Экономико математические методы анализа социально трудовой информации. Экономико-математические методы и модели

Современная экономическая теория включает в качестве необходимого инструмента математические модели и методы. Использование математики в экономике позволяет решить комплекс взаимосвязанных проблем.

Во-первых, выделить и формально описать наиболее важные, существенные связи экономических переменных и объектов. Это положение имеет принципиальный характер, поскольку изучение любого явления или процесса ввиду определенной степени сложности предполагает высокую степень абстракции.

Во-вторых, из сформулированных исходных данных и соотношений методами дедукции можно получать выводы, адекватные изучаемому объекту в той же мере, что и сделанные предпосылки.

В-третьих, методы математики и статистики позволяют путем индукции получать новые знания об объекте, например, оценивать форму и параметры зависимостей его переменных в наибольшей степени соответствующие имеющимся наблюдениям.

В-четвертых, использование математической терминологии позволяет точно и компактно излагать положения экономической теории, формулировать ее понятия и выводы.

Развитие макроэкономического планирования в современных условиях связано с ростом уровня его формализации. Основу для этого процесса заложил прогресс в области прикладной математики, а именно: теории игр, математического программирования, математической статистики и других научных дисциплин. Большой вклад в математическое моделирование экономики бывшего СССР внесли известные советские ученые В.С. Немчинов, В.В. Новожилов, Л.В. Канторович, Н.П. Федоренко. С. С. Шаталин и др. Развитие экономико-математического направления было связано в основном с попытками формально описать так называемую «систему оптимального функционирования социалистической экономики» (СОФЭ), в соответствии с которой строились многоуровневые системы моделей народнохозяйственного планирования, оптимизационные модели отраслей и предприятий.

Экономико-математические методы имеют следующие направления:

Экономико-статистические методы , включают методы экономической и математической статистики. Экономическая статистика занимается статистическим изучением народного хозяйства в целом и отдельных его отраслей на основе периодической отчетности. Инструментарием математической статистики, используемым для экономических исследований, являются дисперсионный и факторный анализ корреляции и регрессии.

Моделирование экономических процессов заключается в построении экономико-математических моделей и алгоритмов, проведении расчетов по ним с целью получения новой информацию о моделируемом объекте. С помощью экономико-математического моделирования могут решаться задачи анализа экономических объектов и процессов, прогнозирования возможных путей их развития (проигрывание различных сценариев), подготовки информации для принятия решений специалистами.



При моделировании экономических процессов широкое распространение получили: производственные функции, модели экономического роста, межотраслевой баланс, методы имитационного моделирования и др.

Исследование операций – научное направление, связанное с разработкой методов анализа целенаправленных действий и количественного обоснования решений. Типовые задачи исследования операций включают: задачи массового обслуживания, управления запасами, ремонта и замены оборудования, календарного планирования, распределительные задачи и др. Для их решения используются методы математического программирования (линейного, дискретного, динамического и стохастического), методы теории массового обслуживания, теории игр, теории управления запасами, теории расписаний и др., а также программно-целевые методы и методы сетевого планирования и управления.

Экономическая кибернетика – научное направление, занимающееся исследованием и совершенствованием экономических систем на основе общей теории кибернетики. Основные ее направления: теория экономических систем, теория экономической информации, теория систем управления в экономике. Рассматривая управление народным хозяйством как информационный процесс, экономическая кибернетика служит научной основой разработки автоматизированных систем управления.

В основе экономико-математических методов лежит описание наблюдаемых экономических процессов и явлений посредством моделей.

Математическая модель экономического объекта - его гомоморфное отображение в виде совокупности уравнений, неравенств, логических отношений, графиков, объединяющее группы отношений элементов изучаемого объекта в аналогичные отношения элементов модели. Модель – это условный образ экономического объекта, построенная для упрощения исследования последнего. Предполагается, что изучение модели имеет двоякий смысл: с одной стороны, оно дает новые знания об объекте, с другой - позволяет определить наилучшее решение применительно к различным ситуациям.

Математические модели, используемые в экономике, можно подразделить на классы по ряду признаков, относящихся к особенностям моделируемого объекта, цели моделирования и используемого инструментария. Это модели макро- и микроэкономические, теоретические и прикладные, равновесные и оптимизационные, описательные, матричные, статические и динамические, детерминированные и стохастические, имитационные и др.

Группа экономико-математических методов делится на две подгруппы:

· Методы математической экстраполяции;

· Методы математического моделирования.

Математическая экстраполяция представляет собой распространение закона изменения функции из области ее наблюдения на область, лежащую вне отрезка наблюдения.

Методы экстраполяции основываются на предположении о неизменности факторов, определяющих развитие изучаемого объекта, и заключается в распространении закономерностей развития объекта в прошлом на его будущее.

Суть состоит в том, что траектория развития объекта до момента, с которого начинается прогнозирование ею будущего развития, может быть выражена после соответствующей обработки фактических данных какой либо математической функцией, адекватно описывающей закономерности предшествующего развития объекта

В зависимости от особенностей изменения уровней в ряду динамики приемы экстраполяции могут быть простыми и сложными.

Первую группу составляют методы прогнозирования, основанные на предположении относительного постоянства в будущем абсолютных значений уровней, среднего уровня ряда, среднего абсолютного прироста, среднего темпа роста.

Вторая группа методов основана на выявлении основной тенденции, то есть применении статистических формул, описывающих тренд. Их можно разделить на два основных типа: на адаптивные и аналитические (кривые роста). Адаптивные методы прогнозирования основаны на том, что процесс реализации их заключается в вычислении последовательных во времени значений прогнозируемого показателя с учетом степени влияния предыдущих уровней. К ним относятся методы скользящей и экспоненциальной средних, метод гармонических весов, метод авторегрессионых преобразований.

В основе аналитических методов (кривых роста) прогнозирования положен принцип получения с помощью метода наименьших квадратов оценки детерминированной компоненты Ft, характеризующей основную тенденцию.

Суть метода состоит в том, что траектория развития объекта до момента, с которого начинается прогнозирование, может быть выражена после соответствующей обработки фактических данных какой-либо математической функцией адекватно описывающей закономерности предшествующего развития. Она осуществляется следующим образом:



1. необходимо получить достаточно продолжительный во времени ряд показателей;

2. необходимо построить эмпирическую кривую, графически отображающую динамику этого показателя во времени;

3. необходимо выровнять ряд с помощью граф анализа или статистического подбора функций, который максимизирует приближение к фактическим значениям динамического ряда;

4. исчисляем коэффициент или параметр этой функции (a,b,c…), в результате получится простейшая математическая модель, пригодная для прогноза во времени, при этом предполагают, что совокупный фактор, определяющий тенденции динамического ряда в прошлом в среднем сохранит свою силу.

В экономических исследованиях наиболее распространенным методом прогнозной экстраполяции является метод, основанный на сглаживании временных рядов.

Последовательность расположенных в хронологическом порядке статистических показателей, которые характеризуют изменение экономического явления во времени, представляет собой временной (динамический) ряд. Отдельные значения показателей (наблюдения) временного ряда называются уровнями этого ряда.

Временные ряды подразделяются на моментные и интервальные.

Целью анализа временных рядов экономических явлений за определенный интервал времени является установление тенденции их изменения за рассматриваемый период, которая покажет направление развития изучаемого явления.

Для того чтобы выявить общую тенденцию изменения экономических явлений в течение изучаемого периода времени, следует провести сглаживание временного ряда. Необходимость сглаживания временных рядов обусловлена тем, что помимо влияния на уровни ряда главных факторов, которые в конечном итоге формируют конкретное значение неслучайной компоненты (тренда), на них действуют случайные факторы, которые вызывают отклонения фактических (наблюдаемых) значений уровней ряда от тренда.

Под трендом понимается характеристика основной тенденции временного ряда значений определенного показателя, т.е. основная закономерность движения его во времени, свободная от случайных воздействий.

Таким образом, отдельные уровни временного ряда (y t ) представляют собой результат воздействия главных факторов, которые формируют конкретное значение неслучайной (детерминированной) компоненты (), а также случайной компоненты (е t), обусловленной воздействием случайных факторов, значение которой составляет отклонение фактических (наблюдаемых) значений уровней ряда от тренда. Для устранения случайных отклонений осуществляется сглаживание временного ряда.

Неслучайные компоненты уровней временного ряда могут быть выражены некоторой аппроксимирующей функцией, отражающей закономерности развития исследуемого явления.

Рассмотрим прогнозную экстраполяцию, основанную на сглаживании временных рядов по методу наименьших квадратов.

Суть метода наименьших квадратов состоит в определении параметров модели тренда, минимизирующих ее отклонение от точек исходного временного ряда, т.е. в минимизации суммы квадратических отклонений между наблюдаемыми и расчетными величинами.

Таким образом, суть сглаживания временного ряда наблюдаемых значений показателя состоит в том, что фактические (наблюдаемые) уровни ряда заменяются уровнями, рассчитанными на основе определенной функции, которая в наибольшей степени соответствует наблюдаемым значениям показателей динамического ряда.

Графиком линейной функции является прямая.

Для того чтобы определить параметры а и А уравнения прямой, следует решить систему уравнений:

Часто данные временного ряда имеют нелинейную зависимость, которая выражается в виде квадратичной функции: у = ах 2 + bх + с. Графиком квадратичной функции является парабола. Для того чтобы определить параметры а,b, с уравнения параболы, следует решить систему уравнений:

Экономико-математическое моделирование предполагает конструирование модели на основе предварительного изучения объекта или процесса, выделения его существенных характеристик или признаков.

Экономико-математическая модель - это система формализованных соотношений, которые описывают основные взаимосвязи элементов, образующих определенную экономическую систему.

В зависимости от уровня управления экономическими и социальными процессами различают макроэкономические, межотраслевые, отраслевые, региональные модели и модели макроуровня (отдельных предприятий, фирм).

