Преобразование многочленов с помощью формул сокращенного умножения. Преобразования одночленов и многочленов

Многочленом называется сумма одночленов, то есть произведений цифр и переменных. Работать с ним удобнее, так как чаще всего преобразование выражения в многочлен позволяет значительно упростить его.

Инструкция

Раскройте все скобки выражения. Для этого воспользуйтесь формулами, например, (а+b)^2=a^2+2ab+b^2. Если вы не знаете формул, или их трудно применить к данному выражению, раскрывайте скобки последовательно. Для этого умножайте первый член первого выражения на каждый член второго выражения, затем второй член первого выражения на каждый член второго и т.д. В результате все элементы обоих скобок будут перемножены между собой.

Если перед вами три выражения в скобках, сначала перемножьте первые две, оставляя третье выражение не тронутым. Упростив результат, получившийся в результате преобразования первых скобок, перемножьте его с третьим выражением.

Внимательно следите за соблюдением знаков перед множителями-одночленами. Если вы перемножаете два члена с одним знаком (например, оба положительны или оба отрицательны), одночлен будет со знаком «+». Если же один член имеет перед собой «-», не забудьте перенести его на произведение.

Приведите все одночлены к стандартному виду. То есть переставьте местами множители внутри и упростите. Например, выражение 2х*(3,5х) будет равно (2*3,5)*х*х=7х^2.

Когда все одночлены будут стандартизированы, попробуйте упростить многочлен. Для этого сгруппируйте члены, у которых одинакова часть с переменными, например, (2х+5х-6х)+(1-2). Упростив выражение, вы получите х-1.

Обратите внимание на наличие параметров в выражении. Иногда упрощение многочлена необходимо производить так, будто параметр является числом.

Чтобы преобразовать в многочлен выражение, содержащее корень, выведите под ним такое выражение, которое будет возведено в квадрат. Например, воспользуйтесь формулой a^2+2ab+b^2 =(а+b)^2, затем уберите знак корня вместе с четной степенью. Если избавиться от знака корня невозможно, преобразовать выражение в многочлен стандартного вида не удастся.

«Совершенствование вычислительных навыков» - Состав числа. Повторение действий. Умножение. Сложение. Правила раскрытия скобок. Cложение отрицательных чисел. Вычитание. Сложение обыкновенных дробей. Сложение чисел с разными знаками. Совершенствование вычислительных навыков. Вычитание однозначного числа. Опорная схема. Действие в столбик. Умножение одночлена на многочлен.

«Разность квадратов чисел» - Возведите в квадрат. Формула сокращенного умножения. Разность квадратов двух выражений. Работа с таблицей. Разность квадратов. Геометрический смысл формулы. Как можно прочитать формулу. Выполните умножение. Влияет ли порядок записи скобок на результат. Формула (а+b)(a-b)=a2-b2. Произведение разности двух выражений и их суммы.

«Умножение многочлена на многочлен» - Правило умножения многочлена на многочлен. Игра «Открой картинку». Открой картинку. Каждый член первого многочлена поочерёдно умножать на каждый член второго многочлена. Рассмотрим произведение самых простых многочленов, а именно двучленов. У одного многочлена m членов, а у другого n членов. План урока.

«Разложение многочлена на множители» - Предварительное преобразование. Провести классификацию данных многочленов по способу разложения на множители. Вынесение общего множителя за скобки. Применение формул сокращенного умножения. Метод выделения полного квадрата. Тестор. Ответы: Схема урока: Конфуций. Формулы сокращенного умножения. Способ группировки.

«Преобразование целого выражения в многочлен» - Какие из выражений являются целыми: Примерами целых выражений служат такие выражения: Цели урока: Упражнять учащихся в приведении подобных слагаемых. Многочлены и, в частности, одночлены являются целыми выражениями. Развивать вычислительные навыки учащихся. Ввести понятие целого выражения. Преобразование целых выражений.

«Урок Формулы сокращённого умножения» - Цель урока: Повторить и обобщить практические навыки и умения по теме «Формулы сокращённого умножения». Тема урока: ФОРМУЛЫ СОКРАЩЁННОГО УМНОЖЕНИЯ. Подготовиться к предстоящей контрольной работе. Задача: Стороны первого квадрата на 1 см больше сторон второго квадрата, а площадь первого квадрата на 9см2 больше площади второго квадрата.

