Облучение радоном и его последствия. Радон и защита дома от радона Период полураспада радона 222

Исследователям в области геологии известно, что температура в земляных шахтах или скважинах на глубине 1 километра составляет плюс 20–30 градусов по Цельсию, хотя на поверхности в это время может быть суровая зима. По мере углубления в недра температура возрастает примерно на 20–50 градусов на каждый километр. Откуда берется это тепло? Что является его источником? Не вдаваясь в детали строения глубинных слоев, отметим, что геотермальное тепло в земной коре во многом обусловлено природными процессами, происходящими внутри Земли. Считается, что этому способствует естественный радиоактивный распад изотопов урана, тория, калия, рубидия. Эти и другие радиоактивные элементы имеются в достаточном количестве в подземных слоях в виде руд, а также в виде вкраплений в геологические образования. Во время распада урана-238, урана-235, тория-232 выделяется значительная тепловая энергия и сопутствующий радиоактивный газ радон, который, постепенно поднимаясь сквозь поры и трещины в породе, достигает земной поверхности. Подсчитано, что массовая доля радона в земной коре составляет около 10 процентов.

История открытия радона

Примерно до 1900 года о радоне никому из ученых того времени ничего не было известно. Но именно в этом году крупный английский физик, основоположник ядерной физики, Эрнест Резерфорд сказал свое слово о радоне. Это тот самый человек, который обнаружил альфа- и бета-лучи и который предложил миру планетарную модель атома. Он же и сообщил коллегам об открытии некого нового газа, химического элемента с определенными свойствами, о существовании которого ранее никто не подозревал.

Рис.1. Фрагмент таблицы периодической системы элементов Д.И. Менделеева.

Хотя многими считается, что первооткрывателем радона был Резерфорд, свою долю участия в открытии радиоактивного газа вложили и другие ученые. Дело в том, что Резерфорд экспериментировал с изотопом радона-220 (историческое название – торон), у которого период полураспада 55,6 секунд. Немецкий ученый-химик Фредерик Эрнст Дорн, открыл изотоп радона-222 (период полураспада 3,82 суток). Наконец, французский ученый в области химии и физики Андре-Луи Дебьерн описал свойства еще одной разновидности радона-219 (историческое название – актинон) с периодом полураспада 3,96 секунд. Такие деятели науки как американец Роберт Боуи Оуэнс, англичане Рэмзи Уильям Рамзай и Фредерик Содди также имели отношение к исследованию радона, и предать их труды забвению было бы несправедливо.

Современные ученые-атомщики утверждают, что радиоактивный газ радон имеет 35 известных на сегодня изотопов с атомной массой от 195 до 229. Три из них, указанные выше, рождаются естественным образом, остальные получены искусственным путем в лабораторных условиях. Те изотопы радона, которые выделяются из геологических пород, как раз и представляют собой варианты существования природного радона (атомные массы 222, 220, 219). Как выяснилось, основную долю радиации несет в себе радон-222. На втором месте по значимости стоит радон-220, но его вклад в радиацию составляет лишь 5 процентов.

Физические и химические свойства радона

Свойства радона удивительны, его относят к благородным инертным газам, вроде неона или аргона, которые не спешат вступать в реакцию с какими-нибудь веществами. Это тяжелый газ, в сравнении его с воздухом окажется, что он в 7,5 раз тяжелее. Поэтому радон под действием гравитационных сил стремится опуститься ниже воздушной массы. Тот радон, что выделяется из земли, будет скапливаться преимущественно в подвальных помещениях. Газ, выделяемый из строительного материала потолков и стен, будет располагаться на полу этажей зданий. Радон, выделяемый из воды в душевой комнате, сначала будет наполнять весь объем помещения и существовать в виде аэрозоли, затем опустится к нижней поверхности. В кухонных помещениях радон, выделяемый горючим природным газом, в конечном итоге также будет стремиться вниз, оседать на полу и окружающих предметах.

Рис.2. Концентрация радона в воздухе в разных помещениях дома.

Так как радон не имеет запаха, не имеет цвета и никак не определяется на вкус, то обычный человек, не вооруженный специальными приборами, не сможет его обнаружить. Однако высокая радиоактивность очищенного от примесей газа под действием энергии альфа-частиц инициирует у него эффект флюоресценции. В газообразном состоянии при комнатных температурах, а также в жидком виде (условия образования – минус 62 градуса Цельсия) радон испускает голубое свечение. В твердой кристаллической форме при температурах ниже 71 градуса цвет флюоресценции меняется от желтого до оранжево-красного.

В чем заключается особая опасность альфа-частиц?