Примером экономико-математической модели на макроуровне может служить модель производственной функции при прогнозировании объема валового внутреннего продукта (ВВП) страны, которая имеет следующий вид:

Следует отметить, что расчет экономико-математических моделей проводится по соответствующим компьютерным программам.

Экономико-математические модели используются для разработки межотраслевого баланса, моделирование капитальных вложений, трудовых ресурсов и т. д.

Методы планирования как составная часть методологии планирования представляют собой совокупность расчетов, которые необходимы для разработки отдельных разделов и показателей плана и их обоснования. При этом широко используются достижения отраслевых экономических наук: экономической статистики; экономики промышленности; экономики сельского хозяйства; экономики строительства и других. При планировании показателей важно не только рассчитать их значение в плановом периоде, но и выявить возможные резервы его улучшения и вовлечь их в хозяйственный оборот.

К основным методам планирования, которые широко используются в экономической практике относятся следующие: балансовый метод; нормативный метод; программно-целевой метод; экономико-статистические методы; экономико-математические методы.

Балансовый метод - обеспечивает увязку потребностей и ресурсов как в масштабе всего общественного производства, так и на уровне отрасли и отдельного предприятия. В практике планирования применяются следующие виды балансов: 1) материальные балансы; 2) стоимостные балансы; 3) балансы трудовых ресурсов.

Принципиальная схема материального баланса в натуральных единицах измерения следующая:

К стоимостным балансам относятся: межотраслевой баланс производства и распределения продукции, работ и услуг; государственный бюджет и др. В качестве баланса трудовых ресурсов в одной из тем курса будет рассмотрен сводный баланс трудовых ресурсов.

Нормативный, метод планирования основан на разработке и использовании в планировании норм и нормативов. В качестве примера можно привести норму расхода различных материалов в натуральном измерении на единицу выпускаемой продукции. В качестве нормативов можно привести, как пример, норматив отчисления денежных средств из прибыли предприятия в виде налогов.

Программно-целевой метод планирования основан на разработке социально-экономических программ для решения отдельных социально-экономических проблем. Этот метод предусматривает определение комплекса взаимосвязанных организационно-правовых и финансово-экономических мероприятий, направленных на реализацию разработанных программ. Использование этого метода предусматривает концентрацию ресурсов на решение важнейших проблем.

Экономико-статистические методы планирования представляют собой совокупность отдельных методов, с помощью которых рассчитываются отдельные социально-экономические показатели на плановый период и их динамика. Определяется абсолютная и относительная динамика показателей, т.е. изменение их во времени.

Рассмотрим ряд основных понятий, связанных с системным анализом и
моделированием социально-экономических систем, чтобы с их помощью более
полно раскрыть суть такого ключевого понятия, как
экономико-математические методы. Термин экономико-математические методы
понимается в свою очередь как обобщающее название комплекса
экономических и математических научных дисциплин, объединенных для
изучения социально-экономических систем и процессов.

Под социально-экономической системой будем понимать сложную
вероятностную динамическую систему, охватывающую процессы производства,
обмена, распределения и потребления материальных и других благ. Она
относится к классу кибернетических систем, т. е. систем управляемых.
Рассмотрим прежде всего понятия, связанные с такими системами и методами
их исследования.

Центральным понятием кибернетики является понятие «система». Единого
определения этого понятия нет; возможна такая формулировка: системой
называется комплекс взаимосвязанных элементов вместе с отношениями между
элементами и между их атрибутами. Исследуемое множество элементов можно
рассматривать как систему, если выявлены следующие четыре признака:

Целостность системы, т. е. принципиальная несводимость свойств системы
к сумме свойств составляющих ее элементов;

Наличие цели и критерия исследования данного множества элементов,

Наличие более крупной, внешней по отношению к данной, системы,
называемой «средой»;

Возможность выделения в данной системе взаимосвязанных частей
(подсистем).

Основным методом исследования систем является метод моделирования, т. е.
способ теоретического анализа и практического действия, направленный на
разработку и использование моделей. При этом под моделью будем понимать
образ реального объекта (процесса) в материальной или идеальной форме
(т. е. описанный знаковыми средствами на каком-либо языке), отражающий
существенные свойства моделируемого объекта (процесса) и замещающий его
в ходе исследования и управления. Метод моделирования основывается на
принципе аналогии, т. е. возможности изучения реального объекта не
непосредственно, а через рассмотрение подобного ему и более доступного
объекта, его модели. В дальнейшем мы будем говорить только об
экономико-математическом моделировании, т. е. об описании знаковыми
математическими средствами социально-экономических систем.

Практическими задачами экономико-математического моделирования являются:

Анализ экономических объектов и процессов;

Экономическое прогнозирование, предвидение развития экономических
процессов;

Выработка управленческих решений на всех уровнях

Хозяйственной иерархии.

Следует, однако, иметь в виду, что далеко не во всех случаях данные,
полученные в результате экономико-математического моделирования, могут
использоваться непосредственно как готовые управленческие решения. Они
скорее могут быть рассмотрены как «консультирующие» средства. Принятие
управленческих решений остается за человеком. Таким образом,
экономико-математическое моделирование является лишь одним из
компонентов (пусть очень важным) в человеко-машинных системах
планирования и управления экономическими системами.

Важнейшим понятием при экономико-математическом моделировании, как и при
всяком моделировании, является понятие адекватности модели, т. е.
соответствия модели моделируемому объекту или процессу. Адекватность
модели - в какой-то мере условное понятие, так как полного соответствия
модели реальному объекту быть не может, что характерно и для
экономико-математического моделирования. При моделировании имеется в
виду не просто адекватность, но соответствие по тем свойствам, которые
считаются существенными для исследования. Проверка адекватности
экономико-математических моделей является весьма серьезной проблемой,
тем более, что ее осложняет трудность измерения экономических величин.
Однако без такой проверки применение результатов моделирования в
управленческих решениях может не только оказаться мало полезным, но и
принести существенный вред.

Социально-экономические системы относятся, как правило, к так называемым
сложным системам. Сложные системы в экономике обладают рядом свойств,
которые необходимо учитывать при их моделировании, иначе невозможно
говорить об адекватности построенной экономической модели. Важнейшие из
этих свойств:

Эмерджентность как проявление в наиболее яркой форме свойства
целостности системы, т.е. наличие у экономической системы таких свойств,
которые не присущи ни одному из составляющих систему элементов, взятому
в отдельности. вне системы. Эмерджентность есть результат возникновения
между элементами системы так называемых синергических связей, которые
обеспечивают увеличение общего эффекта до величины, большей, чем сумма
эффектов элементов системы, действующих независимо. Поэтому
социально-экономические системы необходимо исследовать и моделировать в
целом;

Массовый характер экономических явлений и процессов. Закономерности
экономических процессов не обнаруживаются на основании небольшого числа
наблюдений. Поэтому моделирование в экономике должно опираться на
массовые наблюдения;

Динамичность экономических процессов, заключающаяся в изменении
параметров и структуры экономических систем под влиянием среды (внешних
факторов);

Случайность и неопределенность в развитии экономических явлений.
Поэтому экономические явления и процессы носят в основном вероятностный
характер, и для их изучения необходимо применение
экономико-математических моделей на базе теории вероятностей и
математической статистики;

Невозможность изолировать протекающие в экономических системах явления
и процессы от окружающей среды, чтобы наблюдать и исследовать их в
чистом виде;

Активная реакция на появляющиеся новые факторы, способность
социально-экономических систем к активным, не всегда предсказуемым
действиям в зависимости от отношения системы к этим факторам, способам и
методам их воздействия.

Выделенные свойства социально-экономических систем. естественно,
осложняют процесс их моделирования, однако эти свойства следует
постоянно иметь в виду при рассмотрении различных аспектов
экономико-математического моделирования, начиная с выбора типа модели и
кончая вопросами практического использования результатов моделирования.

1.2. Этапы экономико-математического моделирования

Процесс моделирования, в том числе и экономико-математического, включает
в себя три структурных элемента: объект исследования; субъект
(исследователь); модель, опосредующую отношения между познающим
субъектом и познаваемым объектом. Рассмотрим общую схему процесса
моделирования, состоящую из четырех этапов.

Пусть имеется некоторый объект, который мы хотим исследовать методом
моделирования. На первом э т а п е мы конструируем (или находим в
реальном мире) другой объект - модель исходного объекта-оригинала. Этап
построения модели предполагает наличие определенных сведений об
объекте-оригинале. Познавательные возможности модели определяются тем,
что модель отображает лишь некоторые существенные черты исходного
объекта, поэтому любая модель замещает оригинал в строго ограниченном
смысле. Из этого следует, что для одного объекта может быть построено
несколько моделей, отражающих определенные стороны исследуемого объекта
или характеризующих его с разной степенью детализации.

На втором этапе процесса моделирования модель выступает как
самостоятельный объект исследования. Например, одну из форм такого
исследования составляет проведение модельных экспериментов, при которых
целенаправленно изменяются условия функционирования модели и
систематизируются данные о ее "поведении". Конечным результатом этого
этапа является совокупность знаний о модели в отношении существенных
сторон объекта-оригинала, которые отражены в данной модели.

Третий этап заключается в переносе знаний с модели на оригинал, в
результате чего мы формируем множество знаний об исходном объекте и при
этом переходим с языка модели на язык оригинала. С достаточным
основанием переносить какой-либо результат с модели на оригинал можно
лишь в том случае, если этот результат соответствует признакам сходства
оригинала и модели (другими словами, признакам адекватности).

На четвертом этапе осуществляются практическая проверка полученных с
помощью модели знаний и их использование как для построения обобщающей
теории реального объекта, так и для его целенаправленного преобразования
или управления им. В итоге мы снова возвращаемся к проблематике
объекта-оригинала.