Всего в теме 24 презентации

Благодаря курсу алгебры, известно, что все выражения требуют преобразования для более удобного решения. Определение целых выражений способствует тому, что для начала выполняются тождественные преобразования. Будем преобразовывать выражение в многочлен. В заключении разберем несколько примеров.

Определение и примеры целых выражений

Определение 1

Целые выражения – это числа, переменные или выражения со сложением или вычитанием, которые записываются в виде степени с натуральным показателем, которые также имеют скобки или деление, отличное от нуля.

Исходя из определения, имеем, что примеры целых выражений: 7 , 0 , − 12 , 7 11 , 2 , 73 , - 3 5 6 и так далее, причем переменные вида a , b , p , q , x , z считают за целые выражения. После их преобразования сумм, разностей, произведений выражения примут вид

x + 1 , 5 · y 3 · 2 · 3 · 7 − 2 · y − 3 , 3 − x · y · z 4 , - 6 7 , 5 · (2 · x + 3 · y 2) 2 − - (1 − x) · (1 + x) · (1 + x 2)

Если в выражении имеется деление на число, отличное от нуля вида x: 5 + 8: 2: 4 или (x + y) : 6 , тогда деление может обозначаться при помощи дробной черты, как x + 3 5 - 3 , 2 · x + 2 . При рассмотрении выражений вида x: 5 + 5: x или 4 + a 2 + 2 · a - 6 a + b + 2 · c видно, что такие выражения не могут быть целыми, так как в первом имеется деление на переменную x , а во втором на выражение с переменной.

Многочлен и одночлен являются целыми выражениями, с которыми встречаемся в школе при работе с рациональными числами. Иначе говоря, целые выражения не включают в себя записи иррациональных дробей. Другое название – это целые иррациональные выражения.

Какие преобразования целых выражений возможны?

Целые выражения рассматриваются при решении как основные тождественные преобразования, раскрытие скобок, группирование, приведение подобных.

Пример 1

Раскрыть скобки и привести подобные слагаемые в 2 · (a 3 + 3 · a · b − 2 · a) − 2 · a 3 − (5 · a · b − 6 · a + b) .

Решение

Для начала необходимо применить правило раскрытия скобок. Получим выражение вида 2 · (a 3 + 3 · a · b − 2 · a) − 2 · a 3 − (5 · a · b − 6 · a + b) = = 2 · a 3 + 2 · 3 · a · b + 2 · (− 2 · a) − 2 · a 3 − 5 · a · b + 6 · a − b = = 2 · a 3 + 6 · a · b − 4 · a − 2 · a 3 − 5 · a · b + 6 · a − b

После чего можем привести подобные слагаемые:

2 · a 3 + 6 · a · b − 4 · a − 2 · a 3 − 5 · a · b + 6 · a − b = = (2 · a 3 − 2 · a 3) + (6 · a · b − 5 · a · b) + (− 4 · a + 6 · a) − b = = 0 + a · b + 2 · a − b = a · b + 2 · a − b .

После их приведения получаем многочлен вида a · b + 2 · a − b .

Ответ : 2 · (a 3 + 3 · a · b − 2 · a) − 2 · a 3 − (5 · a · b − 6 · a + b) = a · b + 2 · a − b .

Пример 2

Произвести преобразования (x - 1) : 2 3 + 2 · (x 2 + 1) : 3: 7 .

Решение

Имеющееся деление можно заменять умножением, но на обратное число. Тогда необходимо выполнить преобразования, после которых выражение примет вид (x - 1) · 3 2 + 2 · (x 2 + 1) · 1 3 · 1 7 . Теперь следует заняться приведением подобных слагаемых. Получим, что

(x - 1) · 3 2 + 2 · (x 2 + 1) · 1 3 · 1 7 = 3 2 · (x - 1) + 2 21 · x 2 + 1 = = 3 2 · x - 3 2 + 2 21 · x 2 + 2 21 = 2 21 · x 2 + 3 2 · x - 59 42 = 2 21 · x 2 + 1 1 2 · x - 1 17 42

Ответ : (x - 1) : 2 3 + 2 · (x 2 + 1) : 3: 7 = 2 21 · x 2 + 1 1 2 · x - 1 17 42 .

Пример 3

Представить выражение 6 · x 2 · y + 18 · x · y − 6 · y − (x 2 + 3 · x − 1) · (x 3 + 4 · x) в виде произведения.