Альфа-частицы, испускаемые радоном, это невидимые, но коварные враги. Они несут в себе огромную энергию. И хотя обычная одежда вполне защищает человека от такого типа радиации, опасность кроется в попадании радона в дыхательные пути, а также в желудочно-кишечный тракт. Альфа-частицы – это тяжелая крупнокалиберная артиллерия, наносящая наибольший вред организму. Физиками установлено, что при распаде изотопов радона и дочерних продуктов каждая альфа-частица имеет начальную энергию от 5,41 до 8,96 МэВ. Масса таких частиц в 7500 раз больше, чем масса электронов, представляющих собой поток бета-частиц, который можно сравнить по той же аналогии с пулеметной очередью. Тогда гамма-облучение будет выглядеть всего лишь массовой стрельбой из легкого стрелкового оружия.

Рис.3. Опасность разного вида радиоактивного излучения.

Невидимый газ радон, порождающий альфа-частицы, действительно представляет собой ощутимую угрозу для здоровья человека. Как подсчитали специалисты научного комитета при ООН по действию атомной радиации (НКДАР ООН), вклад радиоактивного радона в годовую дозу облучения человека составляет 75 процентов от всех природных радиоактивных процессов земного происхождения и половину дозы от всех возможных естественных источников радиации (включая земную и космическую). Кроме того, дочерние продукты распада радона – свинец, полоний и висмут – являются весьма опасными для человеческого организма и могут вызывать рак.

Более того, установлено, что активность именно дочерних продуктов радона составляет 90 процентов всей радиации, исходящей от родоначальника. Например, радон-222 в цепи ядерных преобразований порождает полоний-218 (период полураспада 3,1 минуты), полоний-214 (0,16 миллисекунд) и полоний-210 (138,4 суток). Эти элементы также испускают разрушительные альфа-частицы с энергией 6,12 МэВ, 7,88 МэВ и 5,41 МэВ соответственно. Аналогичные процессы наблюдаются и с родительскими изотопами радон-220 и радон-219. Эти факты говорят о том, что действие радона не следует оставлять без внимания, и необходимо принимать всяческие меры по уменьшению его влияния.

Опасность радона с точки зрения медицины

Медики подсчитали, что биологическое воздействие альфа-частиц на клеточные ткани организма оказывает в 20 раз большее разрушительное воздействие, чем бета-частицы или гамма-излучение. По данным исследователей из США попадание в легкие человека изотопов радона и его дочерних продуктов распада приводит к возникновению рака легких. Как считают ученые, вдыхаемый человеком радон инициирует локальные ожоги в легочной ткани и стоит шестым в списке причин заболевания раком, вызывающих смертельный исход. Исследователи отмечают, что воздействие радона на организм особенно опасно в сочетании с привычкой курения. Отмечено, что курение и радон – это два наиболее значимых фактора в возникновении рака легких, а когда они действуют совместно, то опасность резко усиливается. Недавно были опубликованы результаты наблюдений, и сделан вывод, что по причине воздействия внутреннего альфа-облучения на организм человека в США от рака легких умирает ежегодно около 20 тысяч человек. Международное агентство по исследованию раковых заболеваний причислило радон к канцерогенам первого класса опасности.

Рис.4. Источники радиации, воздействующие на человека.

Важные понятия и единицы измерения

Для правильного понимания процессов радиоактивного распада радона и опасности, которую он несет для организма человека, важно знать основную терминологию и единицы измерения. Рассмотрим эти понятия.

  1. Активность (А) радионуклида измеряется в беккерелях (Бк), 1 Бк соответствует 1 распаду в секунду. Для обозначения большой активности применяют также внесистемную единицу – кюри (Ки), 1 кюри равен 37 миллиардам беккерелей.
  2. Объемная (удельная) активность (ОА) – это количество распадов на единицу объема вещества, например, Бк/м3, Бк/л или Бк/кг (беккерель на кубометр, беккерель на литр, беккерель на килограмм соответственно). Часто удельную активность относят к площади: Ки/км2 – кюри на квадратный километр.
  3. Равновесная объемная активность (РОА) – то же, что и ОА, но учитывающая фактор времени, за которое начальная активность дочерних продуктов распада придет в равновесное состояние со своим родителем по причине постепенного угасания жизни короткоживущих радионуклидов. Измеряется в единицах ОА
  4. Эквивалентная равновесная объемная активность (ЭРОА) используется для оценки активности смеси короткоживущих дочерних продуктов распада, еще не пришедших в равновесное состояние. Практически это величина, скорректированная весовыми коэффициентами для каждого типа значимого изотопа и эквивалентная РОА по скрытой энергии. Для определения ЭРОА используется математическая формула. Есть и более простой способ вычисления ЭРОА: путем перемножения текущего значения ОА и коэффициента, характеризующего смещение радиоактивного равновесия радона и его дочерних продуктов в воздушной массе. Как правило, коэффициент выбирается равным 0,5. Обычно ЭРОА вычисляется и задается как среднегодовая активность и измеряется в Бк/м3.

