильности. Экзогенно возникшие Ō2 могут проникать в клетку и (наряду с эндогенными) участвовать в реакциях, приводящих к различным повреждениям: перекисном окислении ненасыщенных жирных кислот, окислении SH-групп белков, повреждении ДНК и др.

Фактор роста эндотелиальных клеток (beta-Endothelial Cell Growth Factor) - обладает свойствами ростового фактора эндотелиальных клеток. 50 % аминокислотной последовательности молекулы ECGF соответствует структуре фактора роста фибробластов (FGF). Оба эти пептида также обнаруживают сходную аффинность к гепарину и ангиогенную активность in vivo. Основной фактор роста фибробластов (bFGF) считается одним из важных индукторов опухолевого ангиогенеза.

Главные ингибиторы роста сосудов и гладкомышечных клеток представлены следующими веществами.

Эндотелиальный натрийуретический пептид С - вырабатывается, главным образом, в эндотелии, но обнаруживается также в миокарде предсердий, желудочков и в почках. Вазоактивным действием обладает CNP, выделяющийся из эндотелиальных клеток и паракринно воздействующий на рецепторы гладкомышечных клеток, вызывая и вазодилятацию. Синтез CNP усиливается в условиях дефицита NO, что имеет компенсаторное значение при развитии артериальной гипертензии и атеросклерозе.

Макроглобулин α2 - это гликопротеин, который относится к α2-глобулинам и представляет собой одну полипептидную цепь с молекулярной массой 725000 кДа. Нейтрализует плазмин, оставшийся неинактивированным после взаимодействия с α2-антиплазмином. Угнетает активность тромбина.

Кофактор II гепарина - гликопротеин, одноцепочечный полипептид с молекулярной массой 65000 кДа. Его концентрация в крови равна 90 мкг/мл. Инактивирует тромбин, образуя с ним комплекс. Реакция значительно ускоряется в присутствии дерматансульфата.

Сосудистый эндотелий также вырабатывает факторы, влияющие на развитие и течение воспаления.

Они делятся на провоспалительные и противовоспалительные. Ниже представлены провоспалительные факторы.

Фактор некроза опухоли-α (ФНО-α, кахектин) - это пироген, во многом дублирует действие ИЛ-1, но кроме того, играет важную роль в патогенезе септического шока, вызванного грамотрицательными бактериями. Под влиянием ФНО-α резко увеличивается образование макрофагами и нейтрофилами Н2О2 и других свободных радикалов. При хроническом воспалении ФНО-α активирует катаболические процессы и тем самым способствует развитию кахексии.

Цитотоксическое действие ФНО-α на опухолевую клетку связано с деградацией ДНК и нарушением функционирования митохондрий.

Индикатором эндотелиальной дисфункции может служить С-реактивный белок (С-РБ). Накоплено достаточно сведений о взаимосвязи С-РБ с развитием поражений сосудистой стенки и его непосредственном участии в этом процессе. Ввиду этого уровень С-РБ рассматривается сегодня в качестве надежного предиктора осложнений сосудистых заболеваний мозга (инсульт), сердца (инфаркт), периферических сосудистых нарушений. С-РБ опосредует инициальные стадии повреждения сосудистой стенки: активацию эндотелиальных молекул адгезии (ICAM-l, VCAM-l), секрецию хемотаксических и провоспалительных факторов (МСР-1 - хемотаксический для макрофагов белок, ИЛ-6), способствуя привлечению и адгезии иммунных клеток к эндотелию. Об участии С-РБ в повреждении сосудистой стенки свидетельствуют, кроме того, и данные о депозитах С-РБ, обнаруженных в стенках пораженных сосудов при инфаркте миокарда, атеросклерозе, васкулитах.

Основной противовоспалительный фактор - оксид азота (его функции представлены выше).

Таким образом, сосудистый эндотелий, находясь на границе между кровью и другими тканями организма, полностью выполняет свои основные функции за счет биологически активных веществ: регуляция параметров гемодинамики, тромборезистентность и участие в процессах гемостаза, участие в воспалении и ангиогенезе.

При нарушении функции или структуры эндотелия резко меняется спектр выделяемых им биологически активных веществ. Эндотелий начинает секретировать агреганты, коагулянты, вазоконстрикторы, причем часть из них (ренин-ангиотензиновая система) оказывает влияние на всю сердечно-сосудистую систему. При неблагоприятных условиях (гипоксия, нарушения обмена веществ, атеросклероз и т. п.) эндотелий становится инициатором (или модулятором) многих патологических процессов в организме .

Рецензенты :

Бердичевская Е.М., д.м.н., профессор, зав. кафедрой физиологии ФГОУ ВПО «Кубанский государственный университет физической культуры, спорта и туризма» г. Краснодар;

Быков И.М., д.м.н., профессор, зав. кафедрой фундаментальной и клинической биохимии ГБОУ ВПО КубГМУ Минздравсоцразвития России, г. Краснодар.

Работа поступила в редакцию 03.10.2011.

Библиографическая ссылка

Каде А.Х., Занин С.А., Губарева Е.А., Туровая А.Ю., Богданова Ю.А., Апсалямова С.О., Мерзлякова С.Н. ФИЗИОЛОГИЧЕСКИЕ ФУНКЦИИ СОСУДИСТОГО ЭНДОТЕЛИЯ // Фундаментальные исследования. – 2011. – № 11-3. – С. 611-617;
URL: http://fundamental-research.ru/ru/article/view?id=29285 (дата обращения: 18.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Подробности

Эндотелий - интима сосудов. Он выполняет ряд важных функций, в том числе: регулирует тонус сосудов, способствует изменению их диаметра, является сенсором повреждения сосудистой стенки и может запускать механизм свертывания крови.

1. Общий план строения сосудистой стенки.

2. Основные функции эндотелия сосудов.

  • Регуляция величины сосудистого тонуса и сосудистого сопротивления
  • Регуляция текучести крови
  • Регуляция ангиогенеза
  • Реализация процесса воспаления

3. Основные функции эндотелия реализуются:

1) Сдвигом секреторной функции эндотелия в сторону сосудорасширительных факторов (90% приходится на оксид азота).

2) Ингибированием:

  • Агрегации тромбоцитов
  • Адгезии белых клеток крови
  • Пролиферации гладких мышц

Основные функции эндотелиального слоя сосудистой клетки определяются его синтетическим фенотипом – набором вазоактивных факторов, синтезируемых эндотелием.