Решение

Рассмотрев выражение, видно, что первые три слагаемые имеют общий множитель вида 6 · y , который следует вынести за скобки во время преобразования. Тогда получим, что 6 · x 2 · y + 18 · x · y − 6 · y − (x 2 + 3 · x − 1) · (x 3 + 4 · x) = = 6 · y · (x 2 + 3 · x − 1) − (x 2 + 3 · x − 1) · (x 3 + 4 · x)

Видно, что получили разность двух выражений вида 6 · y · (x 2 + 3 · x − 1) и (x 2 + 3 · x − 1) · (x 3 + 4 · x) с общим множителем x 2 + 3 · x − 1 , который необходимо вынести за скобки. Получим, что

6 · y · (x 2 + 3 · x − 1) − (x 2 + 3 · x − 1) · (x 3 + 4 · x) = = (x 2 + 3 · x − 1) · (6 · y − (x 3 + 4 · x))

Раскрыв скобки, имеем выражение вида (x 2 + 3 · x − 1) · (6 · y − x 3 − 4 · x) , которое необходимо было найти по условию.

Ответ: 6 · x 2 · y + 18 · x · y − 6 · y − (x 2 + 3 · x − 1) · (x 3 + 4 · x) = = (x 2 + 3 · x − 1) · (6 · y − x 3 − 4 · x)

Тождественные преобразования требуют строгое выполнение порядка действий.

Пример 4

Преобразовать выражение (3 · 2 − 6 2: 9) 3 · (x 2) 4 + 4 · x: 8 .

Решение

Вы первую очередь выполняются действия в скобках. Тогда имеем, что 3 · 2 − 6 2: 9 = 3 · 2 − 3 6: 9 = 6 − 4 = 2 . После преобразований выражение принимает вид 2 3 · (x 2) 4 + 4 · x: 8 . Известно, что 2 3 = 8 и (x 2) 4 = x 2 · 4 = x 8 , тогда можно прийти к выражению вида 8 · x 8 + 4 · x: 8 . Второе слагаемое требует замены деления на умножение из 4 · x: 8 . Сгруппировав множители, получаем, что

8 · x 8 + 4 · x: 8 = 8 · x 8 + 4 · x · 1 8 = 8 · x 8 + 4 · 1 8 · x = 8 · x 8 + 1 2 · x

Ответ: (3 · 2 − 6 2: 9) 3 · (x 2) 4 + 4 · x: 8 = 8 · x 8 + 1 2 · x .

Преобразование в многочлен

Большинство случаев преобразования целых выражений – это представление в виде многочлена. Любое выражение можно представить в виде многочлена.Любое выражение может быть рассмотрено как многочлены, соединенные арифметическими знаками. Любое действие над многочленами в итоге дает многочлен.

Для того, чтобы выражение было представлено в виде многочлена, необходимо выполнять все действия с многочленами, согласно алгоритму.

Пример 5

Представить в виде многочлена 2 · (2 · x 3 − 1) + (2 · x − 1) 2 · (3 − x) + (4 · x − x · (15 · x + 1)) .

Решение

В данном выражение начать преобразования с выражения вида 4 · x − x · (15 · x + 1) , причем по правилу в начале выполнив умножение или деление, после чего сложение или вычитание. Умножим – x на 15 · x + 1 , тогда получим 4 · x − x · (15 · x + 1) = 4 · x − 15 · x 2 − x = (4 · x − x) − 15 · x 2 = 3 · x − 15 · x 2 . Заданное выражение примет вид 2 · (2 · x 3 − 1) + (2 · x − 1) 2 · (3 − x) + (3 · x − 15 · x 2) .

Далее необходимо произвести возведение во 2 степень многочлена 2 · x − 1 , получим выражение вида (2 · x − 1) 2 = (2 · x − 1) · (2 · x − 1) = 4 · x 2 + 2 · x · (− 1) − 1 · 2 · x − 1 · (− 1) = = 4 · x 2 − 4 · x + 1

Теперь можно перейти к виду 2 · (2 · x 3 − 1) + (4 · x 2 − 4 · x + 1) · (3 − x) + (3 · x − 15 · x 2) .

Разберем умножение. Видно, что 2 · (2 · x 3 − 1) = 4 · x 3 − 2 и (4 · x 2 − 4 · x + 1) · (3 − x) = 12 · x 2 − 4 · x 3 − 12 · x + 4 · x 2 + 3 − x = = 16 · x 2 − 4 · x 3 − 13 · x + 3

тогда можно сделать переход к выражению вида (4 · x 3 − 2) + (16 · x 2 − 4 · x 3 − 13 · x + 3) + (3 · x − 15 · x 2) .