Актуальные нормы радиационной безопасности

Предельные величины концентрации радона в воздухе помещений можно найти в таких нормативных документах, как НРБ-99 или СП 2.6.1.758-99 (Нормы радиационной безопасности), ОСПОРБ-99 (Основные санитарные правила), СП 2.6.1.1292-2003 (Санитарные правила), а также в методических указаниях МУ 2.6.1.715-98. Как указывают нормативы, в жилых и общественных (непроизводственных) помещениях, где предполагается долговременное нахождение людей, ЭРОА в среднем за год не должна превышать 200 Бк/м3 (для эксплуатируемых зданий) и 100 Бк/м3 (для новых строений, вводимых в эксплуатацию). Если эти значения не будут выдержаны, то радиационная безопасность проживания в таких сооружениях не гарантируется.

Методы анализа и мониторинга радоновой обстановки

Методов анализа активности радона и торона великое множество, и каждый из них имеет свои преимущества и недостатки. Практическое применение нашли те из них, которые отвечают следующим требованиям: простота методики, небольшое время процесса измерения при приемлемой точности анализа, минимальная стоимость оборудования и расходных материалов, наименьшие затраты на обучение персонала. На сегодняшний день в практике дозиметрического контроля радона и его продуктов распада используются следующие методы:

  • Сорбция (поглощение) радона из окружающей среды активированным углем. Бывает пассивная (самопроизвольная) и активная, путем прокачки с определенной скоростью исследуемого воздуха через колонку с углем. По окончании процесса измерения начальные свойства активированного угля могут быть восстановлены путем прокаливания.
  • Вместо колонки с активированным углем могут применяться специальные одноразовые фильтры, используемые как расходный материал. Изотопы радона и продукты его распада оседают на фильтрах подобно тому, как бытовой пылесос задерживает пыль и мелкий мусор в фильтрующем воздух тканевом мешке.
  • Также существует метод электростатического осаждения дочерних продуктов радона на детекторе, чувствительном к альфа-излучению. В данном случае используется эффект электростатической силы, которая притягивает пылинки и микрокапли воздушной аэрозоли, концентрируя их на детекторе.

После сбора образцов их исследуют средствами дозиметрического контроля, используя, например, спектрометрический анализ, пластиковый сцинтилляционный детектор, торцевой счетчик Гейгера и тому подобное. В некоторых приборах операция забора воздуха с радоном и оценка радиоактивного излучения происходит одновременно.

Профессиональные и бытовые средства обнаружения радона.

Радон и опасные для человека продукты его распада считаются альфа-излучателями, поэтому большинство бытовых и профессиональных дозиметров, которые имеют гамма- и бета-режимы измерения, не смогут его обнаружить. Приборы, имеющие возможность оценивать альфа-излучение, также окажутся малополезными, так как не смогут вычислить концентрацию радона в исследуемых пробах воздуха. Ведь для этого нужно следовать положениям определенной методики измерения. Поэтому для такого анализа используются профессиональные приборы, измерители концентрации радона. Многие из них устроены примерно одинаково, они содержат устройства для забора проб исследуемого воздуха и дозиметрические средства контроля ЭРОА. Воздух, содержащий радионуклиды, прокачивается через собирающий фильтр в течение длительного времени (от нескольких часов до нескольких суток), затем определяется объемная альфа-активность накопленной порции. К профессиональным приборам такого типа относятся РГА-04 (Интегральный радиометр радона), РРА-01М-01 (Радиометр радона), РАА-10 (Радиометр аэрозолей), КАМЕРА (Комплекс измерительный для мониторинга радона) и другие. Эти приборы довольно громоздки, вес достигает 6 кг и более. Некоторые из них имеют широкие функциональные возможности. Основная относительная погрешность измерения ЭРОА составляет 15–30 процентов, в зависимости от диапазона и режима работы.

Рис.5. Профессиональные и индивидуальные радиометры радона.

Для бытовых целей задачу определения концентрации радона в воздухе конструкторы решили с помощью современной элементной базы, используя управляющий микропроцессор и специально разработанные программные алгоритмы. Весь ход измерения, который соответствует стандартизованным методическим указаниям, удалось полностью автоматизировать. Речь идет о детекторе-индикаторе радона СИРАД МР-106. Устройство работает по принципу электростатического осаждения дочерних продуктов распада радона-222 на детекторе, чувствительном к альфа-частицам и может оценивать ЭРОА собранных радионуклидов. Вес прибора около 350 г без элементов питания (двух источников типоразмера АА), а его габариты – карманные, в буквальном смысле слова. При включении прибора и вхождении в текущий режим, он начинает функционировать и накапливать информационные данные. Первый результат появляется спустя 4 часа работы, затем устройство переходит в состояние мониторинга с периодической коррекцией результата измерения (усредненный режим). Также имеется пороговый режим со звуковой сигнализацией превышения порога (100 Бк/м3 и 200 Бк/м3). Прибор предназначен для заинтересованных неспециалистов и его эксплуатация не требует обучения.