4. При дисфункции эндотелия наблюдается:

1) Сдвиг секреторной функции эндотелия в сторону сосудосуживающих факторов

2) Усиление:

  • агрегации тромбоцитов
  • адгезии белых клеток крови
  • пролиферации клеток гладких мышц

Что приводит к уменьшению сосудистого просвета, тромбообразованию, появлению очага воспаления и гипертрофии сосудистой стенки.

5. Регуляция текучести крови при участии эндотелия в норме.

6. Сдвиг синтетической активности эндотелиальной клетки в сторону прокоагулянтного фенотипа при нарушении целостности эндотелия или возникновении воспалительного процесса.

7. ЭНДОТЕЛИЙ СОСУДИСТОЙ СТЕНКИСИНТЕЗИРУЕТ И ВЫДЕЛЯЯЕТ СУЖИВАЮЩИЕ И РАСШИРИТЕЛЬНЫЕ ВАЗОАКТИВНЫЕ ФАКТОРЫ:

8. Типы действий вазоактивных факторов, синтезируемых эндотелием сосудистой стенки.

9. Основные пути метаболизма арахидоновой кислоты.

Циклооксигеназный путь
Липоксигеназный путь
Эпоксигеназный путь
Трансацилазный (мембранный) путь

Активация фосфолипазы А2 (брадикинином) стимулирует выход арахидоновой кислоты в растворимую часть клетки и ее метаболизм

10. Кооперативный способ активации арахидоновой кислоты.

11. Метаболизм арахидоновой кислоты (АА) при участии фосфолипазы А2 (PLA2).

==>>Воспаление.

12. Метаболиты арахидоновой кислоты по циклооксигеназному пути.

13. Механизм действия нестероидных противоспалительных препаратов с анальгетическим действием.

14. Типы циклооксигеназ. Их стимуляция и ингибирование.

Циклооксигеназа I типа (ингибируется парацетамолом) и II типа (ингибируется диклофенаком)

15. Механизм реализации действия простациклина (PG2) на гладкой мышце сосуда.

16. Схема синтеза эндогенных каннабиноидов.

Эндогенные каннабиноиды(NAEs) –(анандамид) метаболизируются с образованием арахидоновой кислоты и ее последующей деградации.

Механизм действия эндогенного каннабиноида – анандамида на сосудистую стенку:

Быстрая деградация в эндотелии уменьшает расширительный потенциал эндоканнабиноидов.

Влияние анандамида на сопротивление перфузируемого сосудистого русла кишечник (А) и изолированного резистивного мезентериального сосуда (В).

Схема возможного пути метаболизма анандамида, ингибирующего его прямое вазодилятаторное действие на гладкую мышцу сосудов.

17. Эндотелий-зависимое расширение сосудов.

Синтез оксида азота: ключевой элемент - NO-синтаза (конститутивная - работает всегда и индуцибельная - активируется под воздействием определенных факторов)

18. Изоформы NO-синтаз: нейрональная, индуцибильная, эндотелиальная и митохондриальная.

Структура изоформ синтаз оксида азота:

mtNOS –альфа форма nNOS, отличающаяся фосфорилированным С-концом и двумя измененными аминокислотными остатками.

19. Роль NO-синтаз в регуляции различных функций организма.

20. Схема активации синтеза NO и cGMP в эндотелиальной клетке.

21. Физиологические и гуморальные факторы, активирующие эндотелиальную форму NO-синтазы.

Факторы, определяющие биодоступность оксида азота.

Участие оксида азота в реакции окислительного стресса.

Влияние пироксинитрита на белки и ферменты клетки.

22. Синтез оксида азота эндотелиальной клеткой и механизм расширения гладкой мышцы сосудов.

23. Гуанилатциклаза – фермент, катализирующий образование цГМФ из ГТФ, структура и регуляция. Механизм расширения сосуда при участии цГМФ.

24. Ингибирование цГМФ Rho-киназного пути сокращения гладких мышц сосудов.

25. Вазоактивные факторы, синтезируемые эндотелием и пути реализации их воздействия на гладкую мышцу сосуда.

26. Открытие эндотелина – эндогенного пептида, обладающего вазоактивными свойствами.

Эндотелин – эндогенный пептид, синтезируемый эндотелиальными клетками сосудистой системы.

Эндотелин – 21 –членный пептид, обладающий вазоконстрикторными свойствами.

Структура эндотелина-1, Семейство эндотелинов: ЭТ-1, ЭТ-2, ЭТ-3.

Эндотелин:

Экспрессия разных форм пептида в тканях:

  • Эндотелин-1 (эндотелий и гладкая мышца сосудов, сердечные миоциты, почка и т.д.)
  • Эндотелин -2 (почка, мозг, ж-кишечный тракт и т.д.)
  • Эндотелин-3 (кишечник, надпочечники)

Механизм синтеза в тканях: три разных гена -
Препроэндотелин-->биг эндотелин-->эндотелины
*фурин-подобная эндопепт. эндотелинпревр. ферм.
(клеточная поверхн., внутрикл. визикулы)
Типы рецепторов и эффектов :
Ета (гладкая мышца - сокращение)
Етв (эндотелий-выделение эндотелий-зав. расш. фак. гладкая мышца- сокращение)
Содержание в тканях и крови: фм/мл
увеличение в 2-10 раз при сердечной недостаточности, легочной гипертензии, почечной недостаточности, субарахноидальной геморрагии и т.д.

27. Синтез эндотелина эндотелиальной клеткой и механизм сокращения гладкой мышцы сосуда.

28. Механизм реализации действия эндотелина на гладкую мышцу сосуда в норме и патологии.

29. Патологическая роль эндотелина.

  • вазоконстрикция
  • гипертрофия
  • фиброз
  • воспаление

30. Основные факторы гуморальной регуляции сосудистого тонуса, опосредующие свое действие через изменение секреторной функции эндотелия.

  • Катехоламины (адреналин и норадреналин)
  • Ангиотезин-рениновая система
  • Семейство эндотелинов
  • АТФ, АДФ
  • Гистамин
  • Брадикинин
  • Тромбин
  • Вазопрессин
  • Вазоактивный интенстинальный пептид
  • Кольцитонин генсвязывающий пептид
  • Натрийуретический пептид
  • Оксид азота

Что такое эндотелий?
Эндотелий - это особые клетки, выстилающие внутреннюю
поверхность кровеносных, лимфатических сосудов и сердечных полостей. Он отделяет кровоток от более глубоких слоев сосудистой стенки и служит границей между ними.