Выполняем сложение, после чего придем к выражению:

(4 · x 3 − 2) + (16 · x 2 − 4 · x 3 − 13 · x + 3) + (3 · x − 15 · x 2) = = 4 · x 3 − 2 + 16 · x 2 − 4 · x 3 − 13 · x + 3 + 3 · x − 15 · x 2 = = (4 · x 3 − 4 · x 3) + (16 · x 2 − 15 · x 2) + (− 13 · x + 3 · x) + (− 2 + 3) = = 0 + x 2 − 10 · x + 1 = x 2 − 10 · x + 1 .

Отсюда следует, что исходное выражение имеет вид x 2 − 10 · x + 1 .

Ответ: 2 · (2 · x 3 − 1) + (2 · x − 1) 2 · (3 − x) + (4 · x − x · (15 · x + 1)) = x 2 − 10 · x + 1 .

Умножение и возведение в степень многочлена говорит о том, что необходимо использовать формулы сокращенного умножения для ускорения процесса преобразования. Это способствует тому, что действия будут выполнены рационально и правильно.

Пример 6

Преобразовать 4 · (2 · m + n) 2 + (m − 2 · n) · (m + 2 · n) .

Решение

Из формулы квадрата получим, что (2 · m + n) 2 = (2 · m) 2 + 2 · (2 · m) · n + n 2 = 4 · m 2 + 4 · m · n + n 2 , тогда произведение (m − 2 · n) · (m + 2 · n) равняется разности квадратов m и 2 · n , таким образом, равняется m 2 − 4 · n 2 . Получим, что исходное выражение примет вид 4 · (2 · m + n) 2 + (m − 2 · n) · (m + 2 · n) = 4 · (4 · m 2 + 4 · m · n + n 2) + (m 2 − 4 · n 2) = = 16 · m 2 + 16 · m · n + 4 · n 2 + m 2 − 4 · n 2 = 17 · m 2 + 16 · m · n

Ответ: 4 · (2 · m + n) 2 + (m − 2 · n) · (m + 2 · n) = 17 · m 2 + 16 · m · n .

Чтобы преобразование не было слишком длинным, необходимо заданное выражение приводить к стандартному виду.

Пример 7

Упростить выражение вида (2 · a · (− 3) · a 2 · b) · (2 · a + 5 · b 2) + a · b · (a 2 + 1 + a 2) · (6 · a + 15 · b 2) + (5 · a · b · (− 3) · b 2)

Решение

Чаще всего многочлены и одночлены даются не стандартного вида, поэтому приходится выполнять преобразования. Следует преобразовать, чтобы получить выражение вида − 6 · a 3 · b · (2 · a + 5 · b 2) + a · b · (2 · a 2 + 1) · (6 · a + 15 · b 2) − 15 · a · b 3 . Для того чтобы привести подобные, необходимо предварительно произвести умножение по правилам преобразования сложного выражения. Получаем выражение вида

− 6 · a 3 · b · (2 · a + 5 · b 2) + a · b · (2 · a 2 + 1) · (6 · a + 15 · b 2) − 15 · a · b 3 = = − 12 · a 4 · b − 30 · a 3 · b 3 + (2 · a 3 · b + a · b) · (6 · a + 15 · b 2) − 15 · a · b 3 = = − 12 · a 4 · b − 30 · a 3 · b 3 + 12 · a 4 · b + 30 · a 3 · b 3 + 6 · a 2 · b + 15 · a · b 3 − 15 · a · b 3 = = (− 12 · a 4 · b + 12 · a 4 · b) + (− 30 · a 3 · b 3 + 30 · a 3 · b 3) + 6 · a 2 · b + (15 · a · b 3 − 15 · a · b 3) = 6 · a 2 · b

Ответ: (2 · a · (− 3) · a 2 · b) · (2 · a + 5 · b 2) + a · b · (a 2 + 1 + a 2) · (6 · a + 15 · b 2) + + (5 · a · b · (− 3) · b 2) = 6 · a 2 · b

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

ОТДЕЛЕНИЕ IV.

РАЗЛОЖЕНИЕ ВЫРАЖЕНИЙ НА ПРОСТЫЕ МНОЖИТЕЛИ.

§ 1.Преобразование многочленов в произведение без посредства формул сокращенного умножения и деления.

