АПГ (адсорбированный природный газ) где он? О поисках нефти и газа по адсорбированным газам пород.

Адсорбционная очистка газов

Метод основан на способности некоторых твердых тел избирательно поглощать газообразные компоненты из газовых смесей. Присутствующие в газовой смеси молекулы загрязненного газа или пара собираются на поверхности или в порах твердого материала. Поглощаемое из газовой фазы вещество - называется адсорбтивом, а твердое вещество, на поверхности или порах которого происходит адсорбция поглощаемого вещества - адсорбентом . Газовая фаза, в которой находится извлекаемый компонент - газ - носитель, а после того, как извлеченный компонент перешел в адсорбированное состояние, его называют адсорбатом.

Применяют в этом случае:

1) когда другие методы оказываются неэффективны;

2) концентрация загрязняющих веществ очень мала и требуется гарантированная рекуперация извлекаемой примеси из-за ее значительной стоимости или опасности. Методом адсорбции из отходящих газов удаляют SO 2 ,углеводороды, хлор, сероводород, сероуглерод, и другие.

Явление адсорбции обусловлено наличием сил притяжения между молекулами адсорбента и адсорбтива на границе раздела соприкасающихся фаз. Переход молекул загрязняющих веществ из газа - носителя на поверхностный слой адсорбента происходит в том случае, если силы притяжения адсорбента больше сил притяжения действующих на адсорбтив со стороны молекул газа - носителя. Молекулы адсорбированного вещества, переходя на поверхность адсорбента, уменьшают его энергию, в результате чего происходит выделение теплоты, примерно 60 кДж/моль (небольшая). Силы притяжения имеют разную - физическую или химическую и, следовательно, различают:

Физическую адсорбцию - при которой взаимодействия молекул загрязняющих веществ с поверхностью адсорбента определяется слабыми дисперсными, индукционными силами (силы Ван - дер - Вальса). При этом адсорбированные молекулы не вступают в химическое взаимодействие с молекулами адсорбента и сохраняют свою индивидуальность.

Для физической адсорбции характерна высокая скорость процесса, малая прочность связи и малая теплота. С повышением температуры количество физически адсорбированного вещества уменьшается, а увеличение давления к возрастанию величины адсорбции. Преимущество - легкая обратимость процесса путем:

а) уменьшения давления

б) увеличения температуры. Адсорбированные молекулы легко десорбируются без изменения химического состава, а регенерированный адсорбент может использоваться многократно. Процесс можно вести циклично, чередуя стадию поглощения и выделения извлекаемого компонента.

Химическая адсорбция - в основе лежит химическое взаимодействие между адсорбентом и адсорбируемым веществом. Действующие при этом силы значительно больше, а высвобождающееся тепло совпадает с теплом химической реакции и составляет 20 - 400 кДж/моль.

Главные отличия:

)молекулы адсорбтива, легко вступив в химическое взаимодействие, прочно удерживаются на поверхности и в порах адсорбента;

)скорость реакции, при низких температурах мала, но возрастает с ростом температуры.

Оба вида адсорбции сопутствуют друг другу, однако, наибольшее значение для очистки газов имеет физическая адсорбция.

Промышленные адсорбенты

Любое твердое тело обладает поверхностью и, следовательно, потенциально является адсорбентом.

В технике используют адсорбенты с сильно развитой внутренней поверхностью, полученной в результате (спекания), синтеза и специальной обработки.

Адсорбенты должны обладать:

− большой динамической емкостью (временем защитного действия);

− большой удельной поверхностью;

− избирательностью;

− термической и механической устойчивостью;

− способностью к регенерации;

− простотой изготовления;

− дешевизной;

Это - активные угли, селикагели, цеолиты, глинистые минералы, пористые стекла и другие.

Адсорбционная емкость адсорбентов (активность)

По ней определяют размеры аппаратов и эффективность очистки газов.

Различают статическую и динамическую емкость адсорбента. Размерность [грамм поглощенного вещества/на 100г. адсорбента или моль/г.]

Статическая емкость показывает, какое количество вещества способен адсорбировать способен адсорбировать адсорбент в условиях равновесия.

Динамическая емкость соответствует поглощенного вещества слоем адсорбента от начала процесса до начала «проскока» адсорбтива, т.е. когда в выходящем из слоя адсорбента газе - носителе появляются следы адсорбтива.

Адсорбционная емкость зависит: от природы вещества она возрастает с увеличением поверхности, пористости, снижения размеров пор. Она возрастает: с повышением концентрации загрязняющих веществ газе - носителе; давления в системе. С увеличением температуры и влажности адсорбционная емкость уменьшается, поэтому перед использованием их высушивают. Хороший адсорбент не теряет активности при выполнении сотен и тысяч циклов.

Адсорбционная очистка газов наиболее эффективна при обработке больших объемов газов с малым содержанием примесей, например, для тонкой очистки технологических газов от сернистых соединений и диоксида углерода, а также при удалении паров ядовитых веществ и канцерогенов. Наиболее целесообразно применение при необходимости уменьшения содержания примесей до нескольких миллионных долей и даже ниже, например, загрязняющие вещества с сильным запахом можно обнаружить при содержании их в воздухе порядка 100 млрд -1 , поэтому требуется понижать концентрацию еще ниже.

Эффективность адсорбционных систем определяется, главным образом, свойствами адсорбента, который должен:

−иметь высокую адсорбционную способность;

−обладать высокой селективностью;

−иметь высокую механическую прочность;

−хорошо регенерироваться;

−иметь низкую стоимость.

Адсорбенты подразделяют на три группы:

) неполярные твердые вещества, на поверхности которых происходит физическая адсорбция.

) полярные - происходит химическая адсорбция без изменения структуры молекул газа и поверхности адсорбента.

) вещества, на поверхности которых протекает чисто химическая адсорбция и которые десорбируют молекулы газа после химической реакции, при этом требуется их замещение.

Самый распространенный неполярный адсорбент - активированный уголь, состоящий из нейтральных атомов одного вида и имеющий поверхность с равномерным распределением зарядов на молекулярном уровне.