Рекомендованное специалистами время обследования одного помещения площадью не более 50 квадратных метров – не менее 72 часов. Продолжительный анализ радона обусловлен тем фактором, что в течение времени результаты измерения могут отличаться между собой в 10 раз. Более длительные измерения позволят накопить достаточную информацию для получения достоверного усредненного результата с наименьшей погрешностью.

Как уменьшить опасность воздействия радона?

Радиоактивный газ радон по территориям проживания населения распределен неравномерно. В силу геологических особенностей природных условий в группу радоноопасных можно включить отдельные районы Урала и Карелии, Ставропольского, Алтайского и Красноярского края, Читинской, Томской и других областей, а также во многих регионах Украины. Сегодня составляются географические карты активности радона на территории всей страны, которые отражают общую радоновую картину. Однако в каждом конкретном месте активность радиоактивного газа может отличаться в несколько раз в ту или другую сторону и многократно превышать предельно-допустимые нормы. Встречаются аномальные места с величинами ЭРОА 2000–10000 Бк/м3. Кроме того, результаты замеров концентрации радона могут значительно изменяться с течением времени. Поэтому надежному решению вопроса радиационной безопасности может способствовать только периодический мониторинг.

Рис.6. Фрагмент карты риска радоновой опасности.

Отметим основные источники поступления радона и его дочерних продуктов:

  • земной грунт
  • строительные материалы
  • вода, особенно из глубоководных артезианских скважин
  • природный горючий газ

Зная источники поступления радона в окружающую среду и в жилище человека, можно выработать средства противодействия и борьбы с этим нежелательным явлением. Они заключаются в выполнении следующих правил:

  1. Тщательно выбирать площадку под строительство жилого дома, с минимальной концентрацией радона в земном грунте.
  2. В малоэтажных зданиях желательно обустраивать подвальные помещения.
  3. Жилые комнаты лучше располагать в верхних этажах строений.
  4. Не использовать для возведения дома опасные строительные материалы (керамзит, пемза, гранит, фосфогипс, глинозем, шлакобетон), предпочтение следует отдавать дереву, а также материалам, прошедшим радоновый радиационный контроль.
  5. Уделить достаточное внимание герметизации междуэтажных перекрытий, пола и напольного покрытия.
  6. Для заделки щелей, пор и трещин - стены и потолок нужно обработать мастиками, герметиками, затем красками на основе эпоксидной смолы и другим облицовочным материалом.
  7. Не находиться долгое время в непроветриваемых помещениях дома, в подвале или погребе.
  8. Организовать регулярное естественное проветривание жилых комнат и подвальных помещений.
  9. Обустроить эффективную принудительную вентиляцию дома или квартиры.
  10. Не стремиться устроить чрезмерную герметизацию окон и дверей в помещениях, чтобы дать возможность естественному обороту воздуха.
  11. Воду из глубоководных источников следует кипятить, а не пить сырую.
  12. Использовать для очистки воды угольные фильтры, позволяющие задерживать радон на 90 процентов.
  13. Исключать вдыхание влажного воздуха, сокращать время пребывания в душевой комнате, принимать душ реже, устраивать вентиляцию и обязательное проветривание перед использованием душа другими членами семьи.
  14. Над газовой плитой необходимо обустроить вытяжную систему вентиляции.

Кроме этого, необходимо проводить систематический мониторинг концентрации радона в различных помещениях дома с целью выявления опасных мест. Имея под руками индивидуальный прибор, можно оценивать эффективность противодействующих мероприятий, проведенных в домах, где проживают люди. Оценку количества скопившегося радона в помещении производят непосредственно до мероприятия и после его осуществления. Полученные величины сравнивают между собой. Такие измерения нужно производить в одинаковых условиях, учитывая естественное движение воздуха в результате сквозняка, закрытые или открытые двери и окна, а также функционирование вентиляционной системы.

Вот еще одна полезная возможность использования детектора-индикатора радиоактивного газа. Известен научный факт, что перед землетрясениями концентрация радона в земной поверхности скачкообразно увеличивается, ввиду смещения тектонических плит и возрастания механического напряжения между ними с сопутствующей вибрацией в земной коре (микросейсмическая активность). Это дает шанс предсказывать катастрофу. Если вести ежедневный мониторинг концентрации радона в воздухе, то вполне возможно зафиксировать скачкообразное увеличение значения ЭРОА, успеть предупредить об этом окружающих и принять необходимые меры безопасности.

Какой индикатор радона выбрать?

Радон (Rn) - это радиоактивный элемент нулевой группы , порядковый номер 86, инертный газ. Наибольшее значение имеют его альфа-излучающие изотопы: Rn 222 (радон, прежнее название эманация радия) с периодом полураспада 3,8 дня и Rn 220 (торон) с периодом полураспада 54,5 сек. Распадаясь, Rn 222 и Rn 220 дают начало группе короткоживущих изотопов (дочерних продуктов радона и торона).

