Акустические колебания физические и физиологические характеристики шума. Физические и физиологические характеристики звука

Физические характеристики акустических и, в частности, звуковых волн имеют объективный характер и могут быть измерены соответствующими приборами в стандартных единицах. Возникающее под действием звуковых волн слуховое ощущение субъективно, однако его особенности во многом определяются параметрами физического воздействия.

  • 7. Акустика

Скорость акустических волн v определяется свойствами среды, в которой они распространяются - ее модулем упругости Е и плотностью р:

Скорость звука в воздухе составляет около 340 м/с и зависит от температуры (с изменением температуры изменяется плотность воздуха). В жидких средах и в мягких тканях организма эта скорость составляет около 1500 м/с, в твердых телах - 3000-6000 м/с.

В формулу (7.1), определяющую скорость распространения акустических волн, не входит их частота, поэтому звуковые волны различной частоты в одной и той же среде имеют практически одинаковую скорость. Исключение составляют волны таких частот, для которых характерно сильное поглощение в данной среде. Обычно эти частоты лежат за пределами звукового диапазона (ультразвук).

Если звуковые колебания представляют периодический

Рис. 7.1.

процесс, то такие звуки называются тонами или музыкальными звуками. Они имеют дискретный гармонический спектр, представляя набор гармоник с определенными частотами и амплитудами. Первая гармоника частоты со называется основным тоном, а гармоники более высоких порядков (с частотами 2со, Зсо, 4со и т.д.) - обертонами. Чистый (или простой) тон соответствует звуковым колебаниям, имеющим лишь одну частоту. На рис. 7.1 показан спектр сложного тона, в котором представлены четыре гармонических составляющих: 100, 200, 300 и 400 Гц. Величина амплитуды основного тона принята за 100%.

Непериодические звуки, называемые шумами, имеют сплошной акустический спектр (рис. 7.2). Они обусловлены процессами, в которых амплитуда и частота звуковых колебаний изменяются со временем (вибрация деталей машин, шорох и т.п.).

Рис. 7.2.

Интенсивность звука I, как уже отмечалось ранее, представляет собой энергию звуковой волны, приходящуюся на площадку единичной площади за единицу времени, и измеряется в Вт/м 2 .

Эта физическая характеристика определяет уровень слухового ощущения, который называется громкостью и является субъективным физиологическим параметром. Связь между интенсивностью и громкостью не является прямо пропорциональной. Пока отметим только, что с увеличением интенсивности возрастает и ощущение громкости. Количественную оценку громкости можно выполнить, сравнивая слуховые ощущения, обусловленные звуковыми волнами от источников с различной интенсивностью.

При распространении звука в среде возникает некоторое добавочное давление, перемещающееся от источника звука к приемнику. Величина этого звукового давления Р также представляет физическую характеристику звука и среды его распространения. Она связана с интенсивностью I соотношением

где р - плотность среды; и - скорость распространения звука в среде.

Величину Z - ри называют удельным акустическим сопротивлением или удельным акустическим импедансом.

Частота звуковых гармонических колебаний определяет ту сторону звукового ощущения, которую называют высотой звука. Если звуковые колебания периодичны, но не подчиняются гармоническому закону, то высота звука оценивается ухом по частоте основного тона (первая гармоническая составляющая в ряду Фурье), период которого совпадает с периодом сложного звукового воздействия.

Отметим, что возможность оценки высоты тона слуховым аппаратом человека связана с продолжительностью звучания. Если время звукового воздействия меньше 1/20 с, то ухо не способно оценить высоту тона.

Близкие по частоте звуковые колебания при одновременном звучании воспринимаются как звуки различной высоты в том случае, если относительная разница частот превышает 2-3 %. При меньшей разности частот возникает ощущение слитного звука средней высоты.

Спектральный состав звуковых колебаний (см. рис. 7.1) определяется числом гармонических составляющих и соотношением их амплитуд и характеризует тембр звука. Тембр, как физиологическая характеристика слухового ощущения, в некоторой степени зависит также от скорости нарастания и изменчивости звука.

Под термином "шум" понимают любой неприятный или нежелательный звук либо их сочетание, которые мешают восприятию полезных сигналов, нарушают тишину, отрицательно влияют на организм человека, снижают его работоспособность.

Звук как физическое явление - это механические колебания упругой среды в диапазоне слышимых частот. Звук как физиологическое явление - это ощущение, воспринимаемое органом слуха при воздействии на него звуковых волн.

Звуковые волны возникают всегда, если в упругой среде имеется колеблющееся тело или когда частицы упругой среды (газообразной, жидкой или твердой) колеблются вследствие воздействия на них любой возбуждающей силы. Однако не все колебательные движения воспринимаются органом слуха как физиологическое ощущение звука. Ухо человека может слышать лишь колебания, частота которых составляет от 16 до 20 000 в 1 с. Ее измеряют в герцах (Гц). Колебания с частотой до 16 Гц называются инфразвуком, более 20 000 Гц - ультразвуком, и ухо их не воспринимает. В дальнейшем будет идти речь лишь о слышимых ухом звуковых колебаниях.

Звуки могут быть простыми, состоящими из одного синусоидального колебания (чистые тона), и сложными, характеризующимися колебаниями различных частот. Звуковые волны, распространяемые в воздухе, называются воздушным звуком. Колебания звуковых частот, распространяющиеся в твердых телах, называют звуковой вибрацией, или структурным звуком.

Часть пространства, в которой распространяются звуковые волны, называют звуковым полем. Физическое состояние среды в звуковом поле, или, точнее, изменение этого состояния (наличием волн), характеризуется звуковым давлением (р). Это избыточное переменное давление, возникающее дополнительно к атмосферному в среде, где проходят звуковые волны. Измеряют его в ньютонах на квадратный метр (Н/м2) или в паскалях (Па).