Выпускают:

) для отечественных вентиляций АГ, КАУ, СКТ. Размер гранул 1 - 6 мм, ρ н =380 - 600 кг/м 3 .

рекуперационные угли АР, АРТ, СКТ - 3.

) молекулярно - ситовые угли МSС.

Количество газа адсорбированного 1 г. адсорбента в равновесном состоянии зависит от природы адсорбента и адсорбата, а также от температуры и давления. Зависимость массы (m) адсорбированных загрязняющих веществ на адсорбате (активированный уголь) при t=const.

Изотерма адсорбции показывает, что поскольку адсорбция - процесс экзотермический, то количество вещества, адсорбированного в состоянии равновесия, уменьшается с повышением температуры.

Регенерация адсорбента включает в себя:

десорбция, сушка, охлаждение

а) термическая (160 ÷ 170°)

б) при высоких температурах (300 - 400°)

в) вытеснительная (холодная)

Расчет адсорберов

Основные определяемые величины: диаметр аппарата и высота слова слоя сорбента при заданном времени процесса.

)допустимая фиктивная скорость газа (скорость в свободном сечении)

ω 0 = (0,016 · r · ρ нас · d э · g / ρ г) 0,5

d э - эквивалентный диаметр гранул, м,

ρ г - плотность газа, кг/м 3 ,

ω 0 ≤ 0,3 м/с.

Пористая структура адсорбентов

Пористая структура оказывает значительное влияние на адсорбционные свойства сорбента.

Поверхность сорбента включает в себя:

внешнюю поверхность, зависящую от количества макропор и составляет 0,5 ÷ 2,0 м 2 /ч, т.е. 2,0 ÷ 0,5 % от общей поверхности;

внутреннюю поверхность, образующуюся за счет стенок микропор. Она может быть равна 500 ÷ 1000 м 2 /ч.

Поверхность пористого тела:


N A - число Авагадро,

a м - величина адсорбции, соответствующая покрытию поверхности сплошным монослоем адсорбированных молекул,

S м - площадка, занимаемая одной адсорбированной молекулой,

S м = 1,53 · V 2/3 , V - мольный объем адсорбированного вещества.

S м N2 = 1,62 м 2 .

Суммарную пористость твердого тела можно определить по его плотности.

Различают истинную (ρ ист), кажущуюся (ρ каж) и насыпную (ρ нас) плотность пористых тел.

Истинная - масса единицы объема плотноупакованного тела (не содержащего пор).

Кажущаяся - масса единицы объема пористого тела, включающая объемы пор, но без учета объема пустот между зернами.

Насыпная - масса единицы объема пористого тела, включающая объем плотного вещества, объем пор и объем пустот между зернами.

Суммарный объем пор:

V ∑ = 1∕ρ каж = - 1∕ρ ист, г∕см 3 .

Активный уголь ρ ист, = 1750 ÷ 2100 ρ каж = 500 ÷ 1000 ρ нас = 200 ÷ 600

Мягко зернистый селикогель ρ ист = 2100 ÷ 2300 ρ каж = 1300 ÷ 1400 ρ нас = 800÷ 850

Крупно зернистый селикогель ρ ист = 2100 ÷ 2300 ρ каж = 750 ÷ 850 ρ нас = 500 ÷ 600

Цеолиты ρ ист = 2100÷ 2300 ρ каж = 1200 ÷ 1400 ρ нас = 600 ÷ 800

Характеристика адсорбента

Активные угли - сорбенты органического происхождения (из угля, торфа, древесных материалов, отходов бумажного производства, кости животных, скорлупа орехов, косточки плодов и т.д.).

Вначале исходный материал подвергают термической обработке при t = 600 ÷ 900°С, из углей улетучивается влага и смолы, а затем для придания пористости его активируют - обрабатывают паром, газами или химическими реагентами (СО, СО 2 , NH 3 , водяной пар) при t = 800 ÷ 900°С. Измеряя температуру, скорость подачи активатора и время активации, получают с разными адсорбционно - структурными свойствами марки активных углей: БАУ, ДАК, АР - А, АР - Б, КАД, СКТ - 1,2.3,4. Основная характеристика - ρ нас, и фракционный состав. Выпускают в виде гранул, диаметром 2 ÷ 5 мм, Н › диаметра. Иногда их дробят на более мелкие фракции 0,15 ÷ 2,5 мм, применяют для газоочистки со стационарным движением и слоем адсорбента.

Порошкообразные угли d фр < 0,15 мм - для очистки веществ в жидкой фазе. БАУ - Березовский активный уголь, АГ - гранулированный активный уголь, АР - активный уголь рекуперационный. КАУ - косточковый, СКТ - уголь сернистокалиевой активации.

Для очистки газовых выбросов (вентиляционных) применяют марки АГ, КАУ. СКТ, а также угли из полимерных материалов и молекулярно - ситовые угли (MSC) - обладают высокой адсорбционной активностью в области малых концентраций загрязняющих веществ, отличающихся повышенной прочностью, так САУ - (изготавливают из полимера урана).

Отрицательные свойства -горючесть, окисляются при t = 250°С, чтобы уменьшить пожароопасность, к углю добавляют селикагели.

Селикагели - гидратированный аморфный, получаемый путем взаимодействия жидкого стекла и серной кислоты. Это минеральный адсорбент, продукт реакции (SiO 2 · n H 2 O) d фр = 0,2 ÷ 7 мм в виде зерен,

ρ нас = 0,2 ÷ 7г∕см 3 .

Дешевый сорбент, имеет высокую механическую прочность к истиранию, низкую температуру регенерации (110-120°С), применяют для осушки газов и улавливания органических загрязняющих веществ.

Селикагель, полученный в кислой среде и промытый подкисленной водой - обладает мелкими порами. В щелочной среде - крупнопористые.

В зависимости от формы зерна:

− кусковый селикагель (зерна неправильной формы);

− гранулированный (зерна сферической или овальной формы).