Моделирование представляет собой циклический процесс, т. е. за первым
четырехэтапным циклом может последовать второй, третий и т. д. При этом
знания об исследуемом объекте расширяются и уточняются, а первоначально
построенная модель постепенно совершенствуется. Таким образом, в
методологии моделирования заложены большие возможности
самосовершенствования.

Перейдем теперь непосредственно к процессу экономико-математического
моделирования, т. е. описания экономических и социальных систем и
процессов в виде экономико-математических моделей. Эта разновидность
моделирования обладает рядом существенных особенностей, связанных как с
объектом моделирования, так и с применяемыми аппаратом и средствами
моделирования. Поэтому целесообразно более детально проанализировать
последовательность и содержание этапов экономико-математического
моделирования, выделив следующие шесть этапов: постановка экономической
проблемы, ее качественный анализ; построение математической модели;
математический анализ модели; подготовка исходной информации; численное
решение; анализ численных результатов и их применение. Рассмотрим каждый
из этапов более подробно.

1. Постановка экономической проблемы и ее качественный анализ. На этом
этапе требуется сформулировать сущность проблемы, принимаемые
предпосылки и допущения. Необходимо выделить важнейшие черты и свойства
моделируемого объекта, изучить его структуру и

Взаимосвязь его элементов, хотя бы предварительно сформулировать
гипотезы, объясняющие поведение и развитие объекта.

2. Построение математической модели. Это этап формализации экономической
проблемы, т. е. выражения ее в виде конкретных математических
зависимостей (функций, уравнений, неравенств и др.). Построение модели
подразделяется в свою очередь на несколько стадий. Сначала определяется
тип экономико-математической модели, изучаются возможности ее применения
в данной задаче, уточняются конкретный перечень переменных и параметров
и форма связей. Для некоторых сложных объектов целесообразно строить
несколько разноаспект-ных моделей; при этом каждая модель выделяет лишь
некоторые стороны объекта, а другие стороны учитываются агрегированно и
приближенно. Оправдано стремление построить модель, относящуюся к хорошо
изученному классу математических задач, что может потребовать некоторого
упрощения исходных предпосылок модели, не искажающего основных черт
моделируемого объекта. Однако возможна и такая ситуация, когда
формализация проблемы приводит к неизвестной ранее математической
структуре.

3. Математический анализ модели. На этом этапе чисто математическими
приемами исследования выявляются общие свойства модели и ее решений. В
частности, важным моментом является доказательство существования решения
сформулированной задачи. При аналитическом исследовании выясняется,
единственно ли решение, какие переменные могут входить в решение, в
каких пределах они изменяются, каковы тенденции их изменения и т. д.
Однако модели сложных экономических объектов с большим трудом поддаются
аналитическому исследованию; в таких случаях переходят к численным
методам исследования.

4. Подготовка исходной информации. В экономических задачах это, как
правило, наиболее трудоемкий этап моделирования, так как дело не
сводится к пассивному сбору данных. Математическое моделирование
предъявляет жесткие требования к системе информации; при этом надо
принимать во внимание не только принципиальную возможность подготовки
информации требуемого качества, но и затраты на подготовку
информационных массивов. В процессе подготовки информации используются
методы теории вероятностей, теоретической и математической статистики
для организации выборочных обследований, оценки достоверности данных и
т.д. При системном экономико-математическом моделировании результаты
функционирования одних моделей служат исходной информацией для других.

5. Численное решение. Этот этап включает разработку алгоритмов
численного решения задачи, подготовку программ на ЭВМ и непосредственное
проведение расчетов;

При этом значительные трудности вызываются большой размерностью
экономических задач. Обычно расчеты на основе экономико-математической
модели носят многовариантный характер. Многочисленные модельные
эксперименты, изучение поведения модели при различных условиях возможно
проводить благодаря высокому быстродействию современных ЭВМ. Численное
решение существенно дополняет результаты аналитического исследования, а
для многих моделей является единственно возможным.

6. Анализ численных результатов и их применение. На этом этапе прежде
всего решается важнейший вопрос о правильности и полноте результатов
моделирования и применимости их как в практической деятельности, так и в
целях усовершенствования модели. Поэтому в первую очередь должна быть
проведена проверка адекватности модели по тем свойствам, которые выбраны
в качестве существенных (другими словами, должны быть произведены
верификация и валидация модели). Применение численных результатов
моделирования в экономике направлено на решение практических задач
(анализ экономических объектов, экономическое прогнозирование развития
хозяйственных и социальных процессов, выработка управленческих решений
на всех уровнях хозяйственной иерархии).

Перечисленные этапы экономико-математического моделирования находятся в
тесной взаимосвязи, в частности, могут иметь место возвратные связи
этапов. Так, на этапе построения модели может выясниться, что постановка
задачи или противоречива, или приводит к слишком сложной математической
модели; в этом случае исходная постановка задачи должна быть
скорректирована. Наиболее часто необходимость возврата к предшествующим
этапам моделирования возникает на этапе подготовки исходной информации.
Если необходимая информация отсутствует или затраты на ее подготовку
слишком велики, приходится возвращаться к этапам постановки задачи и ее
формализации, чтобы приспособиться к доступной исследователю информации.

Выше уже сказано о циклическом характере процесса моделирования.
Недостатки, которые не удается исправить на тех или иных этапах
моделирования, устраняются в последующих циклах. Однако результаты
каждого цикла имеют и вполне самостоятельное значение. Начав
исследование с построения простой модели, можно получить полезные
результаты, а затем перейти к созданию более сложной и более совершенной
модели, включающей в себя новые условия и более точные математические
зависимости.

1.3. Классификация экономико-математических методов и моделей

Суть экономико-математического моделирования заключается в описании
социально-экономических систем и процессов в виде
экономико-математических моделей. В § 1.1 кратко рассмотрен смысл
понятий «метод моделирования» и «модель». Исходя из этого
экономико-математические методы следует понимать как инструмент, а
экономико-математические модели - как продукт процесса
экономико-математического моделирования.

Рассмотрим вопросы классификации экономико-математических методов. Эти
методы, как отмечено выше, представляют собой комплекс
экономико-математических дисциплин, являющихся сплавом экономики,
математики и кибернетики. Поэтому классификация экономико-математических
методов сводится к классификации научных дисциплин, входящих в их
состав. Хотя общепринятая классификация этих дисциплин пока не
выработана, с известной степенью приближения в составе
экономико-математических методов можно выделить следующие разделы:

Экономическая кибернетика: системный анализ экономики, теория
экономической информации и теория управляющих систем;

Математическая статистика: экономические приложения данной дисциплины
- выборочный метод, дисперсионный анализ, корреляционный анализ,
регрессионный анализ, многомерный статистический анализ, факторный
анализ, теория индексов и др.;

Математическая экономия и изучающая те же вопросы с количественной
стороны эконометрия: теория экономического роста, теория
производственных функций, межотраслевые балансы, национальные счета,
анализ спроса и потребления, региональный и пространственный анализ,
глобальное моделирование и др.;

Методы принятия оптимальных решений, в том числе исследование операций
в экономике. Это наиболее объемный раздел, включающий в себя следующие
дисциплины и методы: оптимальное (математическое) программирование, в
том числе методы ветвей и границ, сетевые методы планирования и
управления, программно-целевые методы планирования и управления, теорию
и методы управления запасами, теорию массового обслуживания, теорию игр.
теорию и методы принятия решений. теорию расписаний. В оптимальное
(математическое) программирование входят в свою очередь линейное
программирование, нелинейное программирование, динамическое
программирование, дискретное (целочисленное) программирование,
дробно-линейное программирование, параметрическое программирование,
сепарабельное программирование, стохастическое программирование,
геометрическое программирование;

Методы и дисциплины, специфичные отдельно как для централизованно
планируемой экономики, так и для. рыночной (конкурентной) экономики. К
первым можно отнести теорию оптимального функционирования экономики,
оптимальное планирование, теорию оптимального ценообразования, модели
материально-технического снабжения и др. Ко вторым - методы, позволяющие
разработать модели свободной конкуренции, модели капиталистического
цикла, модели монополии, модели индикативного планирования, модели
теории фирмы и т. д. Многие из методов, разработанных для
централизованно планируемой экономики, могут оказаться полезными и при
экономико-математическом моделировании в условиях рыночной экономики;

Методы экспериментального изучения экономических явлений. К ним
относят, как правило, математические методы анализа и планирования
экономических экспериментов, методы машинной имитации (имитационное
моделирование), деловые игры. Сюда можно отвести также и методы
экспертных оценок, разработанные для оценки явлений, не поддающихся
непосредственному измерению. Перейдем теперь к вопросам классификации
экономико-математических моделей, другими словами, математических
моделей социально-экономических систем и процессов. Единой системы
классификации таких моделей в настоящее время также не существует,
однако обычно выделяют более десяти основных признаков их классификации,
или классификационных рубрик. Рассмотрим некоторые из этих рубрик.

По общему целевому назначению экономико-математические модели делятся на
теоретико-аналитические, используемые при изучении общих свойств и
закономерностей экономических процессов, и прикладные, применяемые в
решении конкретных экономических задач анализа, прогнозирования и
управления. Различные типы прикладных экономико-математических моделей
как раз и рассматриваются в данном учебном пособии.

По степени агрегирования объектов моделирования модели разделяются на
макроэкономические и микроэкономические. Хотя между ними и нет четкого
разграничения, к первым из них относят модели, отражающие
функционирование экономики как единого целого, в то время как
микроэкономические модели связаны, как правило, с такими звеньями
экономики, как предприятия и фирмы.

По конкретному предназначению, т. е. по цели создания и применения,
выделяют балансовые модели, выражающие требование соответствия наличия
ресурсов и их использования; трендовые модели, в которых развитие
моделируемой экономической системы отражается через тренд (длительную
тенденцию) ее основных показателей; оптимизационные модели,
предназначенные для выбора наилучшего варианта из определенного числа
вариантов производства, распределения или потребления; имитационные
модели, предназначенные для использования в процессе машинной имитации
изучаемых систем или процессов и др.