Rn 222 содержится в атмосферном и почвенном воздухе, в природных водах и природных объектах, содержащих . Rn 222 широко используют в лечебной практике (см. Альфа-терапия).

Присутствие Rn 222 и Rn 220 с их дочерними продуктами (последние обычно в виде аэрозолей) в воздухе рабочих помещений (при добыче и переработке урано-радиевых и ториевых руд, приготовлении радоновых ванн и т. д.) создает профессиональную вредность для лиц, находящихся в этих помещениях. Уменьшение этой вредности обеспечивается хорошей вентиляцией.

Предельно допустимые концентрации Rn 222 в воздухе: для профессиональных работников 3·10 -11 кюри/л, для населения - 3·10 -12 кюри/л.

Радон (Radon; Rn) - радиоактивный химический элемент периодической системы Менделеева. Пор. номер 86, ат. вес 222. Название дано по основному, наиболее долгоживущему изотопу - 86 Rn 222 . Элемент радон иногда называют эманацией (86 Ем). Известно 19 изотопов элемента радона; из них, кроме 86 Rn 222 , еще два естественных - торон (86 Rn 220) и актинон (86 Rn 219). 86 Rn 222 образуется из 88 Ra 226 (см. Радий); это инертный радиоактивный газ с периодом полураспада 3,8229 дня. Распадаясь с испусканием α-частиц (энергия 5,49 Мэв, пробег в воздухе 4,0 см, в биологических тканях около 0,04 мм) и очень слабого ү-излучения, он дает начало группе дочерних продуктов 86 Rn 222 (радий А, радий В и т. д.- изотопы свинца, висмута и других металлов), присутствующих в больших или меньших количествах всюду, где имеется 86 Rn 222 . Основной единицей измерения количества 8eRn222 является кюри. Одно кюри соответствует 0,0065 мг 86 Rn 222 и занимает при нормальных температуре и давлении объем 0,65 мм 3 .

В природе 86 Rn 222 содержится в атмосферном и почвенном воздухе, в водах (главным образом минеральных), а также всюду, где имеется 88 Ra 226 в рассеянном состоянии.

Для лечебных целей 86 Rn 222 получают из растворов хлористой или бромистой соли 88 Ra 226 . Эти соли хранят в специальных стеклянных сосудах - барботерах, откуда накапливающийся 86 Rn 222 через определенные промежутки времени переводится путем пропускания воздуха через раствор 88 Ra 226 в нужный объем воды. Как природные, так и приготовленные при помощи растворов 88 Ra 226 радоновые воды, а также воздух, обогащенный 86 Rn 222 , используются для лечения ряда заболеваний (см. Альфа-терапия, Бальнеотерапия).

Длительное вдыхание воздуха, обогащенного 86 Rn 222 и его дочерними продуктами (присутствуют обычно в виде аэрозолей, испускают альфа-, бета- и гамма-излучение), может оказывать вредное действие на организм. Это создает профессиональную вредность для работников, обслуживающих лечебницы с радоновыми ваннами, занятых на добыче и переработке уранорадиевых руд и др. Для уменьшения этого профессионального облучения применяют комплексы гигиенических мероприятий, направленные на снижение содержания 86 Rn 222 и его дочерних продуктов во вдыхаемом воздухе. Предельно допустимая концентрация 86 Rn 222 в воздухе для лиц, по роду своей работы имеющих с ним дело, равна 3·10 -11 кюри/л, для населения - 3·10 -12 кюри/л. Эти концентрации рассчитаны в предположении, что наряду с 86 Rn 222 во вдыхаемом воздухе в 100% равновесии находятся все его короткоживущие дочерние продукты (до RaC"+RaC" включительно).

Нередко наши знания и представления, о каком либо потенциально опасном явлении бывают достаточно ограниченными, чтобы воспринимать его серьезно. С одной стороны отсутствие волнений по этому поводу значительно облегчает нашу жизнь, но с другой — в критический момент перед лицом опасности мы оказываемся совершенно неподготовленными к защите собственного здоровья. Примерно так обстоят дела с радоном, о котором многие слышали, но не многие знают, что это за зверь.

Немалая доля населения воспринимает радон лишь в связи с лечебными радоновыми ваннами, и поэтому некоторые люди испытывают крайнее недоумение, когда им заявляют, что в обычных условиях постоянный контакт с радоном не столько лечит, сколько калечит.

Давайте разберемся, при каких обстоятельствах радон полезен, и когда он становится вредным.

Что такое радон?

Радон – это инертный газ, не имеющий цвета и запаха. Беда в том, что газ этот радиоактивен, то есть, распадаясь, он становится источником ионизирующих излучений. В природе существуют четыре изотопа радона, однако наиболее известны два – радон (Rn 222) и торон (Rn 220) . Два других изотопа (Rn 219 и Rn 218) очень нестабильны и «живут» после возникновения настолько недолго, что шансов столкнуться с ними лицом к лицу у нас с вами практически нет.