Если все члены многочлена содержат общий множитель, то можно разделить весь многочлен на этот множитель и обозначить умножение того же множителя на полученное многочленное частное. От этого данное выражение не изменит своего количественного значения, но примет форму произведения. Например, двучлен аb+ас можно представить в виде а (b+с ).

Такое преобразование формы называется вынесением общего множителя за скобки. Производя это действие, следует заботиться выносить.за скобку все, что можно, так чтобы в членах частного, заключаемого в скобки, не оставалось больше никакого общего множителя.

Иногда при вынесении за скобку придают общему миожителю знак минус. В таком случае члены частного в скобках пишутся со знаками, противоположными тем, какие имели перед собой члены данного многочлена. Отрицательный знак общего множителя относится при этом ко всему произведению. Напр., двучлен -аb+ас может быть представлен в виде (-а )(b-с ), а вместо этого пишут -а (b-с ), причем минус относится уже не к одному множителю а , но ко всему произведению.

Когда члены многочлона не имeют общего множителя, то иногда удачной группировкой членов в нeсколько групп, содержащих по нeсколько члeнов в каждой грусшe, находят в этих образовавшихся группах общий и притом многочленный множитель. Нерeдко для такой группировки оказывается достаточным заключить нeсколько членов в скобки со знаком +, или со знаком -.

Напр., имeя трeхчленное выражение а (b +с )+b+с мы заключаем два послeдние члена в скобки с плюсом и находим выражение а (b +с )+(b+с ), которое можно рассматривать как двучлен и котороe преобразовывается в произведоние (а +1 )(b+с ).

Подобно этому в выражении а (b-с )-b+с заключаем два послeдние члена в скобки с минусом, отчего выражение примет вид а (b-с )-(b-с ), а затeм преобразуется в произведение (а - 1 )(b-с ).

В большинствe случаев, встрeчающихся на практикe, требуется для открытия общего многочленного множителя не только соединить члены данного многочлена в группы, но еще вынести в этих группах общий одночленный множитель, различный для каждой. группы. При удачном выборe групп и при обязатeльном условии выносить за скобку все, что можно, общий множитель всего данного многочлена легко обнаруживаeтся.

Напр., имeя многочлен а 3 2 b +2аb 2 +2b 3 , соединяем первыe два члена в одну группу и послeдниe два в другую и выносим в первой группe за скобки а 2 и во второй 2b 2 ; получим а 2 (а+b )+ 2b 2 (а+b ) или (а+b )(а 2 +2b 2 ). Того жe результата можно достигнуть, вынося в пeрвом и трeтьем членах множитeль а , а во втором и четвeртом множитель b .

Подобно этому, соeдиняя в многочленe 3а 3 - 3а 2 b -аb 2 +b 3 пeрвый член с третьим и второй с четвeртым и вынося в пeрвой груапe множитeль а , а во второй множитeль- b , получии а (3а 2 -b 2 )-b (3а 2 -b 2 ) или (а-b )(3а 2 -b 2 ). Тот жо результат оказался бы при вынесении из пeрвых двух члонов за скобки 3а 2 , а из послeдних двух -b 2 .

Нужно замeтить, что подобного рода преобразования отличаются большим разнообразием, в особенности при соединeнии их с другими алгебраическими дeйствиями. Поэтому нельзя дать для этих преобразований общих и вполнe опродeленных правил; навык в них приобрeтается лишь обстоятельным и мeтодическим упражнeнием.

Иногда, преждe чeм группировать члeны мкогочлена для вынeсения в нeм многочлeнного множителя, требуeтся разложить нeкоторыe из членов в алгебраическую сумму новых членов, подобных разлагаемым. В таком случаe части разложенных членов относятся при группировкe к различным группам. Примeним способ разложения к преобразованию трехчленных выражeний.

Чтобы преобразовать трехчлен х 2 +5х +6 , разлагаем член 5 х в сумму членов 2 х и 3 х . Таким образом получим:

х 2 +5х +6 = х 2 +2х+ 3 х +6 = х (х +2 )+3 (х +2 )==(х +2 )(х +3 ).

Для преобразования трехчлена х 2 +2х -15 , разлагаем член +2х в сумму членов +5х и -3х Найдем:

х 2 +2х -15 = х 2 +5х - 3х -15 = х (х +5 )-3 (х +5 )==(х -3 )(х +5 ).