По типу информации, используемой в модели экономико-математические
модели делятся на аналитические, построенные на априорной информации, и
идентифицируемые, построенные на апостериорной информации.

По учету фактора времени модели подразделяются на статические, в которых
все зависимости отнесены к одному моменту времени, и динамические,
описывающие экономические системы в развитии.

По учету фактора неопределенности модели распадаются на
детерминированные, если в них результаты на выходе однозначно
определяются управляющими воздействиями, и стохастические
(вероятностные), если при задании на входе модели определенной
совокупности значений на ее выходе могут получаться различные результаты
в зависимости от действия случайного фактора.

Экономико-математические модели могут классифицироваться также по
характеристике математических объектов, включенных в модель, другими
словами. по типу математического аппарата, используемого в модели. По
этому признаку могут быть выделены матричные модели, модели линейного и
нелинейного программирования, корреляционно-регрессионные модели, модели
теории массового обслуживания, модели сетевого планирования и
управления, модели теории игр и т.д.

Наконец, по типу подхода к изучаемым социально-экономическим системам
выделяют дескриптивные и нормативные модели. При дескриптивном
(описательном) подходе получаются модели, предназначенные для описания и
объяснения фактически наблюдаемых явлений или для прогноза этих явлений;
в качестве примера дескриптивных моделей можно привести названные ранее
балансовые и трендовые модели. При нормативном подходе интересуются не
тем, каким образом устроена и развивается экономическая система, а как
она должна быть устроена и как должна действовать в смысле определенных
критериев. В частности, все оптимизационные модели относятся к типу
нормативных; другим примером могут служить нормативные модели уровня
жизни.

Рассмотрим в качестве примера экономико-математическую модель
межотраслевого баланса (ЭММ МОБ). С учетом приведенных выше
классификационных рубрик это прикладная, макроэкономическая,
аналитическая, дескриптивная, детерминированная, балансовая, матричная
модель; при этом существуют как статические, так и динамические ЭММ МОБ.

2.Экономико-математические методы и модели.

Все существующие модели могут быть условно разделены на два класса - модели материальные, т.е. объективно существующие (которые можно "потрогать руками"), и модели абстрактные, существующие в сознании человека. Одним из подклассов абстрактных моделей являются модели математические.

Предметом данного изучения будут математические модели, применяемые для анализа различных явления и процессов, имеющих экономическую природу.

Применение математических методов существенно расширяет возможности экономического анализа, позволяет сформулировать новые постановки экономических задач, повышает качество принимаемых управленческих решений.

Математические модели экономики, отражая с помощью математических соотношений основные свойства экономических процессов и явлений, представляют собой эффективный инструмент исследования сложных экономических проблем.

В современной научно-технической деятельности математические модели являются важнейшей формой моделирования, а в экономических исследованиях и практике планирования и управления – доминирующей формой.

Математические модели экономических процессов и явлений называют экономико-математическими моделями (ЭММ).

На базе использования ЭММ реализуются прикладные программы, предназначенные для решения задач экономического анализа, планирования и управления.

Математические модели являются важнейшим компонентом (наряду с базами данных, техническими средствами, человеко-машинным интерфейсом) так называемых систем поддержки решений.

Система поддержки решений (CПР) - это человеко-машинная система, позволяющая использовать данные, знания, объективные и субъективные модели для анализа и решения слабоструктурированных и неструктурированных проблем.

Классифицировать экономико-математические модели можно по различным основаниям:

    По целевому назначению модели можно разделить на:

    1. теоретико-аналитические, применяемые для исследования наиболее

      общих свойств и закономерностей развития экономических процессов;

      прикладные, используемые для решения конкретных задач.

    По уровням исследуемых экономических процессов:

    1. производственно-технологические;

      социально-экономические.

    По характеру отражения причинно-следственных связей:

    1. детерминированные;

      недетерминированные (вероятностные, стохастические), учитывающие фактор неопределённости.

    По способу отражения фактора времени:

    1. статические. Здесь все зависимости относятся к одному моменту или периоду времени;

      динамические, характеризующие изменения процессов во времени.

    По форме математических зависимостей:

    1. линейные. Наиболее удобны для анализа и вычислений, вследствие чего получили большое распространение;

      нелинейные.

    По степени детализации (степени огрубления структуры):

    1. агрегированные ("макромодели");

      детализированные ("микромодели").

Для понимания структуры важное значение имеет схема, представленная на рисунке 1.3. В правой части рисунка показаны основные классы экономико-математических методов (классификация по используемому математическому аппарату), а в левой части - важнейшие направления применения методов.

Следует помнить также, что каждый из методов может быть применен для решения различных по специфике задач. И наоборот, одна и та же задача может решаться различными методами.

расход рынок программирование математический

Рисунок 1.3 - Важнейшие области применения основных классов ЭММ

На схеме экономико-математические методы представлены в виде некоторых укрупненных группировок. В двух словах опишем их.

    Линейное программирование - линейное преобразование переменных в системах линейных уравнений. Сюда можно отнести: симплекс-метод, распределительный метод, статический матричный метод решения материальных балансов.

    Дискретное программирование представлено двумя классами методов: локализационные и комбинаторные методы. К локализационным относятся методы линейного целочисленного программирования. К комбинаторным, например, метод ветвей и границ.

    Математическая статистика используется для корреляционного, регрессионного и дисперсионного анализа экономических процессов и явлений. Корреляционный анализ применяется для установления тесноты связи между двумя или более стохастически независимыми процессами или явлениями. Регрессионный анализ устанавливает зависимость случайной величины от неслучайного аргумента. Дисперсионный анализ - установление зависимости результатов наблюдений от одного или нескольких факторов в целях выявления важнейших.

    Динамическое программирование используется для планирования и анализа экономических процессов во времени. Динамическое программирование представляется в виде многошагового вычислительного процесса с последовательной оптимизацией целевой функции. Некоторые авторы относят сюда же имитационное моделирование.

    Теория игр представляется совокупностью методов, используемых для определения стратегии поведения конфликтующих сторон.

    Теория массового обслуживания - большой класс методов, где на основе теории вероятностей оцениваются различные параметры систем, характеризуемых как системы массового обслуживания.

    Теория управления запасами объединяет в себе методы решения задач, в общей формулировке сводящихся к определению рационального размера запаса какой-либо продукции при неопределенном спросе на нее.

    Стохастическое программирование. Здесь исследуемые параметры являются случайными величинами.

    Нелинейное программирование относится к наименее изученному, применительно к экономическим явлениям и процессам, математическому направлению.

    Теория графов - направление математики, где на основе определенной символики представляется формальное описание взаимосвязанности и взаимообусловленности множества элементов (работ, ресурсов, затрат и т.п.). До настоящего времени наибольшее практическое применение получили так называемые сетевые графики.

Принципы построения экономико-математических моделей

Итак, рассмотрим основные принципы построения ЭММ:

    Принцип достаточности исходной информации. В каждой модели должна использоваться только та информация, которая известна с точностью, требуемой для получения результатов моделирования.

    Принцип инвариантности (однозначности) информации требует, чтобы входная информация, используемая в модели, была независима от тех параметров моделируемой системы, которые еще неизвестны на данной стадии исследования.

    Принцип преемственности. Сводится к тому, что каждая последующая модель не должна нарушать свойств объекта, установленных или отраженных в предыдущих моделях.

    Принцип эффективной реализуемости. Необходимо, чтобы модель могла быть реализована при помощи современных вычислительных средств.

Основные этапы процесса моделирования были рассмотрены выше (рисунок 1.2). В различных отраслях знаний они приобретают свои специфические черты. Проанализируем последовательность и содержание этапов одного цикла экономико-математического моделирования (рисунок 1.4).

Рисунок 1.4 - Этапы экономико-математического моделирования

1. Постановка проблемы и её качественный анализ. Главное на этом этапе - чётко сформулировать сущность проблемы, определить принимаемые допущения, а также определить те вопросы, на которые требуется получить ответ.

Этап включает выделение важнейших черт и свойств моделируемого объекта, основных зависимостей, связывающих его элементы. Здесь же происходит формулирование гипотез, хотя бы предварительно объясняющих поведение объекта.

2. Построение математической модели. Это этап формализации задачи, т.е. выражения ее в виде математических зависимостей и отношений (функций, уравнений, неравенств, схем). Как правило, сначала определяется тип математической модели, а затем уточняются детали.

Неправильно полагать, что, чем больше факторов учитывает модель, тем лучше она работает и дает лучшие результаты. Излишняя сложность модели затрудняет процесс исследования. При этом нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели прирост затрат может превысить прирост эффекта).

3. Математический анализ модели. Цель - выявление общих свойств и характеристик модели. Применяются чисто математические приёмы исследования. Наиболее важный момент - доказательство существования решений в сформулированной модели. Если удастся доказать, что задача не имеет решения, то необходимость в последующей работе по данному варианту модели отпадает; следует скорректировать либо постановку задачи, либо способы ее математической формализации.

Однако модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию. В тех случаях, когда не удается выяснить общих свойств модели аналитическими методами, а упрощение модели приводит к недопустимым результатам, прибегают к численным методам исследования.

4. Подготовка исходной информации. Численное моделирование предъявляет жесткие требования к исходной информации. В то же время реальные возможности получения информации существенно ограничивают выбор используемых моделей. При этом принимается во внимание не только возможность подготовки информации (за определенный срок), но и затраты на подготовку соответствующих информационных массивов. Эти затраты не должны превышать эффекта от использования данной информации.

5. Численное решение. Это составление алгоритмов, разработка программ и непосредственное проведение расчётов на ЭВМ.