Радон (Rn 222) – самый долгожитель из этого семейства, поэтому именно его мы можем встретить в нашей повседневной жизни.

Откуда берется радон?

Как и большинство радиоактивных элементов радон получается из других радиоактивных элементов, например Rn 222 является продуктом деления ядер радия, а те в свою очередь появляются после распада урана. Таким образом, источником радона является грунт , породы которого содержат то или иное количество урана.

Больше всего урана в гранитах, поэтому местности, расположенные над такими грунтами классифицируются как радоноопасные территории.

Благодаря своей инертности этот газ достаточно легко высвобождается из кристаллических решеток минералов и по трещинам распространяется на довольно большие расстояния. Повреждение грунта с увеличением количества трещин, например во время строительства, усиливает выделение радона в атмосферу.

Радон хорошо растворяется в воде, а значит, если слой подземных межпластовых вод контактирует с породами, содержащими радон, то артезианские скважины дадут воду, богатую этим газом.

Почему радон опасен?

Как вы уже наверно догадались, опасность радона кроется в его радиоактивности. Попавший в атмосферу радон вдыхается вместе с воздухом и уже в бронхах начинает облучать слизистую оболочку. Продукты распада радона также радиоактивны. Попадая в кровь, они разносятся по всему организму, продолжая его облучать.

В настоящее время считается, что радон с продуктами его распада обусловливает около восьмидесяти процентов ежегодной дозы облучения населения планеты от .

Ионизирующее излучение в относительно небольших дозах, которые не приводят к лучевой болезни, опасно своими отдаленными вероятностными эффектами, или их еще называют стохастические эффекты.

Вероятность и срок проявления таких эффектов трудно предсказать, однако риск их появления у людей, подвергшихся облучению значительно выше, чем у людей, которые с радиацией не сталкивались. Масштаб последствий также трудно оценить, поскольку от дозы облучения тяжесть стохастических эффектов никак не зависит.

Самыми опасными стохастическими эффектами воздействия ионизирующего излучения являются онкологические заболевания. Облученные люди заболевают раком чаще, и воздействие радона на организм не исключение.

Более десятой части регистрируемых каждый год случаев заболеваний раком легких вызваны радоновой радиацией – это второе место после курения. Кстати, в связке с курением онкогенное действие радона усиливается.

Имеются статистические данные о том, что радоновое облучение увеличивает риск рака мочевого пузыря, кожи, желудка, прямой кишки. Кроме того, есть сведения о вредном воздействии радона на костный мозг, щитовидную железу, печень, сердечнососудистую систему и репродуктивные органы.

Где опасен радон?

Если говорить в масштабах страны, то зонами повышенного риска являются регионы, где близко к поверхности земли лежат гранит, грейс, фосфорит и т.д. Сравнительно высокие дозы получает население территорий, на которых размещены промышленные предприятия по добыче и переработке минерального сырья, а также металлургические предприятия и теплоэлектростанции.

Как уже упоминалось, в атмосферу радон проникает из почвы, и если на таком участке построено здание, то ничто не мешает радону накапливаться внутри помещений. При отсутствующей или плохо функционирующей вентиляции, концентрация радона в воздухе закрытых помещений может в десятки раз превышать концентрацию в наружном воздухе.

Радон более чем в семь раз тяжелее воздуха, поэтому больше всего он скапливается в подвальных помещениях и на первых этажах.

Второй возможный путь проникновения радона в жилье – строительные материалы. Если при их производстве использовалось сырье, содержащее радон, то он неминуемо будет поступать внутрь помещений, и тогда этажность не имеет никакого значения.

В случае, когда подача воды в здание осуществляется из подземных источников и без дополнительной водоподготовки радон может поступать внутрь жилья с водой. Тогда наибольшая концентрация радона будет в помещениях, в которых осуществляется раздача воды, например, в Финляндии, где очень почве много радона, в ванных комнатах домов обнаруживалась концентрация радона в 50 раз превышающая норму. Кстати, в этой стране проживает всего около 5 млн. человек, по уровню заболеваемости раком легкого Финляндия занимает первое место в мире, а уровень смертности от этой опухоли составляет 200 – 600 человек в год.

Довольно часто радон можно обнаружить в квартирах, оборудованных газовыми плитами. В этом случае радон поступает вместе с природным газом и создает большие концентрации в кухнях.

Какой норматив содержания радона?

В нашей стране нормирование содержания радона в воздухе помещений осуществляется по показателю среднегодовой эквивалентной равновесной объемной активности (ЭРОА) изотопов радона, который измеряется в Бк/м³.

В жилых и общественных зданиях, которые сдаются после строительства, капитального ремонта или реконструкции ЭРОА радона не должна превышать 100 Бк/м³, а в эксплуатируемых зданиях – 200 Бк/м³.

  • СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)», п.5.3.2, п.5.3.3;
  • СП 2.6.1.2612-10 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ – 99/2010)», п.5.1.3.
  • СанПиН 2.6.1.2800-10 «Требования радиационной безопасности при облучении населения природными источниками ионизирующего излучения», п.4.2.6, п.4.2.7.

Что делать, если радон выше нормы?

Если нормативы по радону в помещениях жилых и общественных зданий оказываются выше нормы, то должны проводиться дополнительные мероприятия по противорадоновой защите.

Существуют пассивная и активная системы защиты.

Пассивная защита предусматривает изоляцию ограждающих конструкция зданий, для предотвращения диффузии радона из подвала в жилые помещения (уплотнение, мембраны, барьеры, пропитки, покрытия). Такие мероприятия не требуют затрат энергии и обслуживания, в чем заключается их преимущества.

Активная защита основана на принудительном отводе радона из источника в атмосферу (принудительная вентиляция подвала, коллектор подвала, грунтового основания подвала). Здесь требуются специальные установки, источники энергии и персонал для обслуживания, однако по эффективности активные мероприятия заметно превосходят пассивные.

Если же по каким-то причинам, в том числе по экономическим, проведение дополнительных мероприятий невозможно, то должен рассматриваться вопрос о переселении жильцов, перепрофилировании зданий и помещений, или о сносе существующего здания (п.5.1.4 ОСПОРБ – 99/2010, п.4.2.6, п.4.2.7 СанПиН 2.6.1.2800-10).

О пользе радона

Раз уж мы говорим о радоне, то не можем опустить вопрос лечебных свойств радоновых ванн. Использование этого метода лечения основано на мнении ученых, что маленькие дозы радиации действуя как мягкий стрессовый фактор, стимулируют клеточную защиту и иммунитет организма в целом.

Лечение радоновыми ваннами используется при артрозах, артритах, гипертонической болезни и т.д.

Следует заметить, что концентрация радона в таких ваннах мизерная, да и курс лечения, как правило, непродолжительный.

Увидели ошибку? Выделите и нажмите Ctrl+Enter.

Обсуждение: 13 комментариев

    Думается,что родоновые ванны полезны только абсалютно здоровым людям. Врятли облучение хотя и малыми дозами полезно,никто не знает как эта доза родона подействует на организм в дальнейшем…И так кругом имеем облучения от электроники домашней..Может и были они полезны в Века древние,когда небыло столько факторов облучений каждодневных как теперь.

    Ответить

    Ребёнок пошёл в дет.сад.В последствие узнали,что в результате землетрясения,появилась трещина,и в группу идёт радон,сделали вытяжку и комиссия каждые полгода проверяет.
    Затем узнаем,что вытяжка не работала с сентября,у меня у ребёнка с декабря открылся сильный кашель.ставят диагноз гиперактивность бронхов
    Мог ли накопиться радон с сентября и навредить детям?
    Реально ли вытяжкой устранить проблему?
    В августе перед приёмкой детей замеры показали норму

    Ответить

    жэки нас убивают радоном.замурованы все продухи.бездарное руководство!жильцы совершенно не осведомлены.что о радоне

    Ответить

  1. здравствуйте, в течении нескольких лет имел контакт с компасами Адрианова находившимися у меня на хранении (более 800 штук) и все они, как в последствии узнал, фонили и так как лежали в одном стеллаже в деревянных ящиках на расстоянии 2-3 метров счётчик гейгера показывал БОЛЬШУЮ дозу. периодически их приходилось доставать, пересчитывать и т.п. Вопрос: мог ли я получить дозу и как она должна проявляться?

    Ответить

    1. Без измерения уровней ионизирующего излучения сказать однозначно ничего нельзя, но в сети нашел информацию, что входящий в состав компасов Адрианова радий (до 0,03%) создает суммарную эквивалентную дозу 0,95 мкЗв/ч, насколько я понял измеряли непосредственно у поверхности компаса. То есть, если носить компас на руке или в нательном кармане ежедневно не снимая даже ночью, то доза за год получится около 7,8 — 8,6 мЗв/год (норма эффективной дозы по НРБ-99/2009 для населения 1 мЗв в год за любые последовательные 5 лет, но не более 5 мЗв в год). Это много, но вряд ли вы носили компасы на своем теле круглосуточно. Если вы знаете дозу от компасов в той точке, где находились во время работы (2-3 метра это достаточно большое расстояние, чтобы доза была невелика), то можете сами посчитать вероятную эффективную дозу за год с учетом реального времени нахождения. Что касается проявлений переоблучения, то существует два вида биологических эффектов от воздействия высоких уровней радиации:

      1. детерминированные эффекты — они проявляются обязательно и зависят от дозы, чем больше доза, те хуже состояние здоровья (по степеням тяжести лучевой болезни)
      2. стохастические эффекты — вероятностные и непредсказуемые, их оценивают по степени увеличения риска, то есть чем выше доза, те более велик риск развития таких эффектов, но о том когда они разовьются, и разовьются ли вообще, никто сказать не сможет.