Важное значение для нормального функционирования различных систем организма, в том числе и нервной, имеет адекватное получение с помощью кровотока всеми его клетками и нейронами тоже, "питательных" веществ.
Для чего, состояние крупных, мелких и мельчайших сосудов, и, особенно, их внутренней стенки - эндотелия, первостепенно.

Эндотелий - активный орган. Он непрерывно вырабатывает большое количество биологически активных веществ (БАВ). Они важны для процесса свертывания крови, регуляции сосудистого тонуса, стабилизации артериального давления. "Эндотелиальные" БАВ, участвуют в процессе метаболизма мозга, важны для фильтрационной функции почек и сократительной способности миокарда.

Особая роль принадлежит состоянию целостности эндотелия. Пока он не поврежден, он активно синтезирует факторы различные БАВ.
Противо - свертывающие, одновременно расширяют сосуды, и препятствуют росту гладких мышц, которые могут этот просвет суживать.
Здоровым эндотелием синтезируется оптимальное количество оксида азота (NO), который поддерживает сосуды в состоянии дилатации и обеспечивает адекватный кровоток, особенно, мозговой.

NO - активный ангио - протектор, помогает предотвратить патологическую перестройку сосудистой стенки, прогрессирование атеросклероза и артериальной гипертензии, антиоксидант, ингибитор агрегации и адгезии тромбоцитов.

Ангиотензин - превращающий фермент (АПФ) - тоже образуется при повреждении эндотелия. Он превращает малоактивное вещество ангиотензин I в активное - ангиотензин II.
Ангиотензин II влияет на повышение сосудистого тонуса, способствует развитию артериальной гипертензии, превращению полезного NO в активный окислительный радикал, обладающий повреждающим действием.

Эндотелий синтезирует факторы, участвующие в свертываемости крови (тромбомодулин, фактор Виллебранда, тромбоспондин).
Таким образом, БАВ, постоянно вырабатываемые эндотелием, являются основой для адекватного кровотока. Они влияют на состояние сосудистой стенки (спазмирование ее или расслабление) и на активность факторов свертывания.

Нормально функционирующий эндотелий препятствует адгезии тромбоцитов (их приклеиванию к стенке сосуда), агрегации тромбоцитов (их склеиванию между собой), снижает коагуляцию крови и спазм кровеносных сосудов.

Но, при изменении его структуры, происходят и функциональные нарушения. Эндотелий "производит" вредные активные вещества - агреганты, коагулянты, сосудосуживающие - больше, чем это необходимо. Они оказывают неблагоприятное влияние на работу всей системы кровообращения, ведут к болезням, включая ИБС, Атеросклероз, артериальную гипертензию и другие.
Нарушение равновесия в производстве активных веществ, называют дисфункцией эндотелия (ДЭ).
ДЭ приводит к микро - и макро - ангиопатии. При сахарном диабете, микроангиопатия приводит к развитию ретино - и нефропатии, макроангиопатия - к развитию атеросклероза с поражением сосудов сердца, головного мозга, периферических артерий конечностей, чаще нижних. Для любой ангиопатии характерна триада "Вирхова" - изменение эндотелия, нарушения системы свертывания и противосвертывания крови, замедлением кровотока.
ДЭ - это дисбаланс между продукцией вазодилатирующих (сосудорасширяющих), антитромботических, ангиопротективных, факторов с одной стороны и вазоконстрикторных (сосудосуживающих), протромбических, пролиферативных - с другой.

ДЭ является, с одной стороны, одним из важных патогенетических механизмов

развития сосудистых болезней мозга, сердца и других органов (например, ИБС, ), с другой стороны - самостоятельным фактором риска этих проблем.

Чем она более выражена, тем больше страдают мозговые (и всех других органов и тканей) сосуды, особенно мелкие и мельчайшие. Нарушается микроциркуляция и получение клетками необходимого питания.

Косвенно, о степени выраженности ДЭ позволяют судить определенные биохимические показатели крови - уровень содержания факторов, повреждающих эндотелий. Их называют медиаторами повреждения эндотелия.


К ним относят гипергликемию, гипергомоцистеинемию, повышение триглицеридов сыворотки крови, микроальбуминурию, измененный уровень цитокинов крови, снижение концентрации NO крови.
Степень изменения этих показателей коррелирует со степенью дисфункции эндотелия, а, следовательно, и со степенью выраженности сосудистых нарушений и степенью риска различных осложнений (инфаркты, , ИБС и т.д.).

Своевременное выявление индикаторов повреждения эндотелия позволит вовремя принять меры по их снижению и более эффективно проводить первичную и вторичную профилактику различных болезней системы кровообращения и сосудистых болезней головного мозга.

Verification: 4b3029e9e97268e2

Октябрь 30, 2017 Нет комментариев

Стенка интактных артерий состоит из трех оболочек: интимы (tunica intima), медиа (tunica media) и адвентиции (tunica externa).

1. Интима, т.е. внутренняя оболочка, включает эндотелий, тонкий субэндотелиальный слой и внутреннюю эластическую мембрану на границе с медиа - средней оболочкой. Эндотелий представляет собой монослой удлиненных клеток, ориентированных вдоль продольной оси сосуда. Эндотелиальный слой непрочен, его целостность легко нарушается при различных физических воздействиях, а восстановление происходит благодаря митотическому делению эндотелиоцитов под влиянием определенных стимулов со стороны окружающей соединительной ткани и эндотелиоцитов.

2. Медиа представлена циркулярными пучками гладкомышечных клеток, которые отделяются от наружного слоя эластической мембраной, состоящей из продольно ориентированных толстых эластических волокон и спирально расположенных пучков коллагеновых фибрилл.

3. Адвентиция - наружная оболочка сосудистой стенки состоит из рыхлой соединительной ткани, содержащей большое количество фибробластов, и сливается с окружением сосуда. Важной особенностью адвентипии является наличие в ней нервных окончаний и vasa vasorum - сосудов, питающих стенку артерий. Эластические волокна создают резистивное сопротивление, которое повышается при увеличении кровяного давления и тем самым противодействует расширению сосуда.

Эластическое сопротивление определяет базальный компонент сосудистого тонуса - это филогенетически древний механизм ауторегуляции сосудистого тонуса, обеспечивающий сохранность структурной целостности сосудов в условиях их растяжения давлением крови. Гладкомышечные волокна под влиянием нейро-гуморальных факторов создают активное напряжение сосудистой стенки (вазомоторнный компонент сосудистого тонуса) и, соответственно, определенную величину просвета сосуда (объем кровотока) в «интересах» организма. Соотношение между базальным и вазомоторным компонентами сосудистого тонуса различны в разных органах и тканях.