― для процессов с кипящим слоем - 0,1 ÷ 0,25 мм

― с движущимся слоем - 0,5 ÷ 2,0мм

― со стационарным слоем - 2,0 ÷ 7,0мм

Недостаток - разрушение зерен под воздействием капельной влаги

Алюмогели - Al 2 O · n · H 2 O - активные оксиды алюминия, как и селикагели являются гидрофильными адсорбентами, они обладают развитой структурой, большой поверхностью и приемлемы для осушки газов, улавливания углеводородов и фтора. Они более стойки к действию воды. Они способны поглощать от 4 до 10 % водяных паров от собственной массы.

Цеолиты (с греч. кипящие камни). Все выше рассмотренные адсорбенты имеют нерегулярную структуру, поэтому в их поры могут проникать и удерживаться самые различные по размерам молекулы, т.е. они не обладают избирательной адсорбцией - это их недостаток.

Избирательно адсорбировать одинаковые по размеру молекулы могут адсорбенты со строго регулярной пористой структурой - это природные минералы сидерит, фожазит, эрионит, глабазит, морденит и др. Путем термической обработки их превращают адсорбент, обладающий высокой пористостью, большой поверхностью и одинаковыми размерами пор. Природных цеолитов в природе мало, они загрязнены примесями, поэтому для промышленного применения синтезированы примерно 100 наименований цеолитов.

Наиболее применимы цеолиты марок КА, NaA, СаА, NаХ, СаХ. Первая буква соответствует катиону, компенсирующему заряд решетки (К + , Nа + , Са +), вторая - тип кристаллической решетки.

Цеолиты - уникальные адсорбенты, извлекающие аммиак, SO 2 , ацетилен, H 2 S, CO 2 и т.д.

Регенерация адсорбентов

Регенерация заключается в удалении из его пор адсорбированного вещества. Эффективность процесса очистки зависит от качества и скорости выделения адсорбированного вещества из адсорбента.

Методы адсорбции:

― термическая (повышение температуры слоя адсорбента до 110 - 130 °С - при обычных и 300 - 400 - повышенных температурах);

― вытеснительная десорбция (при 30 - 80°С);

― в настоящее время более распространена десорбция с полем острого водяного пара.

Конструкции адсорбционных установок

) Адсорбенты периодического действия с неподвижным (стационарным) слоем поглотителя.



Подача газа сверху - вниз (можно наоборот). При необходимо адсорбент располагают на полках слоями, с кольцевым слоем адсорбента.

Для осуществления непрерывного процесса устанавливают не менее двух аппаратов.


) Первая стадия - адсорбция

) Десорбция - подачу газа прекращают и подают пар. В результате нагрева адсорбента происходит десорбция поглощенных компонентов, которые вместе с паром удаляются из аппарата для разделения

) Сушка адсорбента - прекращают подачу пара и подают горячий воздух

) Охлаждение - подают холодный воздух.

адсорбент газ очистка

Расчет адсорбционных установок

Заключается в определении конструктивных размеров (диаметр, высоту), объема адсорбента, времени защитного действия гидравлического сопротивления и некоторых других величин.

Где V Г - объемный расход пороговой смеси м 3 ∕с,

Скорость, отнесенная к свободному сечению аппарата, м ∕с.

Для аппаратов с неподвижным слоем = 0,25 ÷ 0,3 м ∕с.

)Объем адсорбента для разовой загрузки в аппарат

n у - число единиц переноса;

ß у - объемный коэффициент масоопереноса, кг ∕м 3 ·с.

или

у н, у к - начальная и конечная концентрация адсорбтива в парогазовой смеси,

х, у - текущие концентрации адсорбата в твердой и адсорбтива в парогазовой фазе, кг ∕м 3 ,

х х, у х - равновесные концентрации адсорбата, кг∕м 3 .

Уравнение можно решить методом графического интегрирования. Задавшись рядом значений «у» строим график в координатах 1∕(у - у *) ― у, а затем, измерив площадь криволинейной трапеции находим величину искомого интеграла с учетом масштабов: М 1 = l 1 ∕h 1 и М 2 = l 2 ∕h 2 ,

l 1 - значение ординаты 1∕(у - у *),

h 1 - значение этой же ординаты в мм,

l 2 - значение абсциссы на графике у,

h 2 - значение этой же абсциссы в мм.


Для построения графика, используемого для получения числа единиц переноса, необходимо определить значение у х (х х). Для этого требуется построить изотермы адсорбции (линия 2) и рабочей линии процесса (линия 1). Изотерма адсорбции (кривая равновесия0 при t = const служит основной характеристикой процесса а 0 = f(p),

а 0 - статическая активность,

р - парциальное давление.

Между концентрацией адсорбируемого вещества в газовой фазе и его существует уравнение Клапейрона:

Кг∕м 3 .

Изотерму адсорбции строят на основании экспериментальных (либо справочных) данных. Для построения рабочей линии необходимо знать координаты минимум двух точек, отвечающих рабочим условиям процесса.

Например, если заданы у н, у к и х н (начальные концентрации извлекаемого компонента в твердой фазе), то конечную концентрацию адсорбента в твердой фазе х к определяем из уравнения:

Объем адсорбента, насыщаемый адсорбтивом в единицу времени (величина работающего слоя).

,м 3∕ с,

Значение х* (равновесная концентрация адсорбата в твердой фазе), соответствующее заданному значению «у», определяют по изотерме адсорбции. Зная координаты (·)А (х н;у к) и (∙)Б (х к; у н) наносим их на график и соединяем прямой линией.


Для определения х * , у * задаемся значениями «у» в интервале у н - у к. Если перпендикуляр из начальной (∙)у н продолжить до пересечения с равновесной линией 2 до (∙)Г и спроектировать ее на ось х, то получим равновесное соединение адсорбата в твердой фазе х * при заданном значении у н. Если изотерма адсорбции неизвестна, то ее можно построить по изотерме адсорбции стандартного вещества. Значение величин адсорбции пересчитывают по формуле:

,

Ордината изотермы стандартного вещества(обычно бензола),кг/кг,

Ордината определяемой изотермы, кг/кг,

V 1 , V 2 - мольные объемы стандартного и исследуемого вещества в жидком состоянии,

М - мольная масса вещества, кг/моль,

Коэффициент аффиктивности,

Плотность вещества в жидком состоянии, кг/м 3 .