Существует общее правило, указывающее, когда возможно преобразованиe трехчленов ппдобного вида в произведение, и как производить такое преобразование. Для вывода и уяснeния этого правила нужно только разложить четыре вида трехчлена х 2 ± (а+b )х +аb и х 2 ± (а-b )х -аb , взяв каждый из них отдeльно и начав прeобразованиe с раскрытия скобок. Тогда окажется, что в произведение преобразовываются тe трехчлены, у которых пeрвый коэффициент при х 2 есть единица, второй коэффициент при х какой угодно, а третий коэффидиeнт или член, нe содержащий х есть алгебраическое произведение тeх самых количеств, на алгeбраическую сумму которых разлагается второй коэффицинт. Так, в трехчленe х 2 +5х +6 коэффициент 5 есть сумма чисел 3 и 2 , а 6 eсть произвeдениe тeх жe чисел, в трехчленe х 2 +2х -15 коэффициeнт -2 есть сумма количеств -5 и +3 , а -15 есть произведение тех жe количеств. Чтобы произвести прeобразованиe трехчлена, когда оно возиожно, нужно по знакам и числовым величинам третьего и второго коэффициента подыскать способ разложeния трeтьего коэффициeнта в произвeдeниe двух количеств, а второго в сумму тeх жe количеств. Рассмотрим примeры:

Пусть, напр., дан трехчлеч х 2 -11х +24 . Так как коэффициент 24 положитeлен, то искомые производитeли eго должны имeть одинаковыe знаки. Судя по тому, что второй коэффициент -11 отрицатeльный, видим, что эти производитeли коэффициента 24 или слагаeмыe коэффициента -11 оба отрицатeльны. Наконец, разлагая 24 на два отрицательных множителя и сравнивая сумму их с - 11 , убeдимся в том, что для преобразования трeхчлeна в произвeдение нужно разложить средний член - 11 х на члены -3 х и - 8 х.

Положим еще, что дан трехчлен х 2 - 7х -30 . Здeсь коэффициент -30 отрицательный; поэтому производители его имeют разные знаки. Коэффициснт -7 отрицательный; слeдовательно, при составлении его сложением берет перевeс отрицательное слагаемое, имeющее таким образом большую числовую величину. Поэтому член - 7х нужно разложить на члены -10х и +3х .

В произведение прeобразовываются такжe нерeдко трехчлены, у которых первый коэффициeнт нe есть единица. Для таких преобразований не будeм указывать тепeрь общего правила, вывод которого требует болee сложных рассуждений.

Развивая выше рассмотрeнный способ преобразования трехчленов в произведение, можно разлагать многочлены высших степеней в тeх случаях, когда они представляют произведения простeйпшх двучленов первой степени. Для упрощения подобных преобразований полезно выяснить слeдующее замeчание: положим, что какой-либо многочлен содержит множителем нeкоторый двучлен х + а . Так как двучлен этот, при замeнe х через -а , обращается в нуль, то многочлен, содержащий х+а множителем, должен также обращаться в нуль при этой замeнe. Подобно этому если многочлен содержит множителем двучлен х-а , обращающийся в нуль при замeнe х через а , то и сам многочлен обращается в нуль при той же замeнe. Справедливо и обратное заключение: если многочлен, содержащий разные степени х , обращается в нуль при замeнe х через -а или через а , то он навeрноe дeлится в первом случаe на х+а , а во втором на х-а , потому что обращение многочлена в нуль при одной из указанных подстановок может быть объяснено только тeм, что в состав многочлена входит соотвeтствующий двучленный множитель. Вышеуказанные замeчания дают простое средство для открытия в многочленe двучленного множителя, а затeм этот множитель может быть вынесен за скобки посредством разложения средних членов многочлена в алгебраические суммы.

Возьмем, напр., многочлен х 3 +6х 2 +11х +6 . Он обращается в нуль при замeнe х через -1 и потому дeлится на х +1. Зная этот множитель наперед, мы облегчаем себe разложение членов в суммы тeм, что опредeленно подбираем к каждому члену, начиная с высшего, часть слeдующего члена так, чтобы пара группируемых членов содержала множителем х +1 . Поэтому преобразование ведется слeдующим образом:

х 3 +6х 2 +11х +6 = х 3 +х 2 +5х 2 +5х +6х +6 = х 2 (х +1 )+ 5х (х +1 )+ 6 (х +1 )= (х +1 )(х 2 +5х +6 ) =
= (х +1 )(х +2 )(х +3 )

ІІодобно этому замeчаем, что многочлен х 3 -4х 2 -11х +30 обращаeтся в нуль при замeнe х через 2 и слeдовательно дeлится на х- 2 . Поэтому выполняем преобразование так:

х 3 -4х 2 -11х +30 = х 3 -2х 2 -2х 2 +4х -15х +30 = х 2 (х -2 ) -2х (х -2)-15 (х -2 )=
=(х -2 )(х 2 -2х -15 )=(х -2 )(х +3 )(х -5 ).