Наибольшую значимость для функционирования сосудов имеют гладкомышечные и эндотелиальные клетки. Особое внимание в современной медицине привлекает эндотелий, который, как оказалось, способен синтезировать весьма большой спектр биологически активных веществ на границе «кровь - клетки тканей/органов» и таким образом выполнять функцию «таможенника» на этой границе.

Эндотелий – эндокринный орган сердечно-сосудистой системы

Совокупность всех эндотелиоцитов (специализированных клеток мезенхимного происхождения) образует эндотелиальную выстилку - однослойный пласт клеток, выстилающий изнутри все «сердечно-сосудистое дерево»: кровеносные сосуды, полости сердца, а также лимфатические сосуды. У взрослого человека эндотелиальная выстилка имеет массу в пределах 1,5-1,8 кг, состоит примерно из одного триллиона клеток, которые способны синтезировать биологически активные молекулы с различными типами действия -аутокринным, паракринным и эндокринным.

Структурная организация эндотелиальной выстилки неодинакова в разных сосудах. Например, существуют рандомический и кластеризованный типы организации эндотелиального монослоя. Первый из них характеризуется относительно беспорядочным расположением эндотелиоцитов, а при втором - эндотелиоцигы примерно одинакового размера формируют кластеры (англ, cluster- группа). Гетерогенность эндотелия сопряжена с типом сосуда (артерии, артериолы, капилляры, венулы, вены), органом или тканью, которые они кровоснабжают.

Эндотелиальные клетки также неоднородны по своей структуре, которая зависит в основном от фибрилл цитоскелета: активных микрофиламетов, микротрубочек, промежуточных филаментов. Эти три типа фибрилл, имеющиеся во всех клетках, формируют различные варианты микроархитектуры эндотел ионитов. Типовые различия клеточной архитектоники обычно устойчивы - они сохраняются даже тогда, когда экспериментаторы выделяют клетки из ткани и культивируют in vitro.

Однако в последние годы было установлено, что эти различия не являются необратимыми: под влиянием определенных сигналов, действующих на клетки извне, или генных мутаций архитектоника эндотелиоцитов может коренным образом перестраиваться вплоть до того, что клетки одного типа могут трансформироваться в клетки другого типа с совершенно иной архитектурой цитоскелета. Процесс трансформации фенотипа клеток, в том числе эндотелиоцитов, в настоящее время включен в понятие, обозначаемое термином «репрограммирование».

Этот процесс привлекает все большее внимание в аспекте современного понимания патогенеза самых различных форм патологии. Неоднородность эндотелиоцитов выражается не только в структурных особенностях, но и в их генетической и биосинтетической специфичности. Так, например, эндотелиоциты коронарных, легочных и церебральных сосудов, несмотря на гистологическую схожесть, весьма существенно различаются по типам экспрессируемых рецепторов, спектру синтезируемых биологически активных молекул: ферментов, белков-регуляторов, белков-мессенджеров. Такая гетерогенность предопределяет неодинаковое участие различных популяций эндотелиоцитов в развитии атеросклероза, ишемической болезни сердца, воспаления и др. форм патологии.

Итак, эндотелий является не только основным структурным компонентом интимы, выполняющим роль барьера между кровью и базальной мембраной сосудистой стенки, но и активным регулятором многих жизненно важных процессов. Многообразие целевых эффектов «гормонального ответа» эндотелиоцитов базируется на их способности синтезировать биологически активные вещества являющиеся, в своем большинстве, функциональными антагонистами. В набор этих веществ входят вазоконстрикторы и вазодилататоры, проагреганты и антиагреганты, прокоагулянты и антикоагулянты, митогены и антимитогены.

«Гормональная» активность интактного эндотелия способствует вазодилатации, препятствует гемокоагуляции и тромбообразованию, ограничивает пролиферативый потенциал клеток сосудистой стенки. В условиях альтерации (alteratio; лат. - изменение), т.е. патогенетически значимого изменения эндотелия, его «гормональный» ответ, напротив, способствует вазоконстрик-ции, гемокоагуляции, тромбообразованию, пролиферативному процессу.

Эндотелиальная выстилка находится под постоянным «прессом» вне-и внутрисосудистых факторов, которые, по сути, являются регуляторами «гормонального ответа» эндотелиоцитов.

В конце прошлого столетия было выявлено два типа ответа эндотелиоцитов на возмущающие воздействия: один из них развивается незамедлительно (без изменения экспрессии генов) и выражается в выделении преформированных и депонированных биологически активных молекул (напр.: Р-селектина, фактора фон Виллебранда, тромбоцитарного активирующего фактора (PAF) из гранул эндотелиоцитов); другой - проявляется спустя 4-6 ч после начала действия возмущающего стимула и характеризуется изменением активности генов, детерминирующей de novo синтез адгезивных молекул (напр.: Е-селекгана, ICAM-1, VCAM-1; интерлейкинов IL-1 и IL-6; хемокинов - IL-8, МСР-1 и других веществ).

В обобщенном виде можно выделить 3 основные группы факторов, индуцирующих «гормональный ответ» эндотелия.

1. Гемодинамический фактор. Влияние этого фактора на функциональную активность эндотелия зависит от скорости кровотока, его характера, а также величины давления крови, обусловливающих развитие т.н. «напряжения сдвига» (англ, «shear stress»).

2. «Клеточные» (местно-образующиеся) биологически активные вещества, обладающие аутокринным или паракринным свойством. К ним относят факторы «реакции освобождения» - дегрануляции и лизиса адгезированных и агрегированных тромбоцитов: тромбопластин, фибриноген, фактор фон Виллебранда, тромбоцитарный фактор роста, фибронектин, серотонин, АДФ, кислые гидролазы, а также продукты переместившихся в краевое, пристеночное положение лейкоцитов (прежде всего нейтрофилов), которые при этом становятся интенсивными продуцентами адгезивных молекул, лизосомальных протеаз, активных форм кислорода, лейкотриенов, простагландинов группы Е и т.д.), а также активированных тучных клеток - источников гистамина, серотонина, лейкотриенов С4 и D4, фактора активации тромбоцитов, гепарина, протеолитических ферментов, хемотаксических и других факторов.