В качестве адсорбента выбираем активный уголь марки АР - А, d э = 1,3 ∙ 10 -3 м.

Принимаем = 0,28м/с, тогда ,

.

Для построения изотермы адсорбции используем монограмму для определения давления насыщенного пара некоторых веществ, по которой определяем парциальное давление веществ по формуле:

(1)

где Р 1 ,Р 2 - парциальное давление стандартного и исследуемого вещества, мм рт ст (Па),

Р S ,1 - давление насыщенного пара стандартного вещества при абсолютной температуре (мм рт ст),

Р S ,2 - давление насыщенного пара исследуемого вещества.

При расчете точек изотермы исследуемого вещества координаты и берутся по кривой стандартного вещества, значения Р S ,1 , Р S ,2 - из таблиц давления насыщенного пара. Р 2 - вычисляют по формуле (1).

Выразив парциальное давление через соответствующие концентрации, получим:

(2)

Коэффициент аффиктивности для диэтилового эфира (таблица 36, Кузнецов) .

)по таблице 25(равновесные данные по адсорбции паров бензола и их смеси с воздухом на активных углях , ,

)по данным диаграммы (стр. 115) определяем координаты точек изотермы адсорбции диэтилового эфира, Р S ,1 - для бензола - 75 мм рт ст (9997,5 Па), Р S ,2 - для диэтилового эфира - 442 мм рт ст (58918,6 Па).

)Объемный коэффициент массопередачи:


Объемный коэффициент массопередачи в газовой и твердой фазе соответственно,с -1 ,

m - коэффициент распределения (средний наклона линии равновесия).

Поскольку - обычно очень мал, то величиной пренебрегаем.

На основании этого и зависит от гидродинамической обстановки в аппарате, физических свойств потока.

Для ориентированных расчетов К у используют критериальные уравнения:

При Re > 30

При Re = 2 - 30

При Re < 2

где - диффузионный критерий Нуссельта.

D э - эквивалентный диаметр зерен адсорбента, м

,

Скорость газового потока,м/с

Порозность неподвижного слоя адсорбента,

Плотность, кг/м 3

Динамическая вязкость, Па·с

- диффузионный критерий Прандтля.

)Высота неподвижного слоя адсорбента в аппарате

,

h - высота единицы переноса,


где G г −массовый расход газа, кг∕с

S сл - сечение слоя, м 2

Уравнения баланса поглощенного вещества;

Уравнения кинетики адсорбции;

Уравнение изотермы адсорбцию.


: (по бензолу),

:

Изотерма адсорбции для решения уравнений делится на три области:

область - линейная зависимость между концентрацией газа и количеством поглощенного вещества и условно принимается, что изотерма адсорбции подчиняется закону Генри.

Тогда продолжительность адсорбции:

;

где у н - начальная концентрация адсорбированного вещества, кг∕м 3

х* - равновесное количество адсорбированного вещества, кг∕кг (принимается по изотерме адсорбции и умножается на насыпную плотность адсорбента).


область - криволинейная

где - содержание вещества в газовом потоке, равновесное с количеством, равным половине вещества, максимально поглощаемого адсорбентом при данной температуре, кг/м 3 .

область- количество вещества, поглощаемого адсорбентом, достигает предела и остается постоянной

) Высоту зоны массопередачи (высота рабочего слоя)

,

время до равновесного насыщения, сек

время защитного действия при минимальной проскоковой концентрации,

неиспользованная адсорбционная емкость,

)Перепад давления в слое (формула применима, если порозность слоя Е=0,4)

∆Р - перепад давления в слое, кг/м 3

g - 9,81 м/с 2

d э - эквивалентный диаметр зерен, м

G - массовая скорость газа, кг/(м 2 ∙с)

1) - при <0,25м/с, ламинарный режим

) - переходная область

)- в слое цеолитов

- для шаров, - для цилиндров


Подставив полученные значения в уравнение


Выразим парциальные давления через объемные концентрации по уравнению

0,005125т.к. Re>30,то 80,23


О ПОИСКАХ НЕФТИ И ГАЗА ПО АДСОРБИРОВАННЫМ ГАЗАМ ПОРОД

Зорькин Леонид Матвеевич,

доктор геолого-минералогических наук

Бушмакин Виктор Алексеевич,

кандидат геолого-минералогических наук

Апрель, 2008 года

25 - 26 мая 2005 г. в городе Новосибирске состоялось первое в XXI веке Всероссийское совещание, посвящённое эффективности и целесообразности применения наземных геохимических методов при поисках нефти и газа. На совещании отмечено, что, в «Положении об этапах и стадиях геологоразведочных работ» отсутствует регламентация геохимических методов, как обязательного элемента геологоразведочного процесса. Совещание наметило ряд мер, в числе которых разработка регламентов проведения работ, в частности определение типов проб для исследования, способов и приёмов их отбора, замера информативных параметров .

В 1985 г. предложена технология поисков полезных ископаемых, в том числе нефти и газа по «адсорбированным» газам пород , которая рекламировалась более 20 лет . «Адсорбированные» газы, в понимании авторов этой технологии, извлекаются из высушенной при 105 0 растёртой навески породы, продутой в реакторе аргоном, затем нагретой до 225 0 и выдержанной при этой температуре 7 минут . В 2005 г. высказана идея о технологии, при которой используется термодесорбция проб подпочвенных осадков . Автор не указывает температуру, при которой из породы извлекается газ. По-видимому, она достаточно высока, как и в случае использования «адсорбированных» газов.

Рис.1.

1-2 - профили, отработанные с изучением: 1 - газов ТВД, 2 - «адсорбированных» газов; 3 - опорные скважины; 4 - тектонические границы. Название структур: I - Токмовский свод, II - Рязано-Саратовский прогиб, III-Кузнецкий грабен, IV - Жигулёвско-Пугачёвский свод, V -Мелекесская впадина.

Расположение профилей и границы структур по материалам ОП «Спецгеофизика» ГФУП «ВНИИгеофизика».