6. Анализ результатов и их применение. На заключительной стадии проверяются правильность, полнота и степень практической применимости полученных результатов.

Естественно, что после каждой из перечисленных стадий возможен возврат к одной из предыдущих в случае необходимости уточнения информации, пересмотра результатов выполнения отдельных этапов. Например, если на этапе 2 формализовать задачу не удается, то необходимо вернуться к постановке проблемы (этап 1). Соответствующие связи на рисунке 1.4 не показаны, чтобы не загромождать схему. Таким образом, выясним, как соотносятся между собой общая схема процесса моделирования (рисунок 1.2) и этапы экономико-математического моделирования (рисунок 1.4). Первые пять стадий более дифференцированно характеризуют процесс экономико-математического исследования, чем общая схема: стадии 1 и 2 соответствуют этапу I общей схемы, стадии 3, 4 и 5 - этапу II. Напротив, стадия 6 включает этапы III и IV общей схемы.

Экономико-математические методы и модели

Методически указания и контрольные задания для студентов

очной и заочной формы обучения.

г. Ставрополь 2007г.


Настоящее пособие предназначено для студентов экономических специальностей. Учебный план изучения курса рассчитан на 75 часов и предусматривает выполнение контрольной работы для заочной формы обучения.

В пособии приведены решения задач по темам, соответствующим учебному плану, даны необходимые методические указания и приведены задания для контрольной работы. Это пособие может быть использовано студентами очного и заочного отделения для самостоятельной работы и подготовки к зачёту.

Введение

В настоящее время процессы принятия решений в экономике опираются на достаточно широкий круг экономико-математических методов и моделей. Ни одно серьёзное решение, затрагивающее управление деятельностью отраслей и предприятий, распределения ресурсов, изучение рыночной конъюнктуры, прогнозирование, планирование и т.п., не осуществляется без предварительного математического исследования конкретного процесса или его частей.

В этой связи изучение дисциплины «Экономико-математические методы и модели» направлено как на формирование у студентов понимания роли современной математики в экономике, так и на изучение наиболее важных экономико-математических методов исследования моделей и задач оптимизации.

Задачи данной дисциплины состоят в изучении математических методов СЭП, применения базовых методов математического моделирования СЭП при решении оптимизационных задач и выработке навыков решения трудоёмких прикладных экономико-математических задач с помощью компьютерных технологий.

Цель изучения данной дисциплины – подготовка специалиста экономического профиля к сознательному использованию математических методов исследования СЭП на основе соответствующих базовых моделей.

Изучение дисциплины предусматривает сочетание лекций, практических занятий и самостоятельную работу студентов. На лекциях излагается содержание дисциплины, проводится анализ основных математических понятий и методов. Практические занятия ориентированны на выработку у студентов умения и навыков решения типовых экономических задач. Руководствуясь принципом повышения уровня фундаментальной математической подготовки студентов с усилением её прикладной экономической направленности, автором предлагаются наиболее экономически значимые задачи, представляющие самостоятельный интерес и дающие возможность относительно продуктивно освоить алгоритм их решения при отсутствии учебника.

После изучения дисциплины «Экономико-математические методы и модели» студент должен:

Иметь представление о методах системного анализа и управления СЭП;

Знать основные понятия, определения и базовые математические методы, используемые для построения моделей СЭП;

Уметь проводить расчёты и делать оценки параметров для базовых математических моделей СЭП;

Уметь решать прикладные экономико-математические задачи, опираясь на базовые знания по математике,соответствующие Государственному образовательному стандарту.

Общие методические указания

Для более полного, уверенного освоения студентами навыков решения задач по дисциплине «Экономико-математические методы и модели» предлагаются данные методические указания. Автор руководствовался общими целеполагающими принципами изучения данной дисциплины, а также принципом повышения уровня фундаментальной математической подготовки студентов для понимания значимости построения и исследования математических моделей в экономике.

Приведённые методические указания могут быть использованы при проведении самостоятельных и контрольных работ, собеседований при сдаче зачёта.

При выполнении контрольной работы студентам заочного отделения необходимо руководствоваться следующими указаниями:

На обложке указываются фамилия и инициалы студента, полный шифр специальности, группа, дата регистрации, фамилия и инициалы преподавателя-рецензента;

Решение всех задач и пояснения к ним должны быть достаточно подробными; вычисления и чертежи – полными и аккуратными.

Номер контрольной работы соответствует последней цифре его учебного шифра.

Контрольная работа предоставляется в деканат не позднее 10 дней до начала сессии. При сдаче зачёта студент должен дать пояснения к решённым заданиям.

1. Исследование операций в экономике: Учеб. пособ. / под ред. Н.Ш.Кремера./ – М.: ЮНИТИ, 2000. - 407 с.

2. Практикум по высшей математике для экономистов: Учеб. пособие для вузов / Кремер Н.Ш. и др.; под ред. проф. Н.Ш.Кремера – М.: ЮНИТИ – ДАНА, 2005. – 423 с.

3. Акулич И.Л. Математическое программирование в примерах и задачах: Учеб. пособ. М..: Высшая школа, 1986. - 319 с.

4. Морозов В.В., Сухарев А.Т., Фёдоров В.В. Исследование операций в примерах и задачах.: Учеб. пособие. М.: Высшая школа, 1986. – 287 с.

5. Вентцель Е.С. Исследование операций. Задачи, принципы, методология. Учеб. пособие для студентов втузов. – М.: Высшая школа, 2001. – 208 с.

6. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике: Учебник.2-е изд. – М.: МГУ им. М.В. Ломоносова, Издательство «Дело и Сервис», 1999. – 368 с.

7. Монахов А.В. Математические методы анализа экономики. – Спб: Питер, 2002. – 176 с.

8. Экономико-математические методы и прикладные модели: Учеб. пособие для вузов /В.В. Федосеев, А.Н. Гармаш, Д.М. Дайитбегов и др., Под ред. В.В. Федосеева. – М.: ЮНИТИ, 1999. -391 с.

Глоссарий терминов.

Аддитивность - свойство величин, состоящее в том, что значение величины, соответствующее целому объекту, равно сумме значе­ний величин, соответствующих его частям при любом разбие­нии объекта на части. Характеристика системы аддитивна, если она равна сумме тех же характеристик для всех составляющих систему подсистем и элементов.

Адекватность модели - ее соответствие моделируемому объекту или процессу. При моделировании имеется в виду адекватность не вообще, а по тем свойствам мо­дели, которые для исследования считаются существенными.

Аппроксимация - приближенное выражение сложной функции с помощью более простых, что часто значительно упрощает реше­ние задачи.

Вариантные прогнозы - прогнозы, основанные на сопоставлении различных вариантов возможного развития экономики при раз­ных предположениях относительно того, как будет развиваться техника, какие будут приниматься экономические меры и т. д.

Векторная оптимизация - решение задач математического программи­рования, в которых критерий оптимальности представляет собой вектор, компонентами которого являются в свою очередь различ­ные несводимые друг к другу критерии оптимальности подсистем, входящих в данную систему, например критерии разных социаль­ных групп в социально-экономическом планировании.

Верификация имитационной модели - проверка соответствия ее по­ведения предположениям экспериментатора.

Вероятностная модель - модель, которая в отличие от детерминиро­ванной модели содержит случайные элементы. Таким образом, при задании на входе модели некоторой совокупности значе­ний, на ёе выходе могут получаться различающиеся между со­бой результаты в зависимости от действия случайного фактора.

Взаимозаменяемость ресурсов - возможность использования разных ресурсов для достижения оптимума. Именно этим обусловлена проблема выбора: там, где нет заменяемости, нет и выбора, и тогда фундаментальное понятие оптимальности теряет смысл.

Генетический прогноз («поисковый») - прогноз, показывающий, к каким состояниям придет прогнозируемый объект в заданное время при определенных начальных условиях.

Глобальное моделирование или моделирование глобального разви­тия - область исследований, посвященная разработке моделей наиболее масштабных социальных, экономических и экологиче­ских процессов, охватывающих земной шар.

Градиентные методы решения задач математического программиро­вания - методы, основанные на поиске экстремума (максимума или минимума) функции путем последовательного перехода к нему с помощью градиента этой функции.

Декомпозиционные методы решения оптимальных задач - основан­ные на рациональном расчленении сложной задачи и решении отдельных подзадач с последующим согласованием частых ре­шений для получения общего оптимального решения.

Дескриптивная модель - модель, предназначенная для описания и объяснения наблюдаемых фактов или прогноза поведения объ­ектов - в отличие от нормативных моделей, предназначенных для нахождения желательного состояния объекта (например, оптимального).

Детерминированная модель - аналитическое представление законо­мерности, операции и т. п., при которых для данной совокупно­сти входных значений на выходе системы может быть получен единственный результат. Такая модель может отображать как вероятностную систему (тогда она является некоторым ее упро­щением), так и детерминированную систему.

Детерминированная система - такая система, выходы которой (ре­зультаты действия, конечные состояния и т.п.) однозначно оп­ределяются оказанными на нее управляющими воздействиями.

Динамическая система - всякая система, которая изменяется во времени (в отличие от статической системы). Математически это принято выражать через переменные (координаты), изме­няющиеся во времени. Процесс изменения характеризуется тра­екторией (т. е. наборами координат, каждая из которых является функцией времени).

Динамические модели межотраслевого баланса - частный случай ди­намических моделей экономики, основаны на принципе межотраслевого баланса, в который дополнительно вводятся урав­нения, характеризующие изменения отраслевых связей во вре­мени.

Итеративные (итерационные) методы решения задач - заключаются в том, что вычислительный процесс начинают с некоторого пробного (произвольного) допустимого решения, а затем при­меняют алгоритм, обеспечивающий последовательное улучше­ние этого решения.