3. Циркулирующие (дистантно-образующиеся) биологически активные вещества, обладающие эндокринным свойством. К ним относят катехоламины, ваэопрессин, ацетилхолин, брадикинин, аденозин, гистамин и многие другие.

Действие медиаторов и нейрогормонов в основном реализуется через специфические рецепторы, расположенные на поверхности эндотелиальных клеток.

Повреждение эндотелия, т.е. патогенетически значимое репрограммирование его биосинтетической активности в условиях развития различных заболеваний, связывают прежде всего с существенным изменением «напряжения сдвига». «Напряжение сдвига» (механический фактор) по определению данного понятия - это внутренние силы, возникающие в деформируемом теле под влиянием внешних статических и динамических нагрузок.

Согласно закону Гука величина упругой деформации твердого тела пропорциональна приложенному механическому напряжению. Упругие свойства сосудистой стенки определяются количественными и качественными характеристиками ее структурных компонентов: соединительнотканных и гладкомышечных клеток, организованных в волокна.

Давление в кровеносном сосуде создает в его стенке «растягивающее (давление зависимое) напряжение сдвига», направленное по касательной к окружности сосуда, а скорость движения крови – «продольное (поток-зависимое) напряжение сдвига», ориентированное вдоль сосуда. Таким образом, напряжение сдвига - это прижимающие и скользящие механические силы воздействия на поверхность эндотелия.

Кроме указанных гемодинамических факторов, на величину напряжения сдвига оказывает влияние вязкость крови. Установлено, что артерии регулируют свой просвет соответственно изменению данного свойства крови: при повышении вязкости сосуды увеличивают свой диаметр, а при понижении - его уменьшают.

Выраженность и направленность регуляторного ответа артерий на изменения величины внутрисосудистого потока не всегда однозначны и зависят от исходного тонуса артерий.

Касаясь механизмов реализации изменений напряжения сдвига, прежде всего возникает вопрос о способности эндотелиоцитов воспринимать механические стимулы. Такое свойство эндотелиальных клеток было продемонстрировано in vivo и in vitro, в то время как вопрос о механосенсорах пока окончательно не решен.Тем не менее установлено, что изменения напряжения сдвига могут опосредованно, через ионоселективные каналы, влиять на мембранный потенциал эндотелиальных клеток и тем самым - на синтез и выделение NO.

Обнаружено также, что эндотелиоциты (включая их ядра) способны ориентироваться в направлении движения потока крови, изменяя при этом интенсивность экспрессии биологически активных веществ в зависимости от сдвиговых напряжений. Оказалось, что такую ориентацию могут предотвращать препараты, повышающие содержание внутриклеточного цАМФ.

Следует отметить, что многие аспекты достаточно сложной биомеханики сосудистой стенки, взаимоотношения кровяного давления и потока до сих пор находятся на этапе их изучения, но вместе с тем в настоящее время положение об активной роли эндотелия в регуляции и нарушениях кровообращения приняло характер парадигмы.

Физиологическое (умеренно выраженное) напряжение сдвига всегда способствует реализации защитно-приспособительных возможностей эндотелиальных клеток. Чрезмерность напряжения сдвига не всегда приводит к реализации защитно-приспособительного потенциала эндотелиальной активности.

Чаще всего значительные (по интенсивности или продолжительности) изменения гемодинамических параметров, главным образом потока и давления крови, сопровождаются истощением или неадекватным использованием функциональных возможностей эндотелия, т. е. развитием эндотелиальной дисфункции.

Патология сердечно-сосудистой системы продолжает занимать основное место в структуре заболеваемости, смертности и первичной инвалидизации, являясь причиной уменьшения общей продолжительности и ухудшения качества жизни пациентов как во всем мире, так и в нашей стране. Анализ показателей состояния здоровья населения Украины свидетельствует, что заболеваемость и смертность от болезней кровообращения остаются высокими и составляют 61,3% от общего показателя смертности. Поэтому разработка и внедрение мероприятий, направленных на улучшение профилактики и лечения сердечно-сосудистых заболеваний (ССЗ), являются актуальной проблемой кардиологии.

Согласно современным представлениям, в патогенезе возникновения и прогрессирования многих ССЗ — ишемической болезни сердца (ИБС), артериальной гипертензии (АГ), хронической сердечной недостаточности (ХСН) и легочной гипертензии (ЛГ) — одну из основных ролей играет эндотелиальная дисфункция (ЭД).

Роль эндотелия в норме

Как известно, эндотелий представляет собой тонкую полупроницаемую мембрану, отделяющую кровоток от более глубоких структур сосуда, которая непрерывно вырабатывает огромное количество биологически активных веществ, в связи с чем является гигантским паракринным органом.

Главная роль эндотелия состоит в поддержании гомеостаза путем регуляции противоположных процессов, происходящих в организме:

  1. тонуса сосудов (баланса вазоконстрикции и вазодилатации);
  2. анатомического строения сосудов (потенцирование и ингибирование факторов пролиферации);
  3. гемостаза (потенцирование и ингибирование факторов фибринолиза и агрегации тромбоцитов);
  4. местного воспаления (выработка про- и противовоспалительных факторов).

Основные функции эндотелия и механизмы, с помощью которых он осуществляет эти функции

Эндотелий сосудов выполняет ряд функций (таблица), важнейшей из которых является регуляция сосудистого тонуса. Еще R.F. Furchgott и J.V. Zawadzki доказали, что расслабление сосудов после введения ацетилхолина происходит вследствие высвобождения эндотелием эндотелиального фактора релаксации (ЭФР), и активность этого процесса зависит от целости эндотелия. Новым достижением в изучении эндотелия было определение химической природы ЭФР — азота оксида (NO).

Основные функции эндотелия сосудов

Функции эндотелия

Основные обеспечивающие механизмы

Атромбогенность сосудистой стенки

NO, t-РА, тромбомодулин и другие факторы

Тромбогенность сосудистой стенки

Фактор Виллебранда, РАI-1, РАI-2 и другие факторы

Регуляция адгезии лейкоцитов

Р-селектин, Е-селектин, IСАМ-1, VСАМ-1 и другие молекулы адгезии

Регуляция тонуса сосудов

Эндотелии (ЭТ), NO, РGI-2 и другие факторы

Регуляция роста сосудов

VEGF, FGFb и другие факторы

Азота оксид как эндотелиальный фактор релаксации

NO — это сигнальная молекула, которая является неорганическим веществом со свойствами радикала. Малые размеры, отсутствие заряда, хорошая растворимость в воде и липидах обеспечивают ей высокую проницаемость сквозь клеточные мембраны и субклеточные структуры. Время существования NO составляет около 6 с, после чего при участии кислорода и воды он превращается в нитрат (NO 2) и нитрит (NO 3) .