адсорбированный газ термовакуумный керн

На основе изучения «адсорбированных» газов пород при региональных работах на нефть и газ в Среднем Поволжье на Токмовском своде ЗАО «ТЕЛЛУС» в 2000 г. отработало профиль широтного направления между Зубово-Полянской и Стрелецкой опорными скважинами протяжённостью 310 км. Профиль между Теньгушевской и Стрелецкой опорными скважинами длиной 360 км, исследованный ООО НПП «ГЕО-НТ» в 2005-06 гг. с применением классической термовакуумной дегазации (ТВД) пород, при которой порода нагревается в вакууме (-1 атм.) до 60 0 , протягивается в том же направлении к северу от первого. Максимальное удаление профилей друг от друга 75 км, минимальное - несколько сотен метров (рис.1). Оба профиля расположены на Токмовском своде. Таким образом, имелась возможность сравнить состав и концентрацию тех и других газов пород на достаточно ограниченной территории. Геофизические работы на профилях выполнены ОП «Спецгеофизика» ГФУП «ВНИИГеофизика». Автор в течение 10 лет (с 1999 по 2008 г.), работая во ФГУП «ВНИИЯГГ», а затем в НПП «ГЕО-НТ», являлся ответственным исполнителем подрядных геохимических работ в Среднем Поволжье в контакте с ОП «Спецгеофизика». Отработано 7500 км региональных профилей, в том числе и названный профиль протяжённостью 360 км.

На отработанных профилях на дневную поверхность выведены глины верхнего мела. Для изучения газов ТВД отбор проб проводился с глубины 2-3 м, чтобы уйти из-под влияния почвенного горизонта. С этой целью осуществлялась проходка шнековых скважин. Для изучения «адсорбированных» газов пробы отбирались из закопушек с глубины 40 -60 см, практически на контакте с верхним - визуально хорошо заметным перегнойно-аккумулятивным слоем почвенного горизонта.

Рис.2.

*- средняя: газы ТВД, профиль Теньгушево-Лада-Стрелецкая - 363 пробы, «адсорбированные» газы, профиль Зубова Поляна-Токмово-Стрелецкая - 248 проб.

В «адсорбированных» газах концентрация предельных компонентов УВГ на один-два порядка, а непредельных на два-три порядка выше, чем в газах ТВД. В «адсорбированных» газах концентрация гомологов метана возрастает от этана к пентану, в то время как в газах ТВД от метана к пентану наблюдается постепенное снижение концентрации (рис.2А). Для газов ТВД характерно также снижение концентрации от этилена к бутилену, в «адсорбированных» же газах пропилен и бутилен превышают этилен. В «адсорбированных» газах, концентрация непредельных на один - полтора порядка больше, чем у соответствующих предельных компонентов, при этом концентрация непредельных превышает даже концентрацию метана или практически одинакова с ней, чего не наблюдается в газах ТВД. Соотношение УВГ- компонентов в газах ТВД характерно для природных газов нефтегазоносных бассейнов, чего нельзя сказать об «адсорбированных» газах.

Обратимся теперь к материалам лабораторной термодеструкции ОВ осадочных пород в температурном интервале 30 - 230 0 . Эксперимент проводился на образце пород четвертичного возраста с содержанием ОВ 0.02-0.08%. ОВ гумусового типа находится на начальных стадиях преобразования. Хроматографический анализ выполнялся через каждые 10 0 повышения температуры. Предварительно образец продувался аргоном при 26 - 30 0 для удаления газов, сорбированных матрицей ОВ и породой. То, что при нагреве до 26-30 0 сорбированные газы были удалены, показывает анализ дозы после нагрева до 30 0: УВГ-компоненты не обнаружены. При 40 0 и 50 0 появляются лишь непредельные УВГ - этилен и пропилен в единицах шестого знака. При 60 0 (температура ТВД) метан и его гомологи не установлены, но помимо этилена и пропилена выявлен бутилен - все в единицах шестого знака. Температура 130 0 С - первая температура, при которой в пиролизате выявлены все предельные УВГ. Установлено, что пропан выше этана, пентан выше бутана, бутан практически на одном уровне с этаном, этилен превышает этан, пропилен - пропан, а бутилен - бутан, концентрация непредельных компонентов больше, чем концентрация метана или фактически на одном уровне с ней (рис.2Б). Всё это во многом свойственно и «адсорбированным» газам на рис.2А.

Охарактеризованная картина для температуры 130 0 в целом сохраняется и при температуре 225 0 . Чтобы построить кривую для этой температуры, рассчитана средняя концентрация компонентов из значений при температурах 220 0 и 230 0 . При температуре 225 0 этилен, пропилен и бутилен превышают соответствующие предельные на порядок и более, бутан преобладает над пропаном, пентан выше бутана. Амилен, гексан и гексилен в «адсорбированных» газах не анализировались, поэтому сравнить соотношение данных компонентов в этих газах и газах термодеструкции ОВ не представляется возможным.

Итак, рассмотренные особенности кривых для УВГ лабораторной термодеструкции ОВ на рис.2Б присущи и кривым, характеризующим «адсорбированные» газы на рис.2А. Возможно, что истинно адсорбированные газы пород удаляются из них во время сушки при 105 0 и в дальнейшем в процессе истирания породы и продувке её аргоном.

Рис.3. Распределение концентрации компонентов УВГ в газах ТВД (А) и «адсорбированных» газов (Б) в пробах керна. Скв.1, Мадринская площадь. Камовский свод, Восточная Сибирь.1-6 - интервалы разреза, в которых выявлен полный спектр предельных компонентов УВГ.I, II - соответственно зона активного и затруднённого газообмена. Аббревиатура свит: еv - эвенкийская, ol - оленчиминская, аn - ангарская.

В распределении газов ТВД по разрезу скважины отмечается следующее (рис.4А):

Отчётливо заметны зоны активного и затруднённого газообмена;

В терригенных породах эвенкийской и оленчиминской свит, в солях ангарской свиты хорошо выделяются прослои карбонатных пород по полному спектру предельных компонентов УВГ и их повышенной концентрации;

Концентрация предельных УВГ в пробах убывает от низкомолекулярных компонентов к высокомолекулярным, что характерно для УВГ продуктивных и водоносных горизонтов нефтегазоносных бассейнов;

Концентрация предельных компонентов УВГ вниз по разрезу скважины возрастает на 3-4 порядка;

Концентрация непредельных компонентов УВГ за редкими исключениями не превышает концентрацию соответствующих предельных компонентов.