Итерация - повторное применение математической операции (с из­мененными данными) при решении вычислительных задач для постепенною приближения к нужному результату. Итеративные расчеты на ЭВМ характерны для решения экономических (осо­бенно оптимизационных и балансовых) задач. Чем меньше тре­буется пересчетов, тем быстрее сходится алгоритм.

Коэффициенты прямых затрат (технологические коэффициенты) в межотраслевом балансе - средние величины непосредственных затрат продукции одной отрасли (в качестве средств производ­ства) на выпуск единицы продукции другой отрасли. Они могут быть выражены в натуральной форме (кВт/ч и т. д.) или стоимо­стной (руб.).

Критерий оптимальности - показатель, выражающий меру экономи­ческого эффекта принимаемого хозяйственного решения для сравнительной оценки возможных решений (альтернатив) и вы­бора наилучшего из них (например, максимум прибыли, минимум трудовых затрат, кратчайшее время дости­жения цели и т. д.)

Коэффициенты полных материальных затрат в межотраслевом балан­се - средние затраты i-го продукта на производство конечного продукта j по всей цепи сопряженных производств. Таким обра­зом, они складываются из прямых затрат каждой отрасли на данный продукт и косвенных затрат.

Коэффициенты прямых затрат (технологические коэффициенты) в межотраслевом балансе - средние величины непосредственных затрат продукции одной отрасли (в качестве средств производ­ства) на выпуск единицы продукции другой отрасли. Они могут быть выражены в натуральной форме (кВт/ч и т. д.) или стоимо­стной (руб.).

Математическое программирование (оптимальное программирова­ние) - область математики, объединяющая различные матема­тические методы и дисциплины: линейное программирование, нелинейное программирование, динамическое программирова­ние, выпуклое программирование и др. Общая задача матема­тического программирования состоит в нахождении оптималь­ного (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений.

Матричные модели - модели, построенные в виде таблиц (матриц). Они отображают соотношения между затратами на производст­во и его результатами, нормативы затрат, производственную и экономическую структуру хозяйства. Применяются в межотрас­левом балансе, матричном плане предприятия и др.

Машинная имитация - экспериментальный метод изучения объекта с помощью электронных вычислитель­ных машин, Процесс имитации заключается в следующем: сна­чала строится математическая модель изучаемого объекта (имитационная модель), затем эта модель преобразуется в программу работы ЭВМ.

Межотраслевой баланс (МОБ ) - каркасная модель экономики, таб­лица, в которой показываются многообразные натуральные и стоимостные связи в народном хозяйстве. Анализ МОБ дает ком­плексную характеристику процесса формирования и использова­ния совокупного общественного продукта в отраслевом разрезе.

Объективно обусловленные (оптимальные) оценки - одно из основ­ных понятий линейного программирования. Это оценки про­дуктов, ресурсов, работ, вытекающие из условий решаемой оптимизационной задачи. Их называют также двойственными оценками, разрешающими множителями, множителями Лагранжа и целым рядом других терминов.

Ограничения модели - запись условий, в которых действительны расчеты, использующие эту модель. Обычно представляя собою систему уравнений и неравенств, они в совокупности определя­ют область допустимых решений (допустимое множество). Рас­пространены линейные и нелинейные ограничения (на графике первые изображаются прямыми, вторые - кривыми линиями).

Определенность в системе - ситуация, когда имеется точная инфор­мация о возможных состояниях системы в случае принятия тех или иных решений.

Оптимальное планирование - комплекс методов, позволяющих вы­брать из многих возможных (альтернативных) вариантов плана или программы один оптимальный вариант, т. е. наилучший с точки зрения заданного критерия оптимальности и определен­ных ограничений.

Оптимальное программирование - применение в экономике методов математического программирования.

Оптимальное управление - основное понятие математической тео­рии оптимальных процессов (принадлежащей разделу математики под тем же названием: оптимальное управление); означает выбор таких управляющих параметров, которые обеспечивали бы наилучшее, с точки зрения заданного критерия, протекание процесса, или, иначе, наилучшее поведение системы, ее разви­тие к цели по оптимальной траектории.

Оптимизационная задача - экономико-математическая задача, цель которой состоит в нахождении наилучшего (с точки зрения ка­кого-то критерия) распределения наличных ресурсов. Решается с помощью оптимизационной модели методами математическо­го программирования.

Оптимизация - 1) процесс нахождения экстремума функции, т. е. выбор наилучшего варианта из множества возможных; 2) про­цесс приведения системы в наилучшее (оптимальное) состояние. Очередь - в теории массового обслуживания - последовательность требований или заявок, которые, заставая систему обслужива­ния занятой, не выбывают, а ожидают ее освобождения (затем они обслуживаются в том или ином порядке). Очередью можно назвать также и совокупность ожидающих (простаивающих) ка­налов или средств обслуживания.

Пассивный (безусловный) статистический прогноз - прогноз разви­тия, основанный на изучении статистических данных за про­шлый период и переносе выявленных закономерностей на буду­щее. При этом внешние факторы, воздействующие на систему, принимаются неизменными и считается, что ее развитие осно­вывается только на собственных, внутренних тенденциях.

Предельные и приростные величины в экономике . Предельная вели­чина характеризует не состояние (как суммарная или средняя величины), а процесс, изменение. Поскольку в экономике боль­шинство процессов (например, рост производства или измене­ние его эффективности) являются функциями ряда аргументов (факторов), то предельные величины здесь обычно выступают как частные производные процесса по каждому из факторов.

Прогнозирование - система научных исследований качественного и количественного характера, направленных на выяснение тен­денций развития народного хозяйства и поиск оптимальных пу­тей достижения целей этого развития.

Прогнозирование спроса - исследование будущего (возможного) спроса на товары и услуги в целях лучшего обоснования соот­ветствующих производственных планов. Прогнозирование под­разделяется на краткосрочное (конъюнктурное), среднесрочное и долгосрочное.

Производственная функция - экономико-математическое уравне­ние, связывающее переменные величины затрат (ресурсов) с ве­личинами продукции (выпуска). Математически производственные функции (ПФ) могут быть представлены в различных фор­мах - от столь простых, как линейная зависимость результата производства от одного исследуемого фактора, до весьма слож­ных систем уравнений, включающих рекуррентные соотноше­ния, которыми связываются состояния изучаемого объекта в разные периоды времени. Широко распространены мультипли­кативные формы ПФ.

Равновесие - состояние экономической системы, которое характе­ризуется равенством спроса и предложения всех ресурсов.

Регрессия - зависимость среднего значения какой-либо случайной величины от некоторой другой величины или нескольких вели­чин. Распределение этих значений называется условным распределением у при дан­ном х. Множественная регрессия в определенных условиях по­зволяет исследовать влияние причинных факторов.

Рекурсия - в общем смысле вычисление функции по определенно­му алгоритму. Примерами таких алгоритмов являются рекур­рентные формулы, выводящие вычисление заданного члена по­следовательности (чаще всего числовой) из вычисления не­скольких предыдущих ее членов.

Статистическое моделирование - способ исследования процессов повеления вероятностных систем в условиях, когда неизвестны внутренние взаимодействия в этих системах.

Стохастическая имитация - вид машинной имитации, отличающий­ся от детерминированной тем, что включает в модель в том или ином виде случайные возмущения, отражающие вероятностный характер моделируемой системы.

Устойчивость решения - обычно, говоря об устойчивости решения задачи, имеют в виду, что малые изменения каких-либо характе­ристик, например, начальных условий, ограничений или целе­вого функционала, не приводят к качественному изменению ре­шения.

Целевая функция в экстремальных задачах - функция, минимум или максимум которой нужно найти. Это ключевое понятие оптимального программирования. Найдя экстремум целевой функции и, следовательно, определив значения управляемых переменных, которые k нему приводят, мы тем самым находим оптимальное решение задачи.

Шкалы - системы чисел или иных элементов, принятых для оцен­ки или измерения каких-либо величин. Шкалы используются для оценки и выявления связей и отношений между элементами систем. Особенно широко их применение для оценки величин, выступающих в роли критериев качества функционирования систем, в частности, критериев оптимальности при решении экономико-математических задач.

Практическое занятие.

Тема . Методы линейной алгебры в экономическом анализе.

Цель . Решение экономических задач с элементами моделирования, опирающиеся на базовую основу линейной алгебры.

1. Справочный материал.

Понятие матрицы часто используется в практической деятельности, например, данные о выпуске продукции нескольких видов в каждом квартале года или нормы затрат нескольких видов ресурсов на производство продукции нескольких типов и т.д. удобно записывать в виде матрицы.

Задача 1. В некоторой отрасли m заводов выпускают n видов продукции. Матрица задаёт объёмы продукции на каждом заводе в первом квартале, матрица - соответственно во втором; (а ij , в ij) – объёмы продукции j –го типа на i –м заводе в 1-м и 2-м кварталах соответственно:

; .

а) объёмы продукции;

б) прирост объёмов производства во втором квартале по сравнению с первым по видам продукции и заводам;

в) стоимостное выражение выпущенной продукции за полгода (в долларах), если λ – курс доллара по отношению к рублю.

Решение:

а) Объёмы продукции за полугодие определяются суммой матриц, т.е. С=А+В=, где с ij – объём продукции j-го типа, произведённый за полугодие i-м заводом.

б) Прирост во втором квартале по сравнению с первым определяется разностью матриц, т.е.

Д=В-А= . Отрицательные элементы показывают, что на данном заводе объём производства уменьшился, положительные – увеличился, нулевые – не изменился.

в) Произведение λC= λ(А+В) даёт выражение стоимости объёмов производства за квартал в долларах по каждому заводу и каждому предприятию.

Задача 2. Предприятие производит n типов продукции, используя m видов ресурсов. Нормы затрат ресурса i-го товара на производство единицы продукции j-го типа заданы матрицей затрат . Пусть за определённый отрезок времени предприятие выпустило количество продукции каждого типа , записанное матрицей .

Определить S – матрицу полных затрат ресурсов каждого вида на производство всей продукции за данный период времени, если

, . Решение . Матрица полных затрат ресурсов S определяется как произведение матриц, т.е. S=AX.

, т.е за данный период времени будет израсходовано 930 ед. ресурса 1-го вида, 960 ед. ресурса 2-го вида, 450 ед. ресурса 3-го вида, 630 ед. ресурса 4-го вида.

Задача 3. Завод производит двигатели, которые могут либо сразу потребовать дополнительной регулировки (в 40% случаев), либо сразу могут быть использованы (в 60% случаев). Как показывают статистические исследования, те двигатели, которые изначально требовали регулировки, потребуют дополнительной регулировки через месяц в 65% случаев, а в 35% случаев через месяц будут работать хорошо. Те же двигатели, которые не требовали первоначальной регулировки, потребуют её через месяц в 20% случаев и продолжат хорошо работать в 80% случаев. Какова доля двигателей, которые будут работать хорошо или потребуют регулировки через 2 месяца после выпуска? Через 3 месяца?

Решение.

В момент после выпуска доля хороших двигателей составляет 0,6, а доля требующих регулировки – 0,4. Через месяц доля хороших составит: 0,6 . 0,8+0,4 . 0,35=0,62. Доля требующих регулировки: 0,6 . 0,2+0,4 . 0,65=0,38. введём строку состояния X t в момент t; X t =(x 1 t ; x 2 t), где x 1 t – доля хороших двигателей, x 2 t – доля двигателей, требующих регулировки в момент t.

Матрица перехода , где - доля двигателей, которые в настоящее время находятся в состоянии (1- «хороший», 2- «требует регулировки»), а через месяц – в состоянии .

Очевидно, что для матрицы перехода сумма элементов каждой строки равна 1, все элементы неотрицательны.

Очевидно, =(0,6 0,4), .

Тогда через месяц ,

через 2 месяца ; через 3 месяца .

Найдём матрицы ;

Отметим, что если - матрица перехода, то - тоже матрица перехода при любом натуральном t. Теперь

,

Очевидно, .

Задача 3. Фирма состоит из двух отделений, суммарная величина прибыли которых в минувшем году составила 12 млн. усл. ед. На этот год запланировано увеличение прибыли первого отделения на 70%, второго – на 40%. В результате суммарная прибыль должна вырасти в 1,5 раза. Какова величина прибыли каждого из отделений: а) в минувшем году; б) в текущем году?

Решение.

Пусть и - прибыли первого и второго отделений в минувшем году. тогда условие задачи можно записать в виде системы: Решив систему, получим Следователь, а) прибыль в минувшем году первого отделения -4 млн. усл. ед., а второго – 8 млн. усл. ед.; б) прибыль в этом году первого отделения 1,7 . 4=6,8 млн. усл. ед., второго 1,4 . 8=11,2 млн. усл. ед.

2.1. Три завода выпускают четыре вида продукции. Необходимо: а) найти матрицу выпуска продукции за квартал, если заданы матрицы помесячных выпусков А 1, А 2 , А 3 ; б) найти матрицы приростов выпуска продукции за каждый месяц В 1 и В 2 и проанализировать результаты:

; ; .

2.2. Предприятие производит мебель трёх видов и продаёт её в четырёх регионах. Матрица задаёт цену реализации единицы мебели i-го типа в j-м регионе. Определить выручку предприятия в каждом регионе, если реализация мебели за месяц задана матрицей .

2.3 . По условию задачи 2 определить:1) полные затраты ресурсов 3-х видов на производство месячной продукции, если заданы нормы затрат матрицей и объём выпуска каждого из двух типов продукции ;

2) стоимость всех затраченных ресурсов, если задана стоимость единиц каждого ресурса .

2.4 . В ремонтную мастерскую поступают телефонные аппараты, 70 % которых требуют малого ремонта, 20 % - среднего ремонта, 10% - сложного ремонта. Статистически установлено, что 10% аппаратов прошедших малый ремонт, через год требуют малого ремонта, 60% - среднего, 30% -сложного ремонта. Из аппаратов, прошедших средний ремонт, 20% требуют через год малого ремонта, 50% - среднего, 30% - сложного ремонта. Из аппаратов, прошедших сложный ремонт, через год 60% требуют малого ремонта, 40% - среднего. Найти доли из отремонтированных в начале года аппаратов, которые будут требовать ремонта того или иного вида: через 1 год; 2 года;3 года.

Практическое занятие.

Тема . Методы математического анализа для построения моделей СЭП.

Цель . Решение экономических задач с элементами моделирования, в которых применяются методы математического анализа.

1. Справочный материал.

Функции находят широкое применение в экономической теории и практике. Спектр используемых в экономике функций весьма широк: от простейших линейных до функций, получаемых по определённому алгоритму с помощью рекуррентных соотношений, связывающих состояния изучаемых объектов в разные периоды времени.

Наиболее часто используемые в экономике следующие функции:

1. Функция полезности (функция предпочтения) – зависимость результата, эффекта некоторого действия от уровня (интенсивности) этого действия.

2. Производственная функция – зависимость результата производственной деятельности от обусловивших его факторов.

3. Функция выпуска – зависимость объёма производства от наличия или потребления ресурсов.

4. Функция издержек – зависимость издержек производства от объёма продукции.

5. Функции спроса, потребления и предложения – зависимость объёма спроса, потребления или предложения на отдельные товары или услуги от различных факторов (например, цены, дохода и т.п.).

Учитывая, что экономические явления и процессы обуславливаются действием различных факторов, для их исследований широко используются функции нескольких переменных. Среди этих функций выделяют мультипликативные функции, позволяющие представить зависимую переменную в виде произведения факторных переменных, обращающих его в нуль при отсутствии действия хотя бы одного фактора.

Используются также сепарабельные функции, которые дают возможность выделить влияние различных факторов переменных на зависимую переменную, и в частности, аддитивные функции, представляющие одну и ту же зависимую переменную как при суммарном, но раздельном воздействии нескольких факторов, так и при одновременном их воздействии.

Кроме геометрического и механического существует ещё и экономический смысл производной. Во-первых, производная объема произведенной продукции по времени есть производительность труда в момент . Во-вторых, существует ещё одно понятие, характеризующее экономический смысл производной. Если издержки производства y рассматривать как функцию количества выпускаемой продукции x , - прирост продукции, - приращение издержек производства, а - среднее приращение издержек производства на единицу продукции, тогда производная равная выражает предельные издержки производства и характеризует приближённо дополнительные затраты на производство единицы дополнительной продукции.

Предельные издержки зависят от уровня производства (количества выпускаемой продукции) x и определяются не постоянными производственными затратами, а лишь переменными (на сырьё, топливо ит.п.). Аналогичным образом могут быть определены предельная выручка, предельный доход, предельный продукт, предельная полезность и др.предельные величины.

Предельные величины характеризуют не состояние, а процесс, то есть изменение экономического объекта. Таким образом, производная выступает как скорость изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора. Следует учесть, что экономика не всегда позволяет использовать предельные величины в силу неделимости многих объектов экономических расчётов и прерывности (дискретности) экономических показателей во времени (например, годовых, квартальных, месячных ит.д.). Вместе с тем в ряде случаев можно отвлечься от дискретности показателей и эффективно предельные величины.

Для исследования экономических процессов и решения прикладных задач часто используется понятие эластичности функции.

Эластичностью функции называется предел отношения относительного приращения функции y к относительному приращению переменной x при :

. (1)

Эластичность функции показывает приближённо, на сколько процентов изменится функция y = f ( x ) при изменении независимой переменной x на 1%. Это мера реагирования одной переменной величины на изменение другой.

Отметим свойства эластичности функции.

1. Эластичность функции равна произведению независимой переменной x на темп изменения функции , т.е. .

2. Эластичность произведения (частного) двух функций равна сумме (разности) эластичностей этих функций: , .

Эластичность функций применяется при анализе спроса и потребления. Например, эластичность спроса y относительно цены x – коэффициент, определяемый по формуле (1) и показывающий приближённо, на сколько процентов изменится спрос (объем потребления) при изменении цены (или дохода) на 1%.

Если эластичность спроса (по абсолютной величине) , то спрос считают эластичным, если - нейтральным, если - неэластичным относительно цены (или дохода).

В практической деятельности часто приходится сталкиваться с такими задачам, которые рационально решать методами математического анализа. Это задачи на нахождение объёма продукции при известном значении прибыли, определении уровня потребления товаров при известном доходе, определение момента времени рентабельности производства, определение размеров вклада при известных начальных вложениях и т.п.

Задача 1. Издержки y (в руб.) на изготовление партии деталей определяются по формуле , где - объём партии. Для первого варианта технологического процесса . Для второго варианта известно, что (руб.) при (дет.) и (руб.) при (дет.). Провести оценку двух вариантов технологического процесса и найти себестоимость продукции для обоих вариантов при (дет.)

Решение .

Для второго варианта определяем параметры и из системы уравнений:

откуда и , т.е. .

Точка (х 0 ,y 0) пересечения двух прямых находится из системы их уравнений:

откуда , .Очевидно, при объёме партии выгоднее второй вариант технологического процесса, при - первый вариант. Себестоимость продукции (руб.) при по первому варианту составляет , а по второму - .

Задача 2. Постоянные издержки составляют 125 тыс.руб. в месяц, а переменные издержки - 700 руб. за каждую единицу продукции. Цена единицы продукции 1200 руб. Найти объём продукции , при котором прибыль равна: а) нулю (точка безубыточности); б) 105 тыс.руб. в месяц.

Решение:

а) Издержки производства единиц продукции составят: (тыс.руб.). Совокупный доход (выручка) от реализации этой продукции , а прибыль (тыс.руб.). Точка безубыточности, в которой , равна (ед.).

б) Прибыль (тыс.руб.), т.е. при (ед.).

Задача 3. Продолжительность выполнения (мин.) при повторных операциях связана с числом этих операций зависимостью . Вычислить, сколько минут выполняется работа при 50 операциях, если известно, что при , а при .

Решение . Найдём параметры и , учитывая, что , . Получаем систему: решая которую найдём , .

Итак, при , (мин.)

Задача 4. Объём продукции u, произведённый бригадой рабочих, может быть описан уравнением (ед.), , где t рабочее время в часах. Вычислить производительность труда, скорость и темп её изменения через час после начала работы и за час до её окончания.

Решение. Производительность труда выражается производной (ед./час), а скорость и темп изменения производительности – соответственно производной и логарифмической производной : (ед./ч 2),

(ед./ч).

В заданные моменты времени и соответственно имеем: z(t)=112,5 (ед./ч), z’(t)=-20(ед./ч 2), T z (7)=-0,24 (ед./ч).

Итак, к концу работы производительность труда существенно снижается; при этом изменение знака z’(t) и T z (t) с плюса на минус свидетельствует о том, что увеличение производительности труда в первые часы рабочего дня сменяется её снижением в последние часы.

Задача 5. Опытным путём установлены функции спроса и предложения , где q и s количество товара, соответственно покупаемого и предлагаемого на продажу в единицу времени, p – цена товара.

Найти: а) равновесную цену, т.е.цену при которой спрос равен предложению;

б) эластичность спроса и предложения для этой цены;

в) изменение дохода при увеличении цены на 5% от равновесной.

Решение. а) Равновесная цена находится из условия q = s , тогда , откуда p = 2, т.е равновесная цена 2 ден.ед.

б) Найдём эластичность по спросу и предложению по формуле (1)

; . Для равновесной цены p =2 имеем ; . Так как полученные значения эластичностей по абсолютной величине меньше 1, то и спрос и предложение данного товара при равновесной (рыночной) цене неэластичны относительно цены. Это означает, что изменение цены не приведёт к резкому изменению спроса и предложения. Так, при увеличении цены p на 1% спрос уменьшится на 0,3%, а предложение увеличится на 0,8%.

в) При увеличении цены p на 5% от равновесной спрос уменьшится на 5 . 0,3=1,5%, следовательно, доход возрастёт на 3,5%.

Задача 6. Зависимость между издержками производства y и объёмом выпускаемой продукции x выражается функцией (ден.ед.). Определить средние и предельные издержки при объёме продукции 10 ед.

Решение. Функция средних издержек выражается соотношением ; при x = 10средние издержки (на единицу продукции) равны (ден. ед.). Функция предельных издержек выражается производной ; при x = 10 предельные издержки составят (ден.ед.). Итак, если средние издержки на производство единицы продукции составляют 45 ден.ед., то предельные издержки, т.е. дополнительные затраты на производство дополнительной единицы продукции при данном уровне производства (объёме выпускаемой продукции 10 ед.) , составляют 35 ден.ед.

Задача 7. Выяснить, чему равны предельные и средние полные затраты предприятия, если эластичность полных затрат равна 1?

Решение . Пусть полные затраты предприятия y выражаются функцией , где x – объём выпускаемой продукции. Тогда средние затраты y 1 на производство единицы продукции . Эластичность частного двух функции равна разности их эластичностей, т.е. .

По условию , следовательно, . Это означает, что с изменением объёма продукции средние затраты на единицу продукции не меняются, т.е., откуда .

предельные издержки предприятия определяются производной . Итак, т.е предельные издержки равны средним издержкам(полученное утверждение справедливо только для линейных функций издержек).

2. Задания для самостоятельной работы.

2.1. Издержки перевозки двумя видами транспорта выражаются уравнениями: и , где - расстояния в сотнях километров, - транспортные расходы. Начиная с какого расстояния более экономичен второй вид транспорта?

2.2. Зная, что изменение объёма производства с изменением производительности труда происходит по прямой линии, составить её уравнение, если при =3 =185, а при =5 =305. Определить объём производства при =20.

2.3 . Предприятие купило автомобиль стоимостью 150 тыс.руб. Ежегодная норма амортизации составляет 9%. Полагая зависимость стоимости автомобиля от времени линейной, найти стоимость автомобиля через 4,5 года.

2.4. Зависимость уровня потребления некоторого вида товаров от уровня дохода семьи выражается формулой: . Найти уровень потребления товаров при уровне дохода семьи 158 ден.ед. Известно, что при =50 =0; =74 =0,8; =326 =2,3.

2.5. Банк выплачивает ежегодно 5% годовых (сложный процент). Определить: а) размер вклада через 3 года, если первоначальный вклад составил 10 тыс. руб.; б) размер первоначального вклада, при котором через 4 года вклад (вместе с процентными деньгами) составит 10 000 руб.

Указание. Размер вклада через t лет определяется по формуле , где p -процентная ставка за год, Q 0 –первоначальный вклад.

2.6. Затраты на производство продукции (тыс.руб.) выражаются уравнением , где -количество месяцев. Доход от реализации продукции выражается уравнением . Начиная с какого месяца производство будет рентабельным?

2.7. Зависимость между себестоимостью единицы продукции y (тыс. руб.) и выпуском продукции x (млрд.руб.) выражается функцией . Найти эластичность себестоимости при выпуске продукции, равном 60 млрд.руб.

Практическое занятие.

Тема. Предельный анализ экономических процессов.

Цель. Рассмотреть применение математических методов для нахождения предельных величин в оптимизационных задачах.

1.Справочный материал.

Функция издержек С(х) определяет затраты, необходимые для производства x единиц данного продукта. Прибыль , где D ( x ) - доход от производства x единиц продукта.

Средние издержки A ( x ) при производстве x единиц продукта есть .Предельные издержки .

Оптимальным значением выпуска для производителя является то значение x единиц продукта, при котором прибыль P ( x ) оказывается наибольшей.

Задача 1. Функция издержек имеет вид . На начальном этапе фирма организует производство так, чтобы минимизировать средние издержки A ( x ) . В дальнейшем на товар устанавливается цена, равная 4 усл.ед. за единицу. На сколько единиц товара фирме следует увеличить выпуск?

Решение. Средние издержки принимают минимальное значение при x =10. Предельные издержки . При установившейся цене оптимальное значение P ( x ) выпуска задаётся условием максимизации прибыли: , т.е. 4=M ( x ) , откуда . Таким образом, производство следует увеличить на 10 единиц.

Задача 2. Определить оптимальное для производителя значение выпуска x 0 p =14 , если известен вид функции издержек .

Решение . По формуле прибыли получаем, .

Находим производную прибыли по объёму: , тогда х опт = 2.

Задача 3. Найти максимальную прибыль, которую может получить фирма производитель, при условии, что весь товар реализуется по фиксированной цене за единицу р =10,5 и функция издержек имеет вид.

Решение . Находим значение прибыли .

Производная прибыли по объёму имеет вид: . Тогда , . .

2. Задания для самостоятельной работы .

2.1 Определить оптимальное для производителя значение выпуска x 0 , при условии, что весь товар реализуется по фиксированной цене за единицу p =8 и известен вид функции издержек .

2.2 Найти максимальную прибыль, которую может получить фирма-производитель, при условии, что весь товар реализуется по фиксированной цене за единицу p =40 и известен вид функции издержек .

2.3 При производстве монополией x единиц товара за единицу . Определить оптимальное для монополии значение выпуска x 0 (предполагается что весь произведённый товар реализуется), если издержки имеют вид .

2.4 Функция издержек имеет вид . Доход от реализации единицы продукции равен 50. Найти максимальное значение прибыли, которое может получить производитель.

2.5 На начальном этапе производства фирма минимизирует средние издержки, причём функция издержек имеет вид . В дальнейшем цена на единицу товара устанавливается равной р =37. На сколько единиц товара фирме следует увеличить выпуск? На сколько при этом изменятся средние издержки?

Задания для контрольной работы.

Задача 1.

Даны зависимости спроса D(p) и предложения S(p) от цены.

Найдите: 1) равновесную цену и выручку при равновесной цене;

2) цену, при которой выручка максимальна и саму эту

максимальную выручку.

Построить график зависимостей.

Задача 2.

Рассматривается рынок с тремя участниками, у каждого из которых одна и та же функция полезности . Пусть начальное имущество 1-го, 2-го и 3-го участников заданы векторами, а цены на рынке таковы р=1, р=2, р=3.

Проверить: 1) равновесно ли положение;

2) выполняется ли закон Вальраса об избыточном спросе:

Задача 3.

Пусть модель Леонтьева задана матрицей А.

Найти объем производства, обеспечивающий вектор потребления У.

№ варианта 1 задание 2 задание 3 задание
1 (3,2,3), (2,4,6), (6,4,6)
2 (2,2,3), (2,4,5), (6,6,6)
3 (2,4,3), (2,3,4), (4,4,5)
4 (4,2,3), (2,5,4), (3,4,7)
5 (5,2,3), (2,5,4,), (5,4,5)
6 (6,2,3), (2,3,6), (3,6,5)
7 (4,2,3), (4,3,4), (4,4,5)
8 (4,2,3), (5,3,4), (6,4,2)
9 (3,2,3), (4,3,4), (3,5,2)
10 (3,2,3), (2,4,6), (6,4,6)
11 (2,2,3), (2,4,5), (6,6,6)
12 (2,4,3), (2,3,4), (4,4,5)
13 (2,4,3), (2,3,4), (4,4,5)
14 (2,2,3), (2,4,5), (6,6,6)
15 (4,2,3), (2,5,4), (3,4,7)
16

(4,2,3), (4,3,4),

17

(3,2,3), (4,3,4),

18

(3,2,3), (2,4,6),

19