Первоначальный подбор множителя облегчается тeм, что в многочлен требуется подставлять талько тe количества, числовая величина которых входит множителeм в послeдний член многочлена. Это обнаруживается при рассмотрeнии многочлена, выражающего общий вид произведения (х +а )(х +b )(х +c ) . Последний член этого многочлена есть abc.

19. Возьмем формулу

мы ее читали так: «разность числе a и b». Мы можем в этой формуле число a заменить нулем; тогда она обратится в

0 – b или просто в –b.

Из нуля вычесть b значит, согласно тому, что мы знаем о вычитании относительных чисел, к нулю приписать число b, взятое с обратным знаком. Поэтому выражение –b должно понимать, как число, обратное по знаку числу b. Если, напр., b = +5, то –b = –5; если b = –4, то –b = +4 и т. п. Если мы напишем выражение +a, то его надо понимать, как число, равное числу a. Если a = +5, то +a = +5; если a = –4, то +a = 4 и т. п.

Поэтому формулу

мы можем понимать, без различия результата, или в смысле

или в смысле

Таким образом мы всегда можем заменять вычитание сложением и всякую разность понимать, как сумму двух чисел:
a – b есть сумма чисел a и (–b)
x – y есть сумма чисел x и (–y)
–a – b есть сумма чисел (–a) и (–b) и т. п.

Те формулы, где, с точки зрения арифметики, имеют место несколько сложений и вычитаний, напр.,

a – b + c + d – e – f,

мы можем теперь, с точки зрения алгебры, понимать только, как сумму, а именно:

a – b + c + d – e – f = (+a) + (–b) + (+c) + (+d) + (–e) + (–f).

Поэтому принято подобные выражения называть именем «алгебраическая сумма».

20. Возьмем какую-нибудь алгебраическую сумму

a – b – c или –3bc² + 2ab – 4a²b и т. п.

Принято называть эти выражения именем многочлен , причем это слово заменяет собою слово «сумма» или название «алгебраическая сумма». Мы знаем что

a – b – c = (+a) + (–b) + (–c)
–abc – 3bc² + 2ab – 4a²b = (–abc) + (–3bc²) + (+2ab) + (–4a²b) и т. п.

Отдельно каждое слагаемое называют именем член многочлена.

Первый многочлен,

состоит из трех членов: (+a), (–b) и (+c).

Второй многочлен,

–abc – 3bc² + 2ab – 4a²b,

состоит из четырех членов: (–abc), (–3bc²), (+2ab) и (–4a²b).

Слагаемые суммы можно переставлять в любом порядке:

–abc – 3bc² + 2ab – 4a²b = (–abc) + (–3bc²) + (+2ab) + (–4a²b) =
= (+2ab) + (–3bc²) + (–4a²b) + (–abc) = 2ab – 3bc² – 4a²b – abc.

Это свойство суммы теперь можно выразить иначе: члены многочлена можно переставлять в любом порядке. Это и сделано выше для многочлена –abc – 3bc² + 2ab – 4a²b, притом так, что впереди теперь оказался член (+2ab). Это позволило несколько упростить выражение: впереди знак + можно не писать. Конечно, надо подобные перестановки делать сразу, не заключая предварительно (как выше) каждое слагаемое в скобки.

Еще пример:

1 – 3a + 2a² – a³ + 3a 4 = 3a 4 – a³ + 2a² – 3a + 1.

Первый член этого многочлена был первоначально (+1) – знак + подразумевался перед единицею; когда мы переносим этот член на другое, кроме первого, место (выше мы перенесли его на последнее место), то уже этот знак + пропускать нельзя.

Мы можем заметить, что в предыдущем примере мы перестановкою членов многочлена достигли некоторого порядка: на первом месте стоит член с буквою a в 4-ой степени, на следующем – член с буквою a в 3-ей степени, потом идет член с буквою a во 2-ой степени, потом – a в 1-ой степени и, наконец, член, где буквы a вовсе нет.