NO образуется из аминокислоты L-аргинина под влиянием ферментов NO-синтаз (NOS). В настоящее время выделены три изоформы NOS: нейрональная, индуцибельная и эндотелиальная.

Нейрональная NOS экспрессируется в нервной ткани, скелетных мышцах, кардиомиоцитах, эпителии бронхов и трахеи. Это конституциональный фермент, модулируемый внутриклеточным уровнем ионов кальция и принимающий участие в механизмах памяти, координации между нервной активностью и сосудистым тонусом, реализации болевого раздражения.

Индуцибельная NOS локализована в эндотелиоцитах, кардиомиоцитах, гладкомышечных клетках, гепатоцитах, но основной ее источник — макрофаги. Она не зависит от внутриклеточной концентрации ионов кальция, активируется под влиянием различных физиологических и патологических факторов (провоспалительные цитокины, эндотоксины) в случаях, когда в этом есть необходимость.

Эндотелиальная NOS — конституциональный фермент, регулируемый содержанием кальция. При активации этого фермента в эндотелии происходит синтез физиологического уровня NO, приводящего к релаксации гладкомышечных клеток. NO, образующийся из L-аргинина, при участии фермента NOS активирует в гладкомышечных клетках гуанилатцикпазу, стимулирующую синтез циклического гуанозинмонофосфата (ц-ГМФ), который является основным внутриклеточным мессенджером в сердечно-сосудистой системе и снижает содержание кальция в тромбоцитах и гладких мышцах. Поэтому конечными эффектами NO являются дилатация сосудов, торможение активности тромбоцитов и макрофагов. Вазопротекторные функции NO заключаются в модуляции высвобождения вазоактивных модуляторов, блокировании окисления липопротеинов низкой плотности, подавлении адгезии моноцитов и тромбоцитов к сосудистой стенке.

Таким образом, роль NO не ограничивается только регуляцией сосудистого тонуса. Он проявляет ангиопротекторные свойства, регулирует пролиферацию и апоптоз, оксидантные процессы, блокирует агрегацию тромбоцитов и оказывает фибринолитический эффект. NO ответственен также за противовоспалительные эффекты.

Итак, NO оказывает разнонаправленные эффекты:

  1. прямое отрицательное инотропное действие;
  2. вазодилататорное действие:

- антисклеротическое (тормозит клеточную пролиферацию);
- антитромботическое (препятствует адгезии циркулирующих тромбоцитов и лейкоцитов к эндотелию).

Эффекты NO зависят от его концентрации, места продукции, степени диффузии через сосудистую стенку, способности взаимодействовать с кислородными радикалами и уровня инактивации.

Существуют два уровня секреции NO:

  1. Базальная секреция — в физиологических условиях поддерживает тонус сосудов в покое и обеспечивает неадгезивность эндотелия по отношению к форменным элементам крови.
  2. Стимулированная секреция — усиление синтеза NO при динамическом напряжении мышечных элементов сосуда, сниженном содержании кислорода в ткани в ответ на выброс в кровь ацетилхолина, гистамина, брадикинина, норадреналина, АТФ и др., что обеспечивает вазодилатацию в ответ на приток крови.

Нарушение биодоступности NO происходит вследствие следующих механизмов:

Снижения его синтеза (дефицит субстрата NO — L-аргинина);
- уменьшения на поверхности эндотелиальных клеток количества рецепторов, раздражение которых в норме приводит к образованию NO;
- усиления деградации (разрушение NO наступает прежде, чем вещество достигает места своего действия);
- повышения синтеза ЭТ-1 и других вазоконстрикторных субстанций.

Кроме NO, к вазодилатирующим агентам, образующимся в эндотелии, относятся простациклин, эндотелиальный фактор гиперполяризации, натрийуретический пептид С-типа и др., играющие важную роль в регуляции сосудистого тонуса при снижении уровня NO.

К основным эндотелиальным вазоконстрикторам относятся ЭТ-1, серотонин, простагландин Н 2 (ПГН 2) и тромбоксан А 2 . Самый известный и изученный из них— ЭТ-1 — оказывает непосредственное констрикторное влияние на стенку как артерий, так и вен. К другим вазоконстрикторам относятся ангиотензин II и простагландин F 2a , непосредственно действующие на гладкомышечные клетки.

Дисфункция эндотелия

В настоящее время под ЭД понимают дисбаланс между медиаторами, обеспечивающими в норме оптимальное течение всех эндотелийзависимых процессов.

Развитие ЭД одни исследователи связывают с недостатком продукции или биодоступности NO в стенке артерий, другие — с дисбалансом продукции вазодилатирующих, ангиопротекторных и ангиопролиферативных факторов, с одной стороны, и вазоконстрикторных, протромботических и пролиферативных факторов — с другой. Основную роль в развитии ЭД играют оксидантный стресс, продукция мощных вазоконстрикторов, а также цитокинов и фактора некроза опухоли, которые подавляют продукцию NO. При длительном воздействии повреждающих факторов (гемодинамическая перегрузка, гипоксия, интоксикация, воспаление) функция эндотелия истощается и извращается, в результате чего в ответ на обычные стимулы возникают вазоконстрикция, пролиферация и тромбообразование.

Кроме указанных факторов, ЭД вызывают:

Гиперхолестеролемия, гиперлипидемия;
- АГ;
- спазм сосудов;
- гипергликемия и сахарный диабет;
- курение;
- гипокинезия;
- частые стрессовые ситуации;
- ишемия;
- избыточная масса тела;
- мужской пол;
- пожилой возраст.

Следовательно, основными причинами повреждения эндотелия являются факторы риска атеросклероза, которые реализуют свое повреждающее действие через усиление процессов оксидантного стресса. ЭД является начальным этапом в патогенезе атеросклероза. In vitro установлено снижение продукции NO в клетках эндотелия при гиперхолестеролемии, что обусловливает свободнорадикальное повреждение клеточных мембран. Окисленные липопротеины низкой плотности усиливают экспрессию молекул адгезии на поверхности эндотелиальных клеток, приводя к моноцитарной инфильтрации субэндотелия.