В "Официальном отчете о радоне" Международной комиссии по радиологической защите указано, что годовая эффективная индивидуальная доза облучения от радона не должна превышать 10 мЗв/год. По данным Федеральной службы России по надзору в сфере защиты прав потребителей и благополучия человека в 2010 году были выявлены критические группы населения, дозы облучения которых значительно превышают средние по Российской Федерации. Такие группы населения были выявлены в Республике Тыва, в Алтайском крае, в Воронежской и Кемеровской областях. Причиной повышенного облучения является высокое содержание изотопов радона в воздухе жилых помещений. В зонах с умеренным климатом концентрация радона в закрытых помещениях в среднем примерно в 8 раз выше, чем в наружном воздухе. Наибольшие значения средних годовых эффективных доз облучения населения природными источниками ионизирующего излучения по данным исследований 2001-2010 гг. зарегистрированы в Республике Алтай (9,54 мЗв/год) и Еврейской АО (7,20 мЗв/год), средние годовые дозы природного облучения жителей Республики Тыва, Иркутской области, Ставропольского и Забайкальского краев превышают 5 мЗв/год. Высокие показатели годовых эффективных доз облучения населения также отмечаются в республиках Бурятия, Ингушетия, Калмыкия, Северная Осетия, Тыва, в Кабардино-Балкарской и Карачаево-Черкесской республике, в Ставропольском крае, в Ивановской, Иркутской, Калужской, Кемеровской, Липецкой, Новосибирской, Ростовской, Свердловской. Смотрите таблицу со средними годовыми эффективными дозами облучения населения России по данным Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.

Средняя индивидуальная годовая эффективная доза облучения на одного жителя Российской Федерации, оцененная по данным за весь период наблюдений с 2001 по 2010 год, составляет 3,38 мЗв/год. Вклад дозы внутреннего облучения населения за счет ингаляции изотопов радона (222 Rn и 220 Rn) и их короткоживущих дочерних продуктов распада составляет 1,98 мЗв/год или около 59 % суммарной дозы за счет всех природных источников излучения. При этом вклад внешнего облучения составляет около 19 % суммарной дозы, космического излучения - чуть менее 12 %, вклад широко распространенного в природе 40К - 5 %, а доза облучения за счет содержания природных и техногенных (137 Cs и 90 Sr) радионуклидов в продуктах питания - около 4 %. Средняя доза за счет потребления питьевой воды составляет менее 1 % от суммарной дозы облучения, а за счет ингаляции долгоживущих природных радионуклидов с атмосферным воздухом - менее 0,2 % от суммарной дозы. Около 90 % дозы ингаляционного облучения обусловлено вдыханием дочерних продуктов изотопов радона, находящихся в воздухе помещений и атмосферном воздухе. При этом, радон является единственным природным источником излучения, который можно регулировать с экономически оправданными затратами.
Хотя в 1994 году постановлением Правительства РФ № 809 от 06.07.94 г. была принята Федеральная целевая программа «Снижение уровня облучения населения России и производственного персонала от природных радиоактивных источников», в отечественной популярной строительной литературе опасности, связанные с постоянным проникновением радона в жилое помещение, чаще всего обходятся молчанием. Чтобы понять актуальность радоновой проблемы читайте . Современные исследования показали, что радон является причиной центрального рака легких, и риск заболевания повышается при увеличении концентрации радона в помещении при длительном проживании на радоноопасных территориях. Однако несмотря на многочисленные пути поступления радона в дом , защитить его от повышенной концентрации радона можно при помощи простых и недорогих технических решений для защиты малоэтажного дома от радона .

Alberg AJ., Samet JM. Epidemiology of Lung Cancer. Chest. 2003; 123:21-49
U.S. National Institutes of Health. National Cancer Institute. Factsheet; Radon and Cancer: Questions and Answers. July 13, 2004. Accessed on November 17, 2009
Steindorf K., Lubin J., Wichmann H.E., Becher H. Lung Cancer Deaths Attributable to Indoor Radon Exposure in West Germany. // Intern. J. Epidemiol. 1995. V. 24. № 3. P. 485-492.
Тихонов М.Н. Радон: источники, дозы и нерешенные вопросы//Атомная стратегия. -2006.- №23, июль
Дозы облучения населения Российской Федерации в 2010 году. - СПб: Санкт-Петербургский научно-исследовательский институт радиационной гигиены имени профессора П.В. Рамзаева, 2011. - С. 17.
Дозы облучения населения Российской Федерации в 2010 году. - СПб: Санкт-Петербургский научно-исследовательский институт радиационной гигиены имени профессора П.В. Рамзаева, 2011. - C.18
Крисюк Э.М. Уровни и последствия облучения населения // АНРИ. - 2002. - N 1(28). - С.4-12.