Ничего подобного в распределении «адсорбированных» газов не наблюдается. Особенно поражает «дикая» концентрация непредельных компонентов УВГ, превышающая во многих случаях суммарную концентрацию предельных компонентов УВГ, включая метан. Соотношения компонентов предельных УВГ обратные тем, которые характерны для УВГ нефтегазоносных бассейнов. Дифференциация компонентов УВГ с увеличением глубины в целом не заметна (рис.4Б).

Таким образом, УВГ-компоненты «адсорбированных» газов есть не что иное, как новообразования при лабораторной термодеструкции ОВ породы. Данное обстоятельство не позволяет применять «адсорбированные» газы и газы термодесорбции пород в качестве информативных при поисках нефти и газа.

Литература

  • 1. Решение Всероссийского совещания «Эффективность и целесообразность применения наземных геохимических методов при проведении региональных и поисковых работ на нефть и газ на территории Российской Федерации» Новосибирск, 25-26 мая 2005 г.
  • 2. Кондратов Л.С., Жуйкова Т.Л. Некоторые вопросы газов адсорбции и их применение при геохимических поисках нефти и газа /Деп. ВИНИТИ, № 2834-85.
  • 3. Кондратов Л.С., Ершова М.В. Углеводородные газы горных пород в связи с использованием при поисках полезных ископаемых / Геология и разведка, 1986, №7, с.123-126.
  • 4. Кондратов Л.С., Дегтярёв М.А., Ермаков Д.А. Новые методы исследований атмосферы, вод и пород / Новые идеи в геологии и геохимии нефти и газа: к созданию общей теории нефтегазоносности недр. Материалы 6 й международной конференции. М.: Геос, 2002г., с.237-239.
  • 5. Кондратов Л.С., Воинков Д.М. Новые представления о газах литосферы и их использование при системы осадочных бассейнов. Материалы восьмой международной конференции к 60-летию кафедры геологии и геохимии горючих ископаемых. МГУ. М., Геос, 2005, с.226-229.
  • 6. Кондратов Л.С., Муравьёв В.В., Воинков Д.М., Дегтярёв М.А. Глубинное дыхание земли как основной фактор формирования газового поля литосферы / Дегазация земли: геофлюиды, нефть и газ, парагенезы в системе горючих ископаемых. Тезисы докладов Международной конференции, 30-31 мая-1 июня 2006г. - М.: Геос, 2006, с.128-131.
  • 7. Дыхан С.В. Показатели формирования газовых аномалий над Собинским месторождением (Сибирская платформа) / Новые идеи в геологии и геохимии нефти и газа. Нефтегазоносные системы осадочных бассейнов. Материалы 8-й международной конференции к 60-летию кафедры геологии и геохимии горючих ископаемых МГУ. М., Геос, 2005, с.135 - 137.
  • 8. Мурогова Р.Н., Труфанова С.Ф., Жуков П.Д. Жуйкова Т.Л. Особенности состава УВГ термодеструкции ОВ осадочных пород. ДАН, 1993, т. 332, № 5.
  • 9. Мурогова Р.Н., Труфанова С.Ф., Жуйкова Т.Л. Особенности газовой составляющей при термодеструкции ОВ осадочных пород (температурный интервал 150-340° С). ДАН, 1997, т. 352, № 3, с.392-395

Этой темой у нас плотно занимается камрад BERES. Меня она тоже очень заинтересовала, так как на первый взгляд сложно переоценить эффект от внедрения этой технологии в развитии транспорта на природном газе, особенно в свете проблем с жидкими углеводородами. Ведь в основном, сейчас на газовом транспорте используется так называемый КПГ.

КПГ (Компримированный природный газ) — сжатый природный газ (метан), используемый в качестве моторного топлива. В настоящее время автомобили, использующие компримированный природный газ, получают все большее распространение во всем мире и России в частности, в связи с дороговизной или нехваткой жидких топлив.

Больше всего автомобилей, работающих на КПГ (около 70 %) сосредоточено в шести странах: Иране, Пакистане, Аргентине, Бразилии, Китае и Индии.

К примеру 1 литр жидкого моторного топлива энергетически эквивалентен 1 кубическому метру метана. Один кубический метр метана в 4-7 раз дешевле 1 литра жидких моторных топлив.

При всех плюсах такого топлива: его малой стоимости, его экологичности, его меньшей взрывоопасности, чем пропано-бутановая смесь и даже бензин, у этой технологии есть большой минус в том, что газ приходится закачивать и хранить в балонах высокого давления (до 200 атмосфер), что ограничивает ее развитие.

Чтобы решить эту проблему, надо либо использовать СПГ (сжиженный природный газ), который можно держать под невысоким давлением, но тогда весь выигрыш нивелируется тем, что его надо охлаждать и хранить с температурой до −160 °C, что конечно является чушью, или требуется использовать АПГ.

АПГ (Адсорбированный природный газ) — это природный газ адсорбированный на пористом сорбенте при относительно низком давлении 30-50 атм. (в 4 раза меньше, чем КПГ) и температуре окружающей среды (СПГ напомню хранится при -160°C) .

Почему же не видно прогресса этой технологии?

Стоит ознакомится с этой диссертацией, которая в сети появилась совсем недавно и которая дала ответ на многие вопросы:

www.bmstu.ru/dissertation/content/files/148/dissertation.pdf

Вот что пишет BERES:

Пиндосы уже запустили трактор на АПГ, ну так им ДАРПА выделило в 10 раз больше денег, чем нам надо.

Точнее трактор-газонокосильщик. Видео здесь: https://www.youtube.com/watch?v=pkoEqksmys4.

Молекулы метана располагаются в порах композитного адсорбента при значительно меньшем давлении, чем в свободном объеме. Освобождается метан просто при снятии давления. Это происходит не мгновенно, как при закачке, но достаточно быстро, чтобы не создавать проблему двигателю, он же тоже не всё топливо мгновенно засасывает.