При ЭД нарушается баланс между гуморальными факторами, оказывающими защитное действие (NO, ПГН), и факторами, повреждающими стенку сосуда (ЭТ-1, тромбоксан А 2 , супероксиданион). Одними из наиболее существенных звеньев, повреждающихся в эндотелии при атеросклерозе, являются нарушение в системе NO и угнетение NOS под влиянием повышенного уровня холестерола и липопротеинов низкой плотности. Развившаяся при этом ЭД обусловливает вазоконстрикцию, повышенный клеточный рост, пролиферацию гладкомышечных клеток, накопление в них липидов, адгезию тромбоцитов крови, тромбообразование в сосудах и агрегацию. ЭТ-1 играет важную роль в процессе дестабилизации атеросклеротической бляшки, что подтверждается результатами обследования больных с нестабильной стенокардией и острым инфарктом миокарда (ИМ). В исследовании отмечено наиболее тяжелое течение острого ИМ при снижении уровня NO (на основании определения конечных продуктов метаболизма NO — нитритов и нитратов) с частым развитием острой левожелудочковой недостаточности, нарушениями ритма и ормированием хронической аневризмы левого желудочка сердца.

В настоящее время ЭД рассматривают в качестве основного механизма формирования АГ. При АГ одним из главных факторов развития ЭД является гемодинамический, который ухудшает эндотелийзависимое расслабление вследствие уменьшения синтеза NO при сохраненной или увеличенной продукции вазоконстрикторов (ЭТ-1, ангиотензина II), ускоренной его деградации и изменении цитоархитектоники сосудов. Так, уровень ЭТ-1 в плазме крови у больных с АГ уже на начальных стадиях заболевания достоверно превышает таковой у здоровых лиц. Наибольшее значение в уменьшении выраженности эндотелийзависимой вазодилатации (ЭЗВД) придают внутриклеточному оксидантному стрессу, так как свободнорадикальное окисление резко снижает продукцию NO эндотелиоцитами. С ЭД, препятствующей нормальной регуляции мозгового кровообращения, у больных с АГ также связывают высокий риск цереброваскулярных осложнений, следствием чего являются энцефалопатия, транзиторные ишемические атаки и ишемический инсульт.

Среди известных механизмов участия ЭД в патогенезе ХСН выделяют следующие:

1) повышение активности эндотелиального АТФ, сопровождающегося увеличением синтеза ангиотензина II;
2) подавление экспрессии эндотелиальной NOS и снижение синтеза NO, обусловленные:

Хроническим снижением кровотока;
- повышением уровня провоспалительных цитокинов и фактора некроза опухоли, подавляющих синтез NO;
- повышением концентрации свободных R(-), инактивирующих ЭФР-NO;
- повышением уровня циклооксигеназозависимых эндотелиальных факторов констрикции, препятствующих дилатирующему влиянию ЭФР-NO;
- снижением чувствительности и регулирующего влияния мускариновых рецепторов;

3) повышение уровня ЭТ-1, оказывающего вазоконстрикторное и пролиферативное действие.

NO контролирует такие легочные функции, как активность макрофагов, бронхоконстрикция и дилатация легочных артерий. У пациентов с ЛГ снижается уровень NO в легких, одной из причин которого является нарушение метаболизма L-аргинина. Так, у больных с идиопатической ЛГ отмечают снижение уровня L-аргинина наряду с повышением активности аргиназы. Нарушенный метаболизм асимметричного диметиларгинина (АДМА) в легких может инициировать, стимулировать или поддерживать течение хронических заболеваний легких, в том числе артериальной ЛГ. Повышенный уровень АДМА отмечают у пациентов с идиопатической ЛГ, хронической тромбоэмболической ЛГ и ЛГ при системном склерозе. В настоящее время активно изучают роль NO также в патогенезе легочных гипертензивных кризов. Усиленный синтез NO является адаптивной реакцией, противодействующей чрезмерному повышению давления в легочной артерии в момент острой вазоконстрикции.

В 1998 г. были сформированы теоретические основы для нового направления фундаментальных и клинических исследований по изучению ЭД в патогенезе АГ и других ССЗ и способах эффективной ее коррекции.

Принципы лечения дисфункции эндотелия

Поскольку патологические изменения функции эндотелия являются независимым предиктором неблагоприятного прогноза большинства ССЗ, эндотелий представляется идеальной мишенью для терапии. Цель терапии при ЭД — устранение парадоксальной вазоконстрикции и с помощью повышенной доступности NO в стенке сосудов создание защитной среды в отношении факторов, приводящих к ССЗ. Основной задачей является улучшение доступности эндогенного NO благодаря стимуляции NOS или ингибированию распада.

Немедикаментозные методы лечения

В экспериментальных исследованиях установлено, что потребление продуктов с высоким содержанием липидов приводит к развитию АГ за счет повышенного образования свободных радикалов кислорода, инактивирующих NO, что диктует необходимость ограничения жиров. Большое потребление соли подавляет действие NO в периферических резистивных сосудах. Физические упражнения повышают уровень NO у здоровых лиц и у пациентов с ССЗ, поэтому известные рекомендации в отношении уменьшения потребления соли и данные о пользе физических нагрузок при АГ и ИБС находят свое еще одно теоретическое обоснование. Считается, что положительный эффект на ЭД может оказывать применение антиоксидантов (витамины С и Е). Назначение витамина С в дозе 2 г пациентам с ИБС способствовало значительному кратковременному уменьшению выраженности ЭЗВД, что объяснялось захватом радикалов кислорода витамином С и, таким образом, повышением доступности NO.

Медикаментозная терапия

  1. Нитраты . Для терапевтического воздействия на коронарный тонус давно применяют нитраты, способные независимо от функционального состояния эндотелия отдавать NO стенке сосудов. Однако несмотря на эффективность в отношении расширения сосудов и уменьшение выраженности миокардиальной ишемии, применение препаратов этой группы не приводит к длительному улучшению эндотелиальной регуляции коронарных сосудов (ритмичность изменений тонуса сосудов, которая управляется с помощью эндогенного NO, не поддается стимуляции экзогенно введенному NO).
  2. Ингибиторы ангиотензинпревращающего фермента (АПФ) и ингибиторы рецепторов ангиотензина II. Роль ренин-ангиотензин-альдостероновой системы (РАС) в отношении ЭД главным образом связана с вазоконстрикторной эффективностью ангиотензина II. Основной локализацией АПФ являются мембраны эндотелиальных клеток сосудистой стенки, в которых находится 90% всего объема АПФ. Именно кровеносные сосуды — основное место превращения неактивного ангиотензина I в ангиотензин II. Основными блокаторами РАС являются ингибиторы АПФ. Кроме того, препараты этой группы проявляют дополнительные вазодилатирующие свойства вследствие их способности блокировать деградацию брадикинина и повышать его уровень в крови, что способствует экспрессии генов эндотелиальной NOS, повышению синтеза NO и уменьшению его разрушения.
  3. Диуретики . Существуют данные, доказывающие, что индапамид обладает эффектами, позволяющими, помимо диуретического действия, оказывать прямое вазодилатирующее влияние за счет антиоксидантных свойств, повышения биодоступности NO и уменьшения его разрушения.
  4. Антагонисты кальция. Блокирование кальциевых каналов уменьшает прессорный эффект важнейшего вазоконстриктора ЭТ-1, не влияя прямо на NO. Кроме того, препараты этой группы снижают концентрацию внутриклеточного кальция, что стимулирует секрецию NO и обусловливает вазодилатацию. Одновременно уменьшаются агрегация тромбоцитов и экспрессия молекул адгезии, а также подавляется активация макрофагов.
  5. Статины . Поскольку ЭД является фактором, приводящим к развитию атеросклероза, при заболеваниях, ассоциированных с ним, существует необходимость коррекции нарушенных функций эндотелия. Эффекты статинов связаны со снижением уровня холестерола, угнетением его локального синтеза, торможением пролиферации гладкомышечных клеток, активацией синтеза NO, что способствует стабилизации и предотвращению дестабилизации атеросклеротической бляшки, а также снижению вероятности возникновения спастических реакций. Это подтверждено в многочисленных клинических исследованиях.
  6. L -аргинин. Аргинин — условно незаменимая аминокислота. Среднесуточная потребность в L-аргинине составляет 5,4 г. Он является необходимым предшественником для синтеза белков и таких биологически важных молекул, как орнитин, пролин, полиамины, креатин и агматин. Однако главная роль аргинина в организме человека состоит в том, что он является субстратом для синтеза NO. Поступивший с пищей L-аргинин всасывается в тонком кишечнике и поступает в печень, где основное его количество утилизируется в орнитиновом цикле. Остающаяся часть L-аргинина используется ка к субстрат для продукции NO.

Эндотелийзависимые механизмы L -аргинина:

Участие в синтезе NO;
- уменьшение адгезии лейкоцитов к эндотелию;
- уменьшение агрегации тромбоцитов;
- снижение уровня ЭТ в крови;
- повышение эластичности артерий;
- восстановление ЭЗВД.

Следует отметить, что система синтеза и высвобождения NO эндотелием обладает значительными резервными возможностями, однако потребность в постоянном стимулировании его синтеза приводит к истощению субстрата NO — L-аргинина, восполнить который призван новый класс эндотелиопротекторов — донаторов NO. До недавнего времени отдельного класса эндотелиопротекторных препаратов не существовало, в качестве средств, способных корригировать ЭД, рассматривали лекарственные препараты других классов, обладающих подобными плейотропными эффектами.

Клинические эффекты L-аргинина как донатора N O . Имеющиеся данные указывают на то, что эффект L-apгининa зависит от его концентрации в плазме крови. При приеме L-apгининa внутрь его эффект связан с улучшением ЭЗВД. L-apгинин снижает агрегацию тромбоцитов и уменьшает адгезию моноцитов. При повышении концентрации L-apгининa в крови, которое достигают путем в/в его введения, проявляются эффекты, не связанные с продукцией NO, а высокий уровень L-apгининa в плазме крови приводит к неспецифической дилатации.

Влияние на гиперхолестеролемию. В настоящее время существуют данные доказательной медицины об улучшении эндотелиальной функции у больных с гиперхолестеролемией после приема L-apгининa, подтвержденные в двойном слепом плацебо-контролируемом исследовании.

Под влиянием перорального приема L-aprининa у больных со стенокардией повышается толерантность к физической нагрузке по данным пробы с 6-минутной ходьбой и при велоэргометрической нагрузке. Аналогичные данные получены при кратковременном применении L-apгининa у пациентов с хронической ИБС. После инфузии 150 мкмоль/л L-aprининa у пациентов с ИБС отмечено увеличение диаметра просвета сосуда в стенозированном сегменте на 3-24%. Применение раствора аргинина для перорального приема у больных со стабильной стенокардией II-III функционального класса (по 15 мл 2 раза в сутки в течение 2 мес) дополнительно к традиционной терапии способствовало достоверному увеличению выраженности ЭЗВД, повышению толерантности к физической нагрузке и улучшению качества жизни. У больных с АГ доказан положительный эффект при добавлении к стандартной терапии L-apгининa в дозе 6 г/сут. Прием препарата в дозе 12 г/ сут способствует снижению уровня диастолического артериального давления. В рандомизированном двойном слепом плацебо-контролируемом исследовании доказано позитивное влияние L-apгининa на гемодинамику и способность к выполнению физической нагрузки у пациентов с артериальной ЛГ, принимавших препарат перорально (по 5 г на 10 кг массы тела 3 раза в сутки). Установлено значительное повышение концентрации L-цитpyллинa в плазме крови таких больных, указывающее на усиление продукции NO, а также снижение на 9% среднего легочного артериального давления. При ХСН прием L-apгининa в дозе 8 г/сут на протяжении 4 нед способствовал повышению толерантности к физической нагрузке и улучшению ацетилхолинзависимой вазодилатации лучевой артерии.

В 2009 г. V. Bai еt аl. представили результаты метаанализа 13 рандомизированных исследований, выполненных в целях изучения эффекта перорального приема L-apгининa на функциональное состояние эндотелия. В этих исследованиях изучали эффект L-apгининa в дозе 3-24 г/сут при гиперхолестеролемии, стабильной стенокардии, заболеваниях периферических артерий и ХСН (длительность лечения — от 3 дней до 6 мес). Метанализ показал, что пероральный прием L-apгининa даже короткими курсами существенно увеличивает выраженность ЭЗВД плечевой артерии по сравнению с показателем при приеме плацебо, что свидетельствует об улучшении функции эндотелия.

Таким образом, результаты многочисленных исследований, проведенных на протяжении последних лет, свидетельствуют о возможности эффективного и безопасного применения L-аргинина как активного донатора NO с целью устранения ЭД в при ССЗ.

Коноплева Л.Ф.