Подобное расположение членов многочлена выражают словами «многочлен расположен по нисходящим степеням буквы a».

Вот еще примеры подобного расположения:

3x 5 – 2ax 3 + b (по нисходящим степеням буквы x)
a 4 – a 3 b + a 2 b 2 – ab 3 + b 4 (по нисходящим степеням буквы a)
3ab 5 – 4a 3 b 3 + 5a 4 b 2 – 2a 6 (по нисходящим степеням буквы b)
4x 4 – 3x 3 + 2x 3 (по нисходящим степеням буквы x).

Употребляют часто и обратное «по восходящим степеням» расположение, при котором степень избранной буквы постепенно повышается, причем в 1-м члене или вовсе этой буквы нет, или она имеет здесь наименьшую степень сравнительно с другими членами. О втором из предыдущих примеров мы могли бы сказать, что здесь многочлен расположен по восходящим степеням буквы b. Вот примеры:
3 – 2a + 3a 2 – 4a 3 (по восходящим степеням буквы a );
–x + x 2 – 3x 3 – 4x 4 (по восходящим степеням буквы х );
ax 2 – bx 3 + cx 5 – dx 6 (по восходящим степеням буквы x );
a 3 – 2ab + b 2 (по восходящим степеням буквы b или по нисходящим степеням буквы a);
3x 5 – 4yx 4 – 5y 3 x 2 – 6y 4 x (по нисходящим степеням буквы x или по восходящим степеням буквы y ).

21. Многочлен о двух членах называется двучленом (напр., 3a + 2b), о трех членах – трехчленом (напр., 2a² – 3ab + 4b²) и т. д. Возможно говорить о сумму из одного слагаемого (другое слагаемое равно нулю), или о многочлене об одном члене. Тогда уже, конечно, название «многочлен» неуместно и употребляется название «одночлен». Каждый член любого многочлена, взятый в отдельности, является одночленом. Вот примеры простейших одночленов:

2; –3a; a²; 4x³; –5x4; ab; ab²; –3abc; и т. д.

Почти все одночлены из выше написанных являются произведениями двух или более множителей, причем у большинства из них имеются и числовой множитель и буквенные. Напр., в одночлене –3abc имеется числовой множитель –3 и буквенные множители a, b и c; в одночлене 4x³ имеется числовой множитель +4 (знак + подразумевается) и буквенный множитель x³ и т. д. Если бы мы написали одночлен с несколькими числовыми множителями (а также и с буквенными), вроде следующего

,

то удобнее, переставив множителей так, чтобы числовые множители оказались рядом, т. е.

,

эти числовые множители перемножить – получим

–4a²bc² (точки, знаки умножения пропускаем).

Принято также, в громадном большинстве случаев, числовой множитель писать впереди. Пишут:

4a, а не a 4
–3a²b, а не a²(–3)b

Числовой множитель одночлена называется коэффициентом.

Если в одночлене не написан числовой множитель, например, ab, то можно всегда его подразумевать. В самом деле

a = (+1) ∙ a; ab = (+1)ab;
–a = (–1) ∙ a; a³ = (–1) ∙ a³ и т. п.

Итак, у одночленов a², ab, ab² подразумевается, у каждого, коэффициент 1 (точнее: +1). Если напишем одночлены –ab, –a², –ab² и т. п., то у них должно подразумевать коэффициент –1.

22. Более сложные примеры многочленов и одночленов.

(a + b)² + 3(a – b)² … эта формула выражает сумму двух слагаемых: первым является квадрат суммы чисел a и b, а вторым – произведение числа 3 на квадрат разности тех же чисел. Поэтому эту формулу должно признать двучленом: первый член есть (a + b)² и второй 3(a – b)². Если взять выражение (a + b)² отдельно, то в силу предыдущего, его надо считать одночленом, причем его коэффициент = +1.

a(b – 1) – b(a – 1) – (a – 1)(b – 1) … должно признать за трехчлен (сумма трех слагаемых): первый член есть a(b – 1) и его коэффициент = +1, второй член –b(a – 1), его коэффициент = –1, третий член –(a – 1)(b – 1), его коэффициент = – 1.

Иногда искусственно уменьшают число членов многочлена. Так трехчлен

можно, например, рассматривать за двухчлен, причем a + b, например, считают за один член (за одно слагаемое). Чтобы это яснее отметить, пользуются скобками:

Тогда у члена (a + b) подразумевается коэффициент +1

[в самом деле (a + b) = (+1)(a + b)].