При адсорбции действуют ван-дер-ваальсовы силы (силы межмолекулярного взаимодействия).

44 бара (примерно 44 атм.) — это оптимальное давление и закачки, и хранения, при увеличении давления адсорбция почти прекращается, т.е в баллон АПГ влезает в 4,5 раза больше метана, чем в просто баллон. А давление в 5 раз меньше = это вес самого железа в 5 раз меньше, баллон может быть не цельнотянутый, а сварной и произвольной формы, например прятаться в полостях авто, не занимая полезного места. Плюс, как это ни странно для обывателя, значительно бОльшая пожаро-взрывобезопасность по сравнению с бензином, тем более пропан-бутаном.

В диссертации оговариваются границы оптимального давления от 18 до 57 бара.

Заправка идет медленно — 20 мин. Но есть больше дюжины решений для ускорения или обхода этого ограничения. Например, охлаждение баллона при заправке — если заправка идет с СПГ, то нет проблем….Или на каждые три баллона АПГ один КПГ, используемый в качестве ресивера — заправка почти мгновенная, а затем в движении заправляются баллоны КПГ. Конечно, нужно будет скоро отъехать и дозаправиться, зато запас хода после двух быстрых заправок — как на бензине. И это самые очевидные варианты. Есть конечно, риск, что ни один вариант не приживется, такое в истории техники известно сплошь и рядом.

Метан уходит за 20 мин на 98%, На 100% — за 40 . Кстати, такую скорость и отсутствие остатка я пока не могу объяснить, но это экспериментальный факт. Обычные 293 К для этого адсорбента — наихудший диапазон, при более низких и, что самое интересное, при более высоких температурах поглощение улучшается. Графены знаете ли…. Очень странный материал.

Была получена теоретическая величина объемного показателя углеродных нанотрубок — 161 м 3((тнд)/м 3, то есть в 1 куб. м балона помещалось 161 куб.м газа при давлении до 50 бар. Что является довольно высоким показателем, но примерно соответствует карбидовым и антрацитовым активированным углям, которые являются более дешевыми и простыми в изготовлении. Возможно что BERES получил более лучший показатель.

Стальной баллон практически вечен — стенки толстые, химнагрузки — никакой, вода и кислород поглощаются адсорбентом и отдаются им с газом, так что агентов ржавления нет.

Без комментариев.

Адсорбент производится из природного сырья, 15 тыс. руб за тонну, не дефицит. Адсорбент для 50 л баллона весит 5 кг.

Если это так, то это реально дешево!

В диссертации показано, что на сегодняшний день созданы сорбенты, которые могут быть использованы в технологии АПГ, но как всегда есть несколько НО!

В диссертации поднимаются две основные проблемы технологии АПГ, которые как раз и не дают возможности ее широкого распространения:

1) Тепловые эффекты адсорбции и десорбции, то есть нагревания сорбента при адсорбции природного газа и охлаждении при его десорбции.

2) Селективность адсорбции, которая приводит к неравномерному поглощению компонентов газовой смеси, ведь в природном газе всегда есть примеси, которые действуют «токсически» на сорбент и накапливаются с каждым циклом адсорбции-десорбции все больше и больше, выступая конкурентом метана.

И если первую проблему можно относительно просто решить техническими методами: увеличением времени зарядки и разрядки сорбента, активным внешним нагреванием или охлаждением в зависимости от фазы процесса, то вторую проблему так просто не решить! Придется или часто менять «отравленный» примесями сорбент, что подразумевает его достаточную дешевизну или использовать в заправке сверхчистый метан, что ведет к необходимости повышать степень его очистки.

Так что думаю, что никакого заговора против АПГ нет. Ведь внедрению КПГ никто не препятствует, а медленный рост рынка КПГ объяснятся недостатком технологии его использования.

Так и АПГ, пока не внедряется в нашу жизнь в связи с еще большими недостатками этой технологии.

Если же вдруг эти технические недочеты будут устранены, то переход на АПГ в транспорте несомненно будет настолько же революционным, насколько революционен был переход парового двигателя на угле на двигатель внутреннего сгорания на бензине и дизеле в начале 20 века.

Адсорбцией называют изменение концентрации вещества на границе раздела фаз. Адсорбционное равновесие, т.е. равновесное распределение вещества между пограничным слоем и граничащими фазами, является динамическим и быстро устанавливается.

Частицы, которые находятся на поверхности твердого тела, обладают избыточной энергией.

За счет этого молекулы окружающей среды притягиваются к металлу и концентрируются на его поверхности. Этот процесс протекает всегда самопроизвольно и с положительным тепловым эффектом.

Различают два вида адсорбции: физическую и химическую.

Физическая адсорбция обусловлена вандер-ваальсовскими силами. Энергия связи между молекулами адсорбата и поверхностью металла невелика (порядка 40-50 кДж/моль). Равновесие устанавливается быстро. Адсорбированные вещества могут быть легко удалены с поверхности. Физическая адсорбция наиболее отчетливо проявляется при низких температурах, близких к температуре конденсации адсорбата.

Хемосорбцией называется процесс адсорбции, сопровождающийся химической реакцией между молекулами адсорбированного вещества и металлом. Энергия связи между атомами оценивается величинами 150- 160кДж/моль. Связь, возникающая между металлом и окислителем, имеет ионный характер. Металл отдает атому адсорбированного вещества электроны. Процесс хемосорбции протекает очень быстро (доли секунды). Внешняя поверхность адсорбированной пленки при этом заряжается отрицательно, а внутренняя - положительно.

Количество адсорбированного вещества, отнесенное к единице поверхности, зависит от температуры среды и концентрации адсорбата в газовой или жидкой фазе.

называется изотермой адсорбции.

Впервые теоретическое обоснование изотермы адсорбции было дано Ленгмюром. Им было сделано несколько допущений, упрощающих модель процесса.

Предполагалось, что:

поверхность адсорбента энергетически однородна;

частицы адсорбата на поверхности никак не взаимодействуют друг с другом;

на один активный центр поверхности приходится одна частица адсорбированного вещества;

может образовываться только мономолекулярный адсорбционный слой.

будет прямо пропорциональна давлению газа Р и величине свободной поверхности металла

Константа, характеризующая скорость процесса адсорбции.

Скорость обратного процесса - десорбции - будет прямо пропорциональна поверхности, занятой реагирующими молекулами:

доля поверхности металла, занятая частицами адсорбата.

При установлении равновесия скорость адсорбции равна скорости десорбции:

(3.2), получаем:

Решая уравнение (3.4) относительно в, получим:

где Ь - адсорбционный коэффициент.

Уравнение (3.6) носит название изотермы. Ее графическое выражение дано на рис. 3.3.

получается горизонтальный участок, отвечающий

образованию заполненного монослоя.

или при низком давлении газа

и тогда из (3.6) получим:

При этих условиях степень заполнения поверхности мала и пропорциональна давлению.

Выражение (3.7) отражает закон распределения и носит название изотермы Генри.

и

мы получаем из уравнения (3.6):

Это означает, что все активные центры на поверхности металла полностью заполнены адсорбированным веществом и дальнейшее увеличение его парциального давления в газовой фазе не влияет на количество вещества, адсорбированного на поверхности твердого тела. Этому состоянию отвечает правый участок на кривой изотермы, т.е. прямая линия (рис. 3.3).

Если на поверхности металла адсорбируется смесь газов, то степень заполнения поверхности г-м газом рассчитывается по уравнению

где сумма берется по всем п компонентам газовой смеси.

В большинстве случаев поверхность твердого металла энергетически неоднородна. Она представляет собой серию элементарных площадок, обладающих различной теплотой адсорбции.

Экспериментальные данные более точно описываются уравнением:

Коэффициент, отражающий функцию распределения, а ао - адсорбционный коэффициент при наибольшей теплоте адсорбции.

Выражение (3.9) получило название логарифмической изотермы адсорбции. Экспериментально она впервые была описана в работах А.Н. Фрумкина и А.И. Шлыгина. Теоретический вывод уравнения этой изотермы сделан М.И. Темкиным.

Адсорбция может быть мономолекулярной и полимолекулярной. В последнем случае на поверхности адсорбента образуется несколько слоев. Первый мономолекулярный слой обусловлен силами взаимодействия между поверхностью твердого тела и адсорбатом. Второй и последующие слои удерживаются ван-дер-ваальсовскими силами. Слои адсорбата распределяются по поверхности неравномерно. На некоторых участках их может быть два или три слоя. Одновременно могут остаться участки, закрытые монослоем или совсем свободные от адсорбата (рис. 3.5).

На рис. 3.4 представлена изотерма адсорбции кислорода. Участки аb и bс отвечают мономолекулярной адсорбции, участок ей - полимолекулярной. На рис. 3.5 представлена схема заполнения поверхности металла адсорбированным веществом по теории Брунау-эра.

1. Поверхность твердого тела, в отличие от поверхности жидкости, имеет сложный, неоднородный характер. Даже полированное зеркало имеет на поверхности выступы размерами до 3 * 10 -7 см.

2. Адсорбция происходит не на всей поверхности, а лишь на активных центрах.

3. Адсорбция кинетически обратима наряду с адсорбцией газа происходит его десорбция. Адсорбционное равновесие устанавливается очень быстро. Молекула газа статается адсорбированной, если она находится в поверхностном слое в течение определенного времени, называемого временем адсорбции т. Существуют методы, позволяющие экспериментально определить т. Так, для паров кадмия, адсорбированных на стекле, = 10 -6 -10 -12 с в зависимости от температуры; для паров аргона на стекле =3*10 -5 с, при 90 К и = 75 * 10- 5 с при 78 К.

В зависимости от природы адсорбционных сил адсорбция газов и паров может быть физической и химической (см. параграф 2.5).

С повышением температуры физическая адсорбция уменьшается, так как возрастает интенсивность теплового движения молекул газа, стремящихся равномерно распределиться по всему объему системы. Это приводит к уменьшению времени адсорбции, а следовательно, к уменьшению количества адсорбированного вещества.

При хемосорбции молекулы адсорбата образуют с адсорбентом химические соединения. Хемосорбция может быть поверхностной (химическая реакция протекает только в пределах поверхностного слоя). Например, при адсорбции кислорода на поверхности алюминия происходит реакция:

4А1 + 3О 2 = 2А1 2 О 3 ,

в результате которой алюминий покрывается прочной оксидной пленкой.

Хемосорбция может быть и объемной, когда слой вещества, образовавшегося в результате реакции на поверхности, не препятствует дальнейшему проникновению газа в объем твёрдого адсорбента, например:

СаО (тв) + СО 2(г) = СаСО 3(ТВ) ,

Хемосорбция, в отличие от физической адсорбции, является необратимой.

Обычно имеют место промежуточные случай, когда основная масса адсорбированного вещества связана с адсорбентом сравнительно слабо, а следы его связаны прочно и могут быть удалены лишь путем длительного прогревания и откачивания. Водород на никеле при низких температурах адсорбируется физически ввиду малой скорости химической реакции, но при повышений температуры начинает протекать адсорбция с заметной энергией активации по типу химических реакций.

4. Поверхность адсорбента часто бывает пористой. Наличие пор приводит к тому, что адсорбция сопровождается капиллярной конденсацией.

5. Наряду с адсорбцией, представляющей собой поверхностный процесс, может происходить поглощение газа или пара всем объемом твердого тела (например, поглощение водорода металлическим палладием или платиной). Это явление называется адсорбцией.


Адсорбцию газа на твердом адсорбенте количественно характеризуют величиной а:

где v i количество i-гo газа, адсорбированного на твердом адсорбенте; m масса адсорбента.

Иногда вместо количества газа указывают его массу (m):

Часто количество газа выражают через его объем, приведенный к нормальным условиям:

Каким образом охарактеризована адсорбция, легко установить по размерности приведенной величины а i .

Величина адсорбции газа на твердом адсорбенте зависит от следующих факторов:

Температуры;

Концентрации (равновесного давления) пара или газа в поверхностном слое;

В природы твердого тела;