Звуковые волны, возникающие в среде, распространяются от точки их появления - источника звука. Необходим определенный отрезок времени, чтобы звук достиг другой точки. Скорость распространения звука зависит от характера среды и вида звуковой волны. В воздухе при температуре 20 °С и нормальном атмосферном давлении скорость звука составляет 340 м/с. Скорость звука (с) не следует смешивать с колебательной скоростью частиц (v) среды, являющейся знакопеременной величиной и зависящей как от частоты, так и от величины звукового давления.

Длиной звуковой волны (к) называется расстояние, на которое колебательное движение распространяется в среде за один период. В изотропных средах она зависит от частоты и скорости звука, а именно:

Частота колебаний определяет высоту звучания. Общее количество энергии, которая излучается источником звука в окружающую среду за единицу времени, характеризует поток звуковой энергии, определяется в ватах (Вт). Практический интерес представляет не весь поток звуковой энергии, а лишь та его часть, которая достигает уха или диафрагмы микрофона. Часть потока звуковой энергии, которая приходится на единицу площади, называется интенсивностью (силой) звука, ее измеряют в ваттах на 1 м2. Интенсивность звука прямо пропорциональна звуковому давлению и колебательной скорости.

Звуковое давление и интенсивность звука изменяются в большом диапазоне. Но ухо человека улавливает быстрые и незначительные изменения давления в определенных пределах. Существуют верхний и нижний пределы слуховой чувствительности уха. Минимальная звуковая энергия, формирующая ощущение звука, называется порогом слышимости, или порогом восприятия, для принятого в акустике стандартного звука (тона) частотой 1000 Гц и интенсивностью 10~12 Вт/м2. Звуковая волна большой амплитуды и энергии оказывает травмирующее действие, обусловливает появление неприятных ощущений и боли в ушах. Это верхний предел слуховой чувствительности - порог болевого ощущения. Он отвечает звуку частотой 1000 Гц при его интенсивности 102 Вт/м2 и звуковом давлении 2 х 102 Па. Способность слухового анализатора воспринимать большой диапазон звукового давления объясняется тем, что он улавливает не разницу, а кратность изменения абсолютных величин, характеризующих звук. Поэтому измерять интенсивность и звуковое давление в абсолютных (физических) единицах сверхсложно и неудобно.

В акустике для характеристики интенсивности звуков, или шума, используют специальную измерительную систему, где учтена почти логарифмическая зависимость между раздражением и слуховым восприятием. Это шкала белов (Б) и децибелов (дБ), отвечающая физиологическому восприятию и дающая возможность резко сократить диапазон значений измеряемых величин. По этой шкале каждая последующая ступень звуковой энергии больше предыдущей в 10 раз. Например, если интенсивность звука больше в 10, 100, 1000 раз, то по логарифмической шкале она отвечает увеличению на 1, 2, 3 единицы. Логарифмическая единица, которая отражает десятикратную степень повышения интенсивности звука над порогом чувствительности, называется белом, т. е. это десятичный логарифм отношения интенсивности звуков.

Следовательно, для измерения интенсивности звуков в гигиенической практике пользуются не абсолютными величинами звуковой энергии или давления, а относительными, которые выражают отношение энергии или давления данного звука к пороговым для слуха величинам энергии или давления. Диапазон энергии, который воспринимается ухом как звук, составляет 13-14 Б. Для удобства пользуются не белом, а единицей, которая в 10 раз меньше, - децибелом. Эти величины называются уровнями интенсивности звука или звукового давления.

После стандартизации порогового значения Р0 уровни звукового давления, определяемые относительно него, стали абсолютными, так как они однозначно отвечают значениям звукового давления.

Звуковую энергию , излучаемую источником шума, распределяют по частотам. Поэтому необходимо знать, как распределяется уровень звукового давления, т. е. частотный спектр излучения.

В настоящее время гигиеническое нормирование осуществляется в звуковом диапазоне частот от 45 до 11 200 Гц.

Часто приходится складывать уровни звукового давления (звука) двух и более источников шума или находить их среднее значение. Производят последовательное сложение уровней звукового давления, начиная с максимального. Сначала определяют разницу между двумя составляющими уровнями звукового давления, после чего по разнице, определенной с помощью таблицы, находят слагаемое. Его приплюсовывают к большему из составляющих уровней звукового давления. Аналогичные действия производят с определенной суммой двух уровней и третьим уровнем и т. д.

Большинство шумов содержит звуки почти всех частот слухового диапазона, но отличается разным распределением уровней звукового давления по частотам и их изменением во времени. Классифицируют шумы, действующие на человека, по их спектральным и временным характеристикам.

По характеру спектра шумы разделяют на широкополосные с беспрерывным спектром шириной более одной октавы и тональные, в спектре которых имеются слышимые дискретные тона.

По виду спектра шумы могут быть низкочастотными (с максимумом звукового давления в области частот менее 400 Гц), среднечастотными (с максимумом звукового давления в области частот 400-1000 Гц) и высокочастотными (с максимумом звукового давления на участке частот свыше 1000 Гц). При наличии всех частот шум условно называют белым.

По временной характеристике шумы разделяют на постоянные (уровень звука изменяется во времени не более чем на 5 дБА) и непостоянные (уровень звука изменяется во времени на более чем 5 дБА).

К постоянным могут быть отнесены шумы постоянно работающих насосных или вентиляционных установок, оборудования промышленных предприятий (воздуходувки, компрессорные установки, различные испытательные стