Микроскопия нативной крови. Кровь

1. Нормализация гемодинамики (восстановление скорости кровотока на периферии);

2. Управляемая гемодилюция (разжижение крови и уменьшение вязкости);

3. Введение дезагрегантов и антикоагулянтов (профилактика тромбообразования);

4. Применение препаратов, понижающих жесткость мембран эритроцитов;

5. Нормализация кислотно-основного состояния крови;

6. Нормализация белкового состава крови (введение растворов альбумина).

С целью гемодилюции и дезагрегации клеток используют гемодез, а также низкомолекулярные декстраны, которые увеличивают силы электростатического отталкивания между форменными элементами вследствие повышения на их поверхности отрицательного заряда, понижают вязкость крови, притягивая в сосуды воду, покрывают эндотелий и сосуды разделительной пленкой, образуют комплексные соединения с фибриногеном, снижают концентрацию липидов.

Расстройства микроциркуляции

В организации системы кровообращения можно выделить систему макроциркуляции – сердечный насос, сосуды-буферы (артерии) и сосуды-емкости (вены) – и систему микроциркуляции. Задача последней – присоединить систему кровообращения к общему сокообращению организма и распределить сердечный выброс между органами соответственно их потребностям. Поэтому каждый орган имеет свою, только ему присущую систему микроциркуляции, адекватную выполняемой им функции. Тем не менее удалось выявить 3 основных типа строения терминального сосудистого ложа (классический, мостовой и сетевой) и описать их устройство.

Систему микроциркуляции, схематично представленную на рис.4, составляют следующие микрососуды:

    артериолы (диаметр 100 мкм и меньше);

    прекапиллярные артериолы или прекапилляры или метартериолы (диаметр 25 – 10 мкм);

    капилляры (диаметр 2 – 20 мкм);

    посткапиллярные венулы или посткапилляры (диаметр 15 – 20 мкм);

    венулы (диаметр до 100 мкм).

Кроме этих сосудов еще выделяют артериоло-венулярные анастомозы – непосредственные соустья между артериолами/артериями и венулами/венами. Диаметр их – от 30 до 500 мкм, встречаются они в большинстве органов.

Рисунок 4 . Схема микроциркуляторного русла [по Chambers, Zweifach, 1944].

Движущей силой кровотока в системе микроциркуляции является перфузионное давление или артерио-венозная разница давлений. Следовательно, это давление определяется уровнями общего артериального и венозного давлений, и на его величину может влиять работа сердца, общий объем крови и общее периферическое сосудистое сопротивление. Зависимость между центральным и периферическим кровообращением выражается формулой Q = P / R , где Q – интенсивность (объемная скорость) кровотока в системе микроциркуляции, P – артерио-венозная разница давлений, R – периферическое (гидродинамическое) сопротивление в данном сосудистом русле. Изменения как P, так и R являются ведущими в нарушениях периферического кровообращения. Чем меньше величина периферического сопротивления, тем больше интенсивность кровотока; чем больше величина периферического сопротивления, тем меньше интенсивность кровотока. Регулирование периферического кровообращения и микроциркуляции во всех органах осуществляется посредством изменения сопротивления току в их сосудистой системе. Увеличение вязкости крови увеличивает гидродинамическое сопротивление и таким образом уменьшает интенсивность кровотока. Гораздо больше величина гидродинамического сопротивления зависит от радиуса сосудов: гидродинамическое сопротивление обратно пропорционально радиусу сосудов в четвертой степени . Отсюда следует, что изменения площади просвета сосудов (вследствие сужения или расширения сосудов) значительно сильнее влияют на кровоток, чем такие факторы, как вязкость или изменение давления.

Главными регуляторами микроциркуляции являются приводящие мелкие артерии и артериолы и артерио-венозные анастомозы. В результате расширения приносящих артериол 1) увеличивается скорость кровотока, 2) возрастает внутрикапиллярное давление и 3) увеличивается количество функционирующих капилляров. Последнее будет определяться также открытием прекапиллярных сфинктеров – расслаблением двух или более гладкомышечных клеток у начала капилляров.

Рисунок 5. Схема основных сосудов микроциркуляторного русла [по Мчедлишвили, 1958].

А- гладкомышечные клетки микрососудов с вазомоторной иннервацией; Б- магистральный капилляр; В - капилляры, образующие сеть. АВА - артериально-венозный анастомоз.

Активно просвет микрососудов может изменяться только при наличии в их структуре гладкомышечных элементов. На рис. 5 заштрихованы виды сосудов, которые их содержат. Отсюда следует, что вегетативные нервы иннервируют все кровеносные сосуды, кроме капилляров. Однако последние исследования показали наличие участков тесных взаимоотношений между терминальными нервными элементами и капиллярами. Они представляют собой специализированные расширения аксонов у капиллярной стенки, сходные с расширениями в области аксо-аксональных синапсов, т.е. образуют по сути дела «синапсы по ходу». Вероятно этот бессинаптический тип передачи сигнала, обеспечивающий свободную диффузию нейромедиаторов в направлении микрососудов, является основным способом нервной регуляции капилляров. При этом происходит регуляция не одного капилляра, а всего сосудистого локуса. При электрораздражении нервов (афферентных и эфферентных) или под действием нейромедиаторов в ткани появляются простагландины, гистамин (в том числе и из-за дегрануляции тучных клеток), АТФ, адреналин и др. вазоактивные вещества. В результате главным образом меняется состояние эндотелиальных клеток, усиливается трансэндотелиальный транспорт, меняется проницаемость эндотелия и трофика ткани. Т.о., опосредование регуляторно-трофического влияния нервов на ткани через кровеносную систему осуществляется не только путем грубого регулирования притока крови к органу и его частям, но и путем тонкого регулирования собственно трофики через изменение состояния стенки микрососудов. С другой стороны, приведенные материалы показывают, что иннервационные нарушения относительно быстро приводят к существенным изменениям в ультраструктуре и проницаемости капилляров. Следовательно, в развитии неврогенных дистрофий важную роль должны играть микроциркуляторные расстройства и, в частности, изменение сосудистой проницаемости.

Изменение тонуса сосудов или сосудистых сфинктеров может быть обусловлено нервными, гуморальными и местными регуляторными механизмами (таблица 1).

Таблица 1.

Регуляция микрососудистого pуcлa

Вид микрососуда

Диаметр (мкм)

Толщина стенки (мкм)

Регуляция

гуморальная

Артериола

Мелкая артериола

Метартериола.

Прекапиллярный сфинктер

Истинный капилляр

Мелкая вена

Примечание . Количество крестов обозначает степень выраженности регуляции.

Нервная регуляция осуществляется вегетативной нервной системой. Сосудодвигательные нервы относятся преимущественно к ее симпатическому отделу (реже – парасимпатическому) и обильно иннервируют артериолы кожи, почек и чревной области. В головном мозгу и скелетных мышцах эти сосуды иннервированы относительно слабо. Медиатором в синапсах является норадреналин, всегда вызывающий сокращение мускулатуры. Степень сокращения мышц сосудов зависит непосредственно от частоты импульсации. Сосудистый тонус покоя поддерживается благодаря постоянному поступлению по сосудодвигательным нервам импульсов с частотой 1-3 в сек (так называемая тоническая импульсация). При частоте импульсов, равной всего около 10 в сек, наблюдается максимальное сужение сосудов. Т.о., увеличение импульсации в сосудодвигательных нервах приводит к вазоконстрикции, а уменьшение – к вазодилатации , причем последняя ограничена базальным тонусом сосудов (т.е. тем тонусом, который наблюдается в отсутствие импульсации в сосудосуживающих нервах либо при их перерезке).

Парасимпатические холинергические сосудорасширяющие волокна иннервируют сосуды наружных половых органов, мелкие артерии мягкой мозговой оболочки головного мозга.

Нервный механизм выявляется также при анализе расширения сосудов кожи в ответ на механическое или химическое раздражение кожи. Это – аксон-рефлекс , осуществляемый при помощи ноцицептивных (проводящих боль) нервных волокон и нейропептидов.

Чувствительность мышечных клеток к вазоактивным веществам различна. Микрососуды чувствительнее крупных в 10-100 раз, самыми чувствительными в отношении действия как суживающих, так и расширяющих агентов, оказались прекапиллярные сфинктеры. Было найдено, что аналогичная реактивность наблюдается и в отношении электрической стимуляции (таблица 2). В условиях патологии изменяется чувствительность микрососудов к вазоактивным веществам.

Таблица 2

Градиент реактивности мнкроцbркуляторного ложа брыжейки крыс

(по Zweifach,1961)

Реактивность микрососудов кроме того неодинакова в различных органах и тканях. Особенно наглядно эта закономерность выступает по отношению к адреналину (таблица 3). Наивысшей чувствительностью к адреналину обладают микрососуды кожи.

Таблица 3

Реактивность микрососудов крыс к nopoговой концентрации

адреналина (по Zweifach, 1961)

В последние годы доказан факт существования в одном и том же нейроне двух и более (вплоть до семи) нейротрансмиттеров, имеющих разную химическую природу, и в разном их сочетании. Широкая, если не повсеместная, распространенность нейропептидов в вегетативных нервах (например, нейропептида У, вазоактивного интестинального пептида, вещества Р и др.), снабжающих кровеносные сосуды, хорошо доказана многочисленными иммуногистохимическими исследованиями и свидетельствует о значительном увеличении сложности механизмов нервной регуляции сосудистого тонуса. Еще большее усложнение этих механизмов связано с обнаружением нейропептидов в составе чувствительных нервных волокон, снабжающих кровеносные сосуды, и их возможной «эффекторной» ролью в регуляции сосудистого тонуса.

Гуморальная регуляция осуществляется гормонамии химическими веществами, выделяющимися в организме. Вазопрессин (антидиуретический гормон) и ангиотензин – II вызывют сужение сосудов. Каллидин и брадикинин – расширение сосудов. Адреналин, секретируемый надпочечниками, может оказывать как сосудосуживающий, так и сосудорасширяющий эффект. Ответ определяется количеством - или -адренергических рецепторов на мембране сосудистых мышц. Если в сосудах преобладают -рецепторы, то адреналин вызывает их сужение, а если большинство составляют -рецепторы, то он вызывает расширение.

Местные регуляторные механизмы обеспечивают метаболическую ауторегуляцию периферического кровообращения. Они приспосабливают местный кровоток к функциональным потребностям органа. При этом метаболические сосудорасширяющие влияния доминируют над нервными сосудосуживающими эффектами и в некоторых случаях полностью подавляют их. Расширяют микрососуды: недостаток кислорода, продукты метаболизма – углекислый газ, увеличение Н-ионов, лактат, пируват, АДФ, АМФ и аденозин, многие медиаторы повреждения или воспаления – гистамин, брадикинин, простагландины А и Е и вещество Р. Считается, что расширение при действии некоторых медиаторов происходит за счет выделения из эндотелиальных клеток оксида азота, который непосредственно расслабляет гладкие мышцы. Суживают микрососуды медиаторы повреждения - серотонин, простагландины F, тромбоксан и эндотелины.

В отношении способности капилляров активно суживаться ответ скорее отрицательный, поскольку там нет гладкомышечных клеток. Те исследователи, которые наблюдают активное сужение их просвета, объясняют это сужение сокращением эндотелиоцита в ответ на раздражитель и выпячиванием ядра клетки внутрь капилляра. Пассивное сужение или даже полное закрытие капилляра наступает тогда, когда напряжение их стенок превалирует над внутрисосудистым давлением. Такое состояние возникает при уменьшении притока крови по приводящей артериоле. Существенное расширение капилляров также затруднено, так как 95% упругости их стенки приходится на окружающее их соединительное вещество. Только при его разрушении, например, воспалительным экссудатом, возросшее внутрикапиллярное давление может вызвать растяжение стенок капилляров и их значительное расширение.

В артериальном русле наблюдаются колебания давлений в соответствии с сердечным циклом. Амплитуда колебания давления называется пульсовым давлением. В концевых разветвлениях артерий и артериолах давление резко падает на протяжении нескольких миллиметров сосудистой сети, достигая 30-35 мм рт.ст. в конце артериол. Это связано с высоким гидродинамическим сопротивлением данных сосудов. Одновременно значительно снижаются или исчезают пульсовые колебания давления и пульсирующий кровоток постепенно сменяется непрерывным (при значительном расширении сосудов, например, при воспалении, пульсовые колебания наблюдаются даже в капиллярах и мелких венах). Тем не менее в артериолах, метартериолах и прекапиллярах можно отметить ритмичные колебания скорости кровотока. Частота и амплитуда этих колебаний могут быть различными, и они не участвуют в приспособлении кровотока к потребностям тканей. Предполагают, что это явление – эндогенная вазомоторика – обусловлено автоматизмом сокращений гладкомышечных волокон и не зависит от вегетативных нервных влияний.

Возможно, что изменения кровотока в капиллярах зависят и от лейкоцитов. Лейкоциты в отличие от эритроцитов имеют не дисковидную, а сферическую форму и при диаметре 6-8 мкм их объем превосходит объем эритроцитов в 2-3 раза. При вхождении лейкоцита в капилляр он «застревает» в устье капилляра на некоторое время. По данным исследователей оно колеблется от 0,05 сек до нескольких секунд. В этот момент движение крови в данном капилляре останавливается, а после проскальзывания лейкоцита в микрососуд – снова восстанавливается.

Основными формами расстройств периферического кровообращения и микроциркуляции являются: 1. артериальная гиперемия, 2. венозная гиперемия, 3. ишемия, 4. стаз.

Тромбоз и эмболия, не являющиеся самостоятельными нарушениями микроциркуляции, появляясь в этой системе, вызывают ее серьезные нарушения.

  • Iersinia enterocolitica, в отличие от Iersinia pseudotyberculosis, может явиться причиной внутрибольничной инфекции. Какое свойство возбудителя является тому причиной?
  • Реология – наука о течении и деформациях.

    Реологические свойства крови зависят от:

    1. Гемодинамических параметров – изменений свойств крови при ее движении. Гемодинамические параметры определяются пропульсивной способностью сердца, функциональным состоянием кровеносного русла и свойствами самой крови.

    2. Клеточных факторов (количество, концентрация – гематокрит, деформируемость, форма, функциональное состояние).

    3. Плазменных факторов – содержание альбуминов, глобулинов, фибриногена, СЖК, ТТ, холестерина, рН, электролитов.

    4. Факторов взаимодействия – внутрисосудистой агрегации форменных элементов.

    В крови постоянно происходит динамический процесс «агрегация – дезагрегация». В норме дезагрегация доминирует над агрегацией. Результирующая направления процесса «агрегация – дезагрегация» определяется взаимодействием следующих факторов: гемодинамического, плазменного, электростатического, механического и конформационного.

    Гемодинамический фактор определяет напряжение сдвига и расстояние между отдельными клетками в потоке.

    Плазменный и электростатический факторы определяют мостиковый и электростатический механизмы.

    Мостиковый механизм состоит в том, что связующим элементом в агрегате между эритроцитами являются макромолекулярные соединения, концы молекул которых, адсорбированные на соседних клетках, образуют своеобразные мостики. Расстояние между эритроцитами в агрегате пропорционально длине связующих молекул. Основным пластическим материалом для межэритроцитарных мостиков являются фибриноген и глобулины. Необходимым условием для реализации мостикового механизма является сближение эритроцитов на расстояние, не превышающее длины одной макромолекулы. Это зависит от гематокрита. Электростатический механизм определяется зарядом на поверхности эритроцитов. При ацидозе, накоплении лактата, (-) потенциал уменьшается и клетки не отталкиваются друг от друга.

    Постепенное удлинение и ветвление агрегата запускает в действие конформационный механизм и агрегаты образуют трехмерную пространственную структуру.

    5. Внешних условий – температуры. При увеличении температуры вязкость крови уменьшается.

    Среди внутрисосудистых нарушений микроциркуляции на одно из первых мест следует поставить агрегацию эритроцитов и других форменных элементов крови.

    Основоположниками учения о «сладже», т.е. состоянии крови, в основе которого лежит агрегация эритроцитов, являются Knisese (1941 г.) и его ученик Blosh. Сам термин «sluge» в буквальном переводе с английского обозначает «густая грязь», «тина», «ил». Следует, прежде всего, различать агрегацию форменных элементов крови (по преимуществу эритроцитов) и агглютинацию эритроцитов. Первый процесс является обратимым, в то время как второй – всегда представляется необратимым, связанным в основном с иммунными феноменами. Развития сладжа представляет собой крайнюю степень выражения агрегации форменных элементов крови. Сладжированная кровь имеет ряд отличий от нормальной. Основными особенностями сладжированной крови следует считать прилипание друг к другу эритроцитов, лейкоцитов или тромбоцитов и нарастание вязкости крови. Это приводит к такому состоянию крови, которое весьма затрудняет ее перфузию через микрососуды.

    Различают несколько видов сладжа в зависимости от структурных особенностей агрегата.

    I. Классический тип. Характеризуется сравнительно крупными агрегатами и плотной упаковкой эритроцитов и с неровными очертаниями контуров. Этот вид сладжа развивается, когда какое-либо препятствие (например, лигатура) мешает свободному движению крови через сосуд.

    II. Декстрановый тип. Агрегаты имеют различную величину, плотную упаковку, округлые очертания, свободные пространства в агрегатах в виде полостей. Этот вид сладжа развивается при введении в кровь декстрана с молекулярным весом 250-500 и выше КДн.

    III. Аморфный тип. Для этого типа характерно наличие огромного количества мелких агрегатов, похожих на гранулы. В этом случае кровь приобретает вид крупнодисперсной жидкости. Аморфный тип сладжа развивается при введении в кровь этилового, АДФ и АТФ, тромбина, серотонина, норадреналина. В образовании агрегата при аморфном типе сладжа участвует всего несколько эритроцитов. Малые размеры агрегатов могут представлять не меньшую, а даже большую опасность для микроциркуляции, так как их величина позволяет им проникнуть в мельчайшие сосуды до капилляров включительно.

    Сладж может также развиваться при отравлении мышьяком, кадмием, эфиром, хлороформом, бензолом, толуолом, анилином. В зависимости от дозы введенного вещества сладж может быть обратимым или необратимым. Многочисленными клиническими наблюдениями было установлено, что изменение белкового состава крови может привести к развитию сладжа. Такие состояния, как повышение содержания фибриногена или снижение альбумина, микроглобулинемия увеличивают вязкость крови и снижают ее суспензионную стабильность.

    Эти нарушения проявляются такими патологическими процессами, как тромбоз, эмболия, стаз, сладж, ДВС- синдром.

    Тромбоз - процесс прижизненного свертывания крови в процессе сосуда или полости сердца. Свертывание крови является важнейшей физиологической реакцией, препятствующей смертельной потере крови при повреждениях сосудов, и если эта реакция отсутствует, развивается опасное для жизни заболевание - гемофилия, Вместе с тем при повышении свертываемости крови впросвете сосуда образуются свертки - тромбы, препятствующие кровотоку, что становится причиной тяжелых патологических процессов в организме, вплоть до наступления смерти. Наиболее часто тромбы развиваются у больных в послеоперационном периоде, у людей находящихся на длительном постельном режиме, при хронической сердечно-сосудистой недостаточности, сопровождающейся общим венозным застоем, при атеросклерозе, злокачественных опухолях, у беременных, у старых людей.

    Причины тромбоза делят на местные общие.

    Местные причины - повреждение стенки сосуда , начиная от слущивания эндотелия и заканчивая ее разрывом; замедление и нарушения кровотока в виде например атеросклеротической бляшки, варикозного расширения или аневризмы стенки сосуда.

    Общие причины - нарушение соотношения между свертывающей и противосвертывающей системами крови в результате увеличения концентрации или активности свертывающих факторов - прокоагулянтов (тромбопластинов, тромбина, фибриногена и др.) либо снижения концентрации или активности антикоагулянтов (например, гепарина, фибринолитических веществ), а так же повышения вязкости крови , например с увеличением количества ее форменных элементов, особенно тромбоцитов и эритроцитов (при некоторых системных заболеваниях крови).

    Стадии образования тромба . Выделяют 4 стадии тромбообразования.

    1-я - стадия агглютинации тромбоцитов (сосудисто-тромбоцитарная ), начинается уже при повреждении эндотелиоцитов интимы и характеризуется адгезией (прилипанием) тромбоцитов к обнаженной базальной мембране сосуда, чему способствует появление определенных факторов свертывания - 71111фибронектива, фактора Виллебранта и др. Из разрушающихся тромбоцитов выделяется тромбоксан А2 - фактор, суживающий просвет сосуда, замедляющий кровоток и способствующий выбросу тромбоцитами серотонина, гистамина итромбоцитарного фактора роста. Под влиянием этих факторов запускается каскад свертывающих реакции, в том числе и образование тромбина, который вызывает развитие следующей стадии.

    2-я - стадия коагуляции фибриногена (плазменная ), характеризуется трансформацией фибриногена в нити фибрина, которые образуют рыхлый сгусток и в нем (как в сети) задерживаются форменные элементы и компоненты плазмы крови с развитием последующих стадий.

    3-я - стадия агглютивная эритроцитов . Она связана с тем, что эритроциты должны передвигаться в потоке крови, а если они останавливаются, то склеиваются (аггютинируют). При этом выделяются факторы, вызывающие ретракцию (сжатие) образовавшегося рыхлого тромба.

    4-я - стадия преципитации плазменных белков . В результате ретракции из образовавшегося сгустка отжимается жидкость, белки плазмы и белки из распавшихся форменных элементов крови подвергаются преципитации, сверток уплотняется и превращается в тромб, который закрывает дефект стенки сосуда или сердца, но может закрыть и весь просвет сосуда, прекратив тем самым кровоток.

    Морфология тромба . В зависимости от особенностей и скорости образования тромбы могут иметь различный состав, строение и внешний вид. Выделяют следующие виды тромбов:

    Белый тромб , состоящий из тромбоцитов, фибрина и лейкоцитов, образуется медленно при быстром кровотоке, обычно в артериях, между трабекулами эндокарда, на створках клапанов сердца;

    Красный тромб, в состав которого входят эритроциты, тромбоциты и фибрин, возникает быстро в сосудах с медленным током крови, обычно в венах;

    Смешанный тромб включает в себя тромбоциты, эритроциты, фибрин, лейкоциты и встречается в любых отделах кровеносного русла, в том числе в полостях сердца и аневризмах артерий;

    Гиалиновые тромбы , состоящие из преципитированных белков плазмы и агглютинированных форменных элементов крови, образующих гомогенную, бесструктурную массу; они обычно множественные, формируются только в сосудах микро циркуляции при шоке, ожоговой болезни, ДВС-синдроме, тяжелой интоксикации и т.п.

    Структура тромба . Макроскопическая в тромбе определяется небольшая, тесно связанная со стенкой сосуда головка тромба , по строению соответствующая белому тромбу, тело - обычно смешанный тромб и рыхло прикрепленный к интиме хвост тромба , как правило, красный тромб. В области хвоста тромб может отрываться, что служит причиной тромбоэмболии.

    По отношению к просвету сосуда выделяют:

    пристеночные тромбы, обычно белые или смешанные, не закрывают целиком просвет сосуда, хвост их растет против тока крови;

    обтурирующие тромбы, как правило, красные полностью закрывающие просвет сосуда, хвост их чаще растет по току крови.

    По течении выделяют :

    локализованный (стационарный) тромб, который не увеличивается в размерах и подвергаются замещению соединительной тканью - организации;

    прогрессирующий тромб, который увеличивается в размерах с различной скоростью, его длина иногда может достигать нескольких десятков сантиметров.

    Исходы тромбоза принято подразделять на благоприятные и неблагоприятные.

    К б л а г о п р и я т н ы м и с х о д а м относят организацию тромба, которая начинается уже на 5-6-й день после его образования и заканчивается замещением тромботических масс соединительной тканью. В ряде случаев организация тромба сопровождается его т.е. образованием щелей, через которые в какой-то степени осуществляется кровоток, и васкуляризацией , когда образовавшиеся каналы покрываются эндотелием, превращаясь в сосуды, через которые частично восстанавливается кровоток, обычно через 5-6 нед. после тромбоза. Возможно обызвествление тромбов (образование флембитов ).

    Н е б л а г о п р и я т н ы е и с х о д ы: тромбоэмболия , возникающая при отрыве тромба или его части, и септическое (гнойное ) расплавление тромба при попадании в тромботические массы гноеродных бактерий.

    Значение тромбоза определяется быстротой образования тромба, его локализацией и степенью сужения сосуда. Так, мелкие тромбы в венах малого таза сами по себе не вызывают каких-либо патологических изменений в тканях, но, оторвавшись, могут превратится в тромбоэмболы. Пристеночные тромбы незначительно суживающие просветы даже крупных сосудов, могут не нарушать в них гемодинамику и способствовать развитию коллатерального кровообращения. Обтурирующие тромбы артерий являются причиной ишемии , заканчивающейся инфарктом или гангреной органов. Тромбоз вен (флеботромбоз ) нижних конечностей способствует развитию трофических язв голеней, кроме того, тромбы могут стать источником эмболии. Шаровидный тромб , образующийся при отрыве от эндокарда

    левого предсердия, периодически закрывая атриовентрикулярное отверстие, нарушает центральную гемодинамику, в связи с чем больной теряет сознание. Прогрессирующие септические тромбы, подвергшиеся гнойному расплавлению, могут способствовать генерализации гнойного процесса

    Эмболия

    Эмболия (от греч. Emballoh - бросать внутрь) - циркуляция в крови (или лимфе) не встречающихся в нормальных условиях частиц и закупорка ими сосудов. Сами частицы называются эмболами.

    Эмболы чаще перемещаются по току крови - о р т о г р а д н а я э м б о л и я;

    из венозной системы большого круга кровообращения и правого сердца в сосуды малого круга;

    из левой половины сердца и аорты и крупных артерий в более мелкие артерии (сердца, почек, селезенки, кишки и др.). В редких случаях эмбол в силу своей тяжести движется против тока крови - р е т р о г а д н а я э м б о л и я. При наличии дефектов в межпредсердечной или межжелудочковой перегородке возникает п а р а д к с а л ь н а я э м б о л и я, при которой эмбол из вен большого круга, минуя легкие, попадает в артерии большого круга кровообращения. В зависимости от природы эмболов различают тромбоэмболию, жировую, газовую, тканевую (клеточную), микробную эмболию и эмболию инородными телами.

    Т р о м б о э м б о л и я - наиболее частый вид эмболии, возникает при отрыве тромба или его части.

    Т р о м б о э м б о л и я л е г о ч н о й а р т е р и и. Это одна из наиболее частых причин внезапной смерти у больных в послеоперационном периоде и больных с сердечной недостаточностью. Источником тромбоэмболии легочной артерии при этом обычно являются возникающие при венозном застое тромбы вен нижних конечностей, вен клетчатки малого таза, В генезе смерти при тромбоэмболии легочной артерии придается значение не столько механическому фактору закрытия просвета сосуда, сколько пульмонокоронарному рефлексу. При этом наблюдается спазм бронхов, ветвей легочной артерии и венечных артерий сердца. При тромбоэмболии мелких ветвей легочной артерии обычно развивается геморрагический инфаркт легкого .

    А р т е р и а л ь н а я т р о м б о э м б о л и я. Источником артериальной эмболии чаще являются пристеночные тромбы, образующиеся в сердце; тромбы в левом предсердии при стенозе левого атриовентрикулярного отверстия (митральный стеноз) и фибрилляции; тромбы в левом желудочке при инфаркте миокарда; тромбы на створках левого предсердно-желудочного (митрального) и аортального клапанов при ревматических, септических и других эндокардитах, пристеночные тромбы, возникающие в аорте в случае атеросклероза. При этом наиболее часто возникают тромбоэмболия ветвей сонной артерии, средней мозговой артерии (что приводит к инфаркту мозга),ветвей мезентеральных артерий с развитием гангрены кишки и ветвей почечной артерии с развитием инфаркта почки. Часто развивается т р о м б о э м б о л и я ч е с к и й с и н д р о м с инфарктами во многих органах.

    Ж и р о в а я э м б о л и я развивается при попадании в кровоток капель жира. Обычно это происходит в случае травматического повреждения костного мозга (при переломе длинных трубчатых костей), подкожной жировой клетчатки. Изредка жировая эмболия возникает при ошибочном внутривенном введении масляных растворов лекарственных или контрастных веществ. Попадающие в вены жировые капли обтурируют капилляры легких или же, минуя легкие, через артериовенозные анастомозы поступают в капилляры почек, головного мозга и других органов. Жировые эмболы обнаруживаются обычно только при микроскопическом исследовании срезов, специально окрашенных для выявления жиров (суданом 111). Жировая эмболия приводит к острой легочной недостаточности и остановке сердца, если выключается 2/3 легочных капилляров. Жировая эмболия капилляров мозга вызывает появление многочисленных точечных кровоизлияний в мозговой ткани; при этом возможен смертельный исход.

    В о з д у ш н а я э м б о л и я развивается при попадании в кровоток воздуха, что изредка встречается при ранении вен шеи (этому способствует отрицательное давление в них), после родов или аборта, при повреждении склерозированного легкого, случайно введении воздуха вместе с лекарственными веществом. Попавшие в кровь пузырьки воздуха вызывают эмболию капилляров малого круга кровообращения, наступает внезапная смерть. На вскрытии воздушная эмболия распознается по выделению воздуха их правых отделов сердца при проколе их, если предварительно заполнить полость перикарда водой. Кровь в полостях сердца имеет пенистый вид.

    Г а з о в а я э м б о л и я характерна для кессонной болезни, развивается при быстрой декомпрессии (т.е. быстром переходе от повышенного к нормальному атмосферному давлению). Высвобождающиеся при этом пузырьки азота (находящиеся при высоком давлении в растворенном состоянии) вызывают закупорку капилляров головного и спинного мозга, печени, почек и других органов. Это сопровождается появлением в них мелких фокусов ишемии и некроза (особенно часто в тканях мозга). Характерным симптомом являются миальгии. Особая склонность к развитию кессонной болезни отмечается у тучных людей, поскольку большая часть азота задерживается жировой клетчаткой.

    Т к а н е в а я э м б о л и я возможна при разрушении тканей в связи с травмой или патологическим процессом, ведущим к поступлению кусочков тканей (клеток) в кровь. К тканевой относят также эмболию амниотической жидкостью у родильниц. Такая эмболия может сопровождаться развитием синдрома диссеминированного внутрисосудистого свертывания и привести к смерти. Особую категорию тканевой эмболии составляет эмболия клетками злокачественной опухоли, так как она лежит на основе м е т а с т а з и р о в а н и я о п у х о л е й.

    Э м б о л и я и н о р о д н ы м и т е л а м и наблюдается при попадании в кровь осколков металлических предметов (снарядов, пуль и пр.). К эмболии инородными телами относят также эмболию известью и кристаллами холестерина атеросклеротических бляшек, выкрашивающихся в просвет сосуда при их изъявлении.

    Значение эмболии. Для клиники значение эмболии определяется видом эмбола. Наибольшее значение имеют тромбоэмболические осложнения и прежде всего тромбоэмболия легочной артерии, ведущая к внезапной смерти. Велико также значение тромбоэмболического синдрома, сопровождающего множественными инфарктами и гангреной. Не меньшее значение имеет бактериальная и тромбобактериальная эмболия - одно из ярких проявлений сепсиса, а также эмболия клетками злокачественных опухолей как основа их метастазирования


    0

    Основной характеристикой крови является ее вязкость, которая в подразделяется на кажущуюся и кессоновскую (динамическую):

    • Кажущаяся вязкость крови . Она определяется отношением силы сдвига и скорости сдвига, измеряется в сантипуазах (спз) и характеризует неньютоновское поведение крови. Зависит от состояния , главным образом эритроцитов и тромбоцитов.
    • Кессоновская (динамическая) вязкость крови . Она определяется в условиях полного диспергирования крови и зависит от белкового состава плазмы. Измеряется в сантипуазах (спз).

    К факторам, больше всего влияющим на вязкость крови, относятся:

    • температура и ,
    • гематокрит,
    • количество в плазме высокомолекулярных белков,
    • степень агрегации эритроцитов и ее обратимость,
    • характеристики сдвига.

    Предел текучести крови . Он показывает, какое минимальное усилие необходимо приложить, чтобы сдвинуть один слой, крови относительно другого (измеряется в дн / см 2).

    Коэффициент агрегации . Он свидетельствует о силе сцепления клеток крови, то есть о прочности агрегатов и (измеряется в дн / см 2).

    Все эти вышеперечисленные параметры вязкости крови определяются с помощью соосно-цилиндрического вискозиметра со свободно плавающим внутренним цилиндром системы В.Н. Захарченко, позволяющим сделать модель и построить кривую течения крови в широком диапазоне напряжений сдвига.

    Косвенными показателями вязкости крови является величина гематокрита, число эритроцитов, уровень фибриногена и глобулиновых фракций белка, уровень общих липидов и их спектр в плазме, а также содержание сахара в крови. При определенных заболеваниях, например при варикозе у мужчин , как правило этих показателей хватает для оценки вязкости и выставления показания к назначению .

    Степень агрегации эритроцитов - определяется с помощью калориметра - нефелометра и выражается в единицах оптической плотности (или в процентах).

    Степень агрегации тромбоцитов - (индуцированной АДФ) определяется с помощью агрегометра типа «Elvi-840» (Англия), выражается в единицах оптической плотности (или в процентах).


    Министерство образования Российской Федерации

    Пензенский Государственный Университет

    Медицинский Институт

    Кафедра Терапии

    Зав. кафедрой д.м.н.

    «РЕОЛОГИЧЕСКИЕ СВОЙСТВА КРОВИ И ИХ НАРУШЕНИЯ ПРИ ИНТЕНСИВНОЙ ТЕРАПИИ»

    Выполнила: студентка V курса

    Проверил: к.м.н., доцент

    Пенза

    План

    Введение

    1. Физические основы гемореологии

    2. Причина «неньютоновского поведения» крови

    3. Основные детерминанты вязкости крови

    4. Гемореологические нарушения и венозные тромбозы

    5. Методы изучения реологических свойств крови

    Литература

    Введение

    Гемореология изучает физико-химические свойства крови, которые определяют ее текучесть, т.е. способность к обратимой деформации под действием внешних сил. Общепринятой количественной мерой текучести крови является ее вязкость.

    Ухудшение текучести крови типично для больных, находящихся в отделении интенсивной терапии. Повышенная вязкость крови создает дополнительное сопротивление кровотоку и поэтому сопряжена с избыточной постнагрузкой сердца, микроциркуляторными расстройствами, тканевой гипоксией. При гемодинамическом кризе вязкость крови возрастает и из-за снижения скорости кровотока. Возникает порочный круг, который поддерживает стаз и шунтирование крови в микроциркуляторном русле.

    Расстройства в системе гемореологии представляют собой универсальный механизм патогенеза критических состояний, поэтому оптимизация реологических свойств крови является важнейшим инструментом интенсивной терапии. Уменьшение вязкости крови способствует ускорению кровотока, увеличению DO 2 к тканям, облегчению работы сердца. С помощью реологически активных средств можно предотвратить развитие тромботических, ишемических и инфекционных осложнений основного заболевания.

    В основу прикладной гемореологии положен ряд физических принципов текучести крови. Их понимание помогает выбрать оптимальный метод диагностики и лечения.


    1. Физические основы гемореологии

    В нормальных условиях почти во всех отделах кровеносной системы наблюдают ламинарный тип кровотока. Его можно представить в виде бесконечного множества слоев жидкости, которые движутся параллельно, не смешиваясь друг с другом. Некоторые из этих слоев соприкасаются с неподвижной поверхностью - сосудистой стенкой и их движение, соответственно, замедляется. Соседние слои по-прежнему стремятся в продольном направлении, но более медленные пристеночные слои их задерживают. Внутри потока, между слоями возникает трение. Появляется параболический профиль распределения скоростей с максимумом в центре сосуда. Пристеночный слой жидкости можно считать неподвижным. Вязкость простой жидкости остается постоянной (8 с. Пуаз), а вязкость крови меняется в зависимости от условий кровотока (от 3 до 30 с Пуаз).

    Свойство крови оказывать «внутреннее» сопротивление тем внешним силам, которые привели ее в движение, получило название вязкости η. Вязкость обусловлена силами инерции и сцепления.

    При показателе гематокрита, равном 0, вязкость крови приближается к вязкости плазмы.

    Для корректного измерения и математического описания вязкости вводят такие понятия, как напряжение сдвига с и скорость сдвига у . Первый показатель представляет собой отношение силы трения между соседними слоями к их площади - F / S . Он выражается в дин/см 2 или паскалях*. Второй показатель является градиентом скорости слоев - дельтаV / L . Его измеряют в с -1 .

    В соответствии с уравнением Ньютона напряжение сдвига прямо пропорционально скорости сдвига: τ= η·γ. Это означает, что чем больше разница скорости между слоями жидкости, тем сильнее их трение. И, наоборот, выравнивание скорости слоев жидкости уменьшает механическое напряжение по линии водораздела. Вязкость в данном случае выступает в качестве коэффициента пропорциональности.

    Вязкость простых, или ньютоновских, жидкостей (например, воды) постоянна при любых условиях движения, т.е. между напряжением сдвига и скоростью сдвига для этих жидкостей существует прямолинейная зависимость.

    В отличие от простых жидкостей кровь способна менять свою вязкость при изменении скоростного режима кровотока. Так, в аорте и магистральных артериях вязкость крови приближается к 4-5 относительным единицам (если принять вязкость воды при 20 °С в качестве эталонной меры). В венозном же отделе микроциркуляции, несмотря на малое напряжение сдвига, вязкость возрастает в 6-8 раз относительно своего уровня в артерии (т.е. до 30-40 относительных единиц). При крайне низких, нефизиологических скоростях сдвига вязкость крови может возрасти в 1000 раз (!).

    Таким образом, зависимость между напряжением сдвига и скоростью сдвига для цельной крови носит нелинейный, экспоненциальный характер. Подобное «реологическое поведение крови»* называют «неньютоновским».

    2. Причина «неньютоновского поведения» крови

    «Неньютоновское поведение» крови обусловлено ее грубо дисперсным характером. С физико-химической точки зрения кровь может быть представлена как жидкая среда (вода), в которой взвешена твердая, нерастворимая фаза (форменные элементы крови и высокомолекулярные вещества). Частицы дисперсной фазы достаточно крупны, чтобы противостоять броуновскому движению. Поэтому общим свойством таких систем является их неравновесность. Компоненты дисперсной фазы постоянно стремятся к выделению и осаждению из дисперсной среды клеточных агрегатов.

    Основной и реологически наиболее значимый вид клеточных агрегатов крови - эритроцитарный. Он представляет собой многомерный клеточный комплекс с типичной формой «монетного столбика». Характерные его черты - обратимость связи и отсутствие функциональной активизации клеток. Структура эритроцитарного агрегата поддерживается преимущественно глобулинами. Известно, что эритроциты больного с исходно повышенной скоростью оседания после их добавления к одногруппной плазме здорового человека начинают оседать с нормальной скоростью. И наоборот, если эритроциты здорового человека с нормальной скоростью оседания поместить в плазму больного, то выпадение их в осадок значительно ускорится.

    К естественным индукторам агрегации относят в первую очередь фибриноген. Длина его молекулы в 17 раз превышает ширину. Благодаря такой асимметрии фибриноген способен перекидываться в виде «мостика» с одной клеточной мембраны на другую. Образующаяся при этом связь непрочна и разрывается под действием минимального механического усилия. Подобным же образом действуют а 2 - и бета-макроглобулины, продукты деградации фибриногена, иммуноглобулины. Более тесному сближению эритроцитов и их необратимому связыванию между собой препятствует отрицательный мембранный потенциал.

    Следует подчеркнуть, что агрегация эритроцитов - процесс скорее нормальный, чем патологический. Положительная его сторона заключается в облегчении пассажа крови через систему микроциркуляции. При образовании агрегатов снижается отношение поверхности к объему. Как следствие, сопротивление агрегата трению оказывается значительно меньше, чем сопротивление отдельных его составляющих.

    3. Основные детерминанты вязкости крови

    Вязкость крови подвержена влиянию многих факторов. Все они реализуют свое действие, меняя вязкость плазмы или реологические свойства форменных элементов крови.

    Содержание эритроцитов. Эритроцит - основная клеточная популяция крови, активно участвующая в процессах физиологической агрегации. По этой причине изменения гематокрита (Ht) существенно отражаются на вязкости крови. Так, при возрастании Ht с 30 до 60 % относительная вязкость крови увеличивается вдвое, а при возрастании Ht с 30 до 70 % - втрое. Гемодилюция, напротив, снижает вязкость крови.

    Термин «реологическое поведение крови» (rheologicalbehavior) является общепринятым, подчеркивает «неньютоновский» характер текучести крови.

    Деформационная способность эритроцитов. Диаметр эритроцита приблизительно в 2 раза превышает просвет капилляра. В силу этого пассаж эритроцита через микроциркуляторное русло возможен только при изменении его объемной конфигурации. Расчеты показывают, что если бы эритроцит не был способен к деформации, то кровь с Ht 65 % превратилась бы в плотное гомогенное образование и в периферических отделах кровеносной системы наступила бы полная остановка кровотока. Однако благодаря способности эритроцитов менять свою форму и приспосабливаться к условиям внешней среды циркуляция крови не прекращается даже при Ht 95-100 %.

    Стройной теории деформационного механизма эритроцитов нет. Видимо, этот механизм основан на общих принципах перехода золя в гель. Предполагают, что деформация эритроцитов - энергетически зависимый процесс. Возможно, гемоглобин А принимает в нем активное участие. Известно, что содержание гемоглобина А в эритроците снижается при некоторых наследственных болезнях крови (серповидно-клеточной анемии), после операций в условиях искусственного кровообращения. При этом меняются форма эритроцитов и их пластичность. Наблюдают повышенную вязкость крови, которая не соответствует низкому Ht.

    Вязкость плазмы. Плазма в целом может быть отнесена к разряду «ньютоновских» жидкостей. Ее вязкость относительно стабильна в различных отделах кровеносной системы и в основном определяется концентрацией глобулинов. Среди последних основное значение имеет фибриноген. Известно, что удаление фибриногена снижает вязкость плазмы на 20 %, поэтому вязкость образующейся сыворотки приближается к вязкости воды.

    В норме вязкость плазмы составляет около 2 отн. ед. Это приблизительно 1 / 15 часть того внутреннего сопротивления, которое развивается цельной кровью в венозном отделе микроциркуляции. Тем не менее плазма оказывает весьма существенное влияние на периферический кровоток. В капиллярах вязкость крови снижается вдвое по сравнению с проксимальными и дистальными сосудами большего диаметра (феномен §). Такой «пролапс» вязкости связан с осевой ориентацией эритроцитов в узком капилляре. Плазма при этом оттесняется на периферию, к стенке сосуда. Она служит «смазкой», которая обеспечивает скольжение цепочки форменных элементов крови с минимальным трением.

    Этот механизм функционирует только при нормальном белковом составе плазмы. Повышение уровня фибриногена или любого другого глобулина приводит к затруднению капиллярного кровотока, порой критического характера. Так, миеломная болезнь, макроглобулинемия Вальденстрема и некоторые коллагенозы сопровождаются избыточной продукцией иммуноглобулинов. Вязкость плазмы при этом повышается относительно нормального уровня в 2-3 раза. В клинической картине начинают преобладать симптомы тяжелых расстройств микроциркуляции: снижение зрения и слуха, сонливость, адинамия, головная боль, парестезии, кровоточивость слизистых оболочек.

    Патогенез гемореологических расстройств. В практике интенсивной терапии гемореологические расстройства возникают под влиянием комплекса факторов. Действие последних в критической ситуации носит универсальный характер.

    Биохимический фактор. В первые сутки после операции или травмы уровень фибриногена увеличивается, как правило, вдвое. Пик этого повышения приходится на 3-5-е сутки, а нормализация содержания фибриногена наступает лишь к концу 2-й послеоперационной недели. Кроме того, в кровотоке в избыточном количестве появляются продукты деградации фибриногена, активированные тромбоцитарные прокоагулянты, катехоламины, простагландины, продукты ПОЛ. Все они действуют как индукторы агрегации красных клеток крови. Формируется своеобразная биохимическая ситуация - «реотоксемия».

    Гематологический фактор. Хирургическое вмешательство или травма сопровождаются также определенными изменениями клеточного состава крови, которые получили название гематологического стресс-синдрома. В кровоток поступают юные гранулоциты, моноциты и тромбоциты повышенной активности.

    Гемодинамический фактор. Возросшая агрегационная наклонность клеток крови при стрессе накладывается на локальные гемодинамические нарушения. Показано, что при неосложненных брюшно-полостных вмешательствах объемная скорость кровотока через подколенные и подвздошные вены падает на 50 %. Это связано с тем, что иммобилизация больного и миорелаксанты блокируют во время операции физиологический механизм «мышечной помпы». Кроме того, под влиянием ИВЛ, анестетиков или кровопотери снижается системное давление. В подобной ситуации кинетической энергии систолы может оказаться недостаточно, чтобы преодолеть сцепление форменных элементов крови друг с другом и с эндотелием сосудов. Нарушается естественный механизм гидродинамической дезагрегации клеток крови, возникает микроциркуляторный стаз.

    4. Гемореологические нарушения и венозные тромбозы

    Замедление скорости движения в венозном отделе кровообращения провоцирует агрегацию эритроцитов. Однако инерция движения может оказаться достаточно большой и форменные элементы крови будут испытывать повышенную деформационную нагрузку. Под ее влиянием из эритроцитов высвобождается АТФ - мощный индуктор тромбоцитарной агрегации. Низкая скорость сдвига стимулирует также адгезию молодых гранулоцитов к стенке венул (феномен Farheus-Vejiens). Образуются необратимые агрегаты, которые могут составить клеточное ядро венозного тромба.

    Дальнейшее развитие ситуации будет зависеть от активности фибринолиза. Как правило, между процессами образования и рассасывания тромба возникает неустойчивое равновесие. По этой причине большинство случаев тромбоза глубоких вен нижних конечностей в госпитальной практике протекает скрыто и разрешается спонтанно, без последствий. Применение дезагрегантов и антикоагулянтов оказывается высокоэффективным способом профилактики венозных тромбозов.

    5. Методы изучения реологических свойств крови

    «Неньютоновский» характер крови и связанный с ним фактор скорости сдвига обязательно должны учитываться при измерении вязкости в клинической лабораторной практике. Капиллярная вискозиметрия основана на токе крови через градуированный сосуд под действием силы тяжести, поэтому физиологически некорректна. Реальные же условия кровотока моделируются на ротационном вискозиметре.

    К принципиальным элементам такого прибора относят статор и конгруентный ему ротор. Зазор между ними служит рабочей камерой и заполняется пробой крови. Движение жидкости инициируется вращением ротора. Оно в свою очередь произвольно задается в виде некоей скорости сдвига. Измеряемой величиной оказывается напряжение сдвига, возникающего как механический или электрический момент, необходимый для поддержания выбранной скорости. Вязкость крови затем рассчитывают по формуле Ньютона. Единицей измерения вязкости крови в системе СГС является Пуаз (1 Пуаз = 10 дин x с/см 2 = 0,1 Па x с = 100 отн. ед.).

    Обязательным считают измерение вязкости крови в диапазоне низких (<10 с -1) и высоких (>100 с -1) скоростей сдвига. Низкий диапазон скоростей сдвига воспроизводит условия кровотока в венозном отделе микроциркуляции. Определяемая вязкость носит название структурной. Она в основном отражает наклонность эритроцитов к агрегации. Высокие же скорости сдвига (200-400 с -1) достигаются invivo в аорте, магистральных сосудах и капиллярах. При этом, как показывают реоскопические наблюдения, эритроциты занимают преимущественно осевое положение. Они вытягиваются в направлении движения, их мембрана начинает вращаться относительно клеточного содержимого. За счет гидродинамических сил достигается почти полная дезагрегация клеток крови. Вязкость, определенная при высоких скоростях сдвига, зависит преимущественно от пластичности эритроцитов и формы клеток. Ее называют динамической.

    В качестве стандарта исследования на ротационном вискозиметре и соответствующей нормы можно использовать показатели по методике Н.П. Александровой и др.

    Для более детального представления реологических свойств крови проводят еще несколько специфических тестов. Деформационную способность эритроцитов оценивают по скорости пассажа разведенной крови через микропористую полимерную мембрану (d=2-8 мкм). Агрегационную активность красных клеток крови изучают с помощью нефелометрии по изменению оптической плотности среды после добавления в нее индукторов агрегации (АДФ, серотонина, тромбина или адреналина).

    Диагностика гемореологических нарушений . Расстройства в системе гемореологии, как правило, протекают латентно. Их клинические проявления неспецифичны и малозаметны. Поэтому определяют диагноз по большей части лабораторные данные. Ведущим его критерием выступает величина вязкости крови.

    Основное направление сдвигов в системе гемореологии у больных, находящихся в критическом состоянии, - переход от повышенной вязкости крови к пониженной. Этой динамике, однако, сопутствует парадоксальное ухудшение текучести крови.

    Синдром повышенной вязкости крови. Он носит неспецифический характер и широко распространен в клинике внутренних болезней: при атеросклерозе, стенокардии, хроническом обструктивном бронхите, язвенной болезни желудка, ожирении, сахарном диабете, облитерирующем эндартериите и др. При этом отмечают умеренное повышение вязкости крови до 35 сПуаз при у=0,6 с -1 и 4,5 сПуаз при у==150 с -1 . Микроциркуляторные нарушения, как правило, маловыражены. Они прогрессируют только по мере развития основного заболевания. Синдром повышенной вязкости крови у больных, поступающих в отделение интенсивной терапии, следует рассматривать в качестве фонового состояния.

    Синдром низкой вязкости крови. По мере развертывания критического состояния вязкость крови вследствие гемодилюции снижается. Показатели вискозиметрии составляют 20-25 сПуаз при у=0,6 с -1 и 3-3,5 сПуаз при y=150 с -1 . Подобные величины можно прогнозировать по Ht, который обычно не превышает 30-35 %. В терминальном состоянии снижение вязкости крови доходит до стадии «очень низких» значений. Развивается выраженная гемодилюция. Ht снижается до 22-25 %, динамическая вязкость крови - до 2,5-2,8 сПуаз и структурная вязкость крови - до 15-18 с Пуаз.

    Низкая величина вязкости крови у больного в критическом состоянии создает обманчивое впечатление гемореологического благополучия. Несмотря на гемодилюцию, при синдроме низкой вязкости крови микроциркуляция существенно ухудшается. В 2-3 раза повышается агрегационная активность красных клеток крови, в 2-3 раза замедляется прохождение эритроцитарной суспензии через нуклеопорные фильтры. После восстановления Ht путем гемоконцентрации invitro в таких случаях обнаруживают гипервязкость крови.

    На фоне низкой или очень низкой вязкости крови может развиться массивная агрегация эритроцитов, которая полностью блокирует микроциркуляторное русло. Это явление, описанное М.Н. Knisely в 1947 г. как «sludge»-феномен, свидетельствует о развитии терминальной и, видимо, необратимой фазы критического состояния.

    Клиническую картину синдрома низкой вязкости крови составляют тяжелые микроциркуляторные нарушения. Заметим, что их проявления неспецифичны. Они могут быть обусловлены другими, не реологическими механизмами.

    Клинические проявления синдрома низкой вязкости крови:

    Тканевая гипоксия (в отсутствие гипоксемии);

    Повышенное ОПСС;

    Тромбозы глубоких вен конечностей, рецидивирующая легочная тромбоэмболия;

    Адинамия,сопор;

    Депонирование крови в печени, селезенке, подкожных сосудах.

    Профилактика и лечение. Больные, поступающие в операционную или отделение интенсивной терапии, нуждаются в оптимизации реологических свойств крови. Это предотвращает образование венозных тромбов, снижает вероятность ишемических и инфекционных осложнений, облегчает течение основного заболевания. Наиболее эффективные приемы реологической терапии - это разведение крови и подавление агрегационной активности ее форменных элементов.

    Гемодилюция. Эритроцит - основной носитель структурного и динамического сопротивления кровотоку. Поэтому гемодилюция оказывается наиболее действенным реологическим средством. Благотворный ее эффект известен давно. На протяжении многих веков кровопускание было едва ли не самым распространенным методом лечения болезней. Появление низкомолекулярных декстранов стало следующим этапом в развитии метода.

    Гемодилюция увеличивает периферический кровоток, но в то же время снижает кислородную емкость крови. Под влиянием двух разнонаправленных факторов складывается, в конечном итоге, DО 2 к тканям. Она может повыситься вследствие разведения крови или, напротив, существенно сократиться под влиянием анемии.

    Максимально низкий Ht, которому соответствует безопасный уровень DО 2 , называют оптимальным. Точная его величина до сих пор остается предметом дискуссий. Количественные соотношения Ht и DО 2 хорошо известны. Однако не представляется возможным оценить вклад индивидуальных факторов: переносимости малокровия, напряженности тканевого метаболизма, гемодинамического резерва и др. По общему мнению цель лечебной гемодилюции - Ht 30-35 %. Однако опыт лечения массивных кровопотерь без гемотрансфузии показывает, что еще большее снижение Ht до 25 и даже 20 % с точки зрения кислородного обеспечения тканей вполне безопасно.

    В настоящее время для достижения гемодилюции используют в основном три приема.

    Гемодилюция в режиме гиперволемии подразумевает такое переливание жидкости, которое приводит к существенному увеличению ОЦК. В одних случаях кратковременная инфузия 1-1,5 л плазмозаменителей предваряет вводный наркоз и хирургическое вмешательство, в других случаях, требующих более длительной гемодилюции, снижения Ht добиваются постоянной нагрузкой жидкостью из расчета 50-60 мл/кг массы тела больного в сутки. Снижение вязкости цельной крови - основное следствие гиперволемии. Вязкость плазмы, пластичность эритроцитов и их наклонность к агрегации при этом не меняются. К недостаткам метода следует отнести риск объемной перегрузки сердца.

    Гемодилюция в режиме нормоволемии была предложена первоначально как альтернатива гетерологическим трансфузиям в хирургии. Суть метода заключается в дооперационном заборе 400-800 мл крови в стандартные контейнеры со стабилизирующим раствором. Контролируемую кровопотерю, как правило, восполняют одномоментно с помощью плазмозаменителей из расчета 1:2. При некоторой модификации метода возможна заготовка 2-3 л аутокрови без каких-либо побочных гемодинамических и гематологических последствий. Собранную кровь затем возвращают во время операции или после нее.

    Нормоволемическая гемодилюция не только безопасный, но малозатратный метод аутодонорства, обладающий выраженным реологическим эффектом. Наряду со снижением Ht и вязкости цельной крови после эксфузии отмечается стойкое уменьшение вязкости плазмы и агрегационной способности эритроцитов. Активизируется поток жидкости между интерстициальным и внутрисосудистым пространством, вместе с ним усиливаются обмен лимфоцитов и поступление иммуноглобулинов из тканей. Все это в конечном итоге ведет к сокращению послеоперационных осложнений. Этот метод можно широко применять при плановых хирургических вмешательствах.

    Эндогенная гемодилюция развивается при фармакологической вазоплегии. Снижение Ht в этих случаях обусловлено тем, что из окружающих тканей в сосудистое русло поступает обедненная белками и менее вязкая жидкость. Подобным эффектом обладают эпидуральная блокада, галогенсодержащие анестетики, ганглиоблокаторы и нитраты. Реологический эффект сопутствует основному терапевтическому действию этих средств. Степень снижения вязкости крови не прогнозируется. Она определяется текущим состоянием волемии и гидратации.

    Антикоагулянты. Гепарин получают путем экстракции из биологических тканей (легких крупного рогатого скота). Конечный продукт представляет собой смесь полисахаридных фрагментов с разной молекулярной массой, но со сходной биологической активностью.

    Наиболее крупные фрагменты гепарина в комплексе с антитромбином III инактивируют тромбин, в то время как фрагменты гепарина с мол.м-7000 воздействуют преимущественно на активированный фактор X.

    Введение в раннем послеоперационном периоде высокомолекулярного гепарина в дозе 2500-5000 ЕД под кожу 4-6 раз в сутки стало широко распространенной практикой. Подобное назначение в 1,5-2 раза снижает риск тромбозов и тромбоэмболий. Малые дозы гепарина не удлиняют активированного частичного тромбопластинового времени (АЧТВ) и, как правило, не вызывают геморрагических осложнений. Гепаринотерапия наряду с гемодилюцией (намеренной или побочной) - это основные и наиболее эффективные методы профилактики гемореологических расстройств у хирургических больных.

    Низкомолекулярные фракции гепарина обладают меньшим сродством к тромбоцитарному фактору Виллебранда. В силу этого они по сравнению с высокомолекулярным гепарином, еще реже вызывают тромбоцитопению и кровотечение. Первый опыт применения низкомолекулярного гепарина (клексан, фраксипарин) в клинической практике дал обнадеживающие результаты. Препараты гепарина оказались эквипотенциальны традиционной гепаринотерапии, а по некоторым данным даже превышали ее профилактический и лечебный эффект. Помимо безопасности, низкомолекулярные фракции гепарина отличаются также экономным введением (1 раз в сутки) и отсутствием необходимости в мониторинге АЧТВ. Выбор дозы, как правило, проводится без учета массы тела.

    Плазмаферез. Традиционное реологическое показание к плазмаферезу - синдром первичной гипервязкости, который обусловлен избыточной продукцией аномальных белков (парапротеинов). Их удаление приводит к быстрому обратному развитию болезни. Эффект, однако, непродолжительный. Процедура носит симптоматический характер.

    В настоящее время плазмаферез активно применяют для предоперационной подготовки больных с облитерирующими заболеваниями нижних конечностей, тиреотоксикозом, язвенной болезнью желудка, при гнойно-септических осложнениях в урологии. Это приводит к улучшению реологических свойств крови, активизации микроциркуляции, значительному сокращению числа послеоперационных осложнений. Производят замену до 1 / 2 объема ОЦП.

    Снижение уровня глобулинов и вязкости плазмы после одной процедуры плазмафереза может быть существенным, но кратковременным. Основным же благотворным эффектом процедуры, который распространяется на весь послеоперационный период, является так называемый феномен ресуспендирования. Отмывание эритроцитов в среде, свободной от белков, сопровождается стабильным улучшением пластичности эритроцитов и снижением их агрегационной наклонности.

    Фотомодификация крови и кровезаменителей. При 2-3 процедурах внутривенного облучения крови гелий-неоновым лазером (длина волны 623 нм) малой мощности (2,5 мВт) наблюдается отчетливый и продолжительный реологический эффект. По данным прецизионной нефелометрии под влиянием лазеротерапии снижается число гиперергических реакций тромбоцитов, нормализуется кинетика их агрегации invitro. Вязкость крови остается неизменной. Аналогичным эффектом обладают также УФ-лучи (с длиной волны 254-280 нм) в экстракорпоральном контуре.

    Механизм дезагрегационного действия лазерного и ультрафиолетового излучения не совсем ясен. Предполагают, что фотомодификация крови вызывает сначала образование свободных радикалов. В ответ возбуждаются механизмы антиоксидантной защиты, которые блокируют синтез естественных индукторов тромбоцитарной агрегации (в первую очередь простагландинов).

    Предложено также ультрафиолетовое облучение коллоидных препаратов (например, реополиглюкина). После их введения динамическая и структурная вязкость крови снижается в 1,5 раза. Существенно угнетается и тромбоцитарная агрегация. Характерно, что немодифицированный реополиглюкин не способен воспроизвести все эти эффекты.

    Литература

    1. «Неотложная медицинская помощь», под ред. Дж. Э. Тинтиналли, Рл. Кроума, Э. Руиза, Перевод с английского д-ра мед. наук В.И.Кандрора, д. м. н. М.В.Неверовой, д-ра мед. наук А.В.Сучкова, к. м. н. А.В.Низового, Ю.Л.Амченкова; под ред. Д.м.н. В.Т. Ивашкина, Д.М.Н. П.Г. Брюсова; Москва «Медицина» 2001

    2. Интенсивная терапия. Реанимация. Первая помощь: Учебное пособие / Под ред. В.Д. Малышева. - М.: Медицина.- 2000.- 464 с.: ил.- Учеб. лит. Для слушателей системы последипломного образования.- ISBN 5-225-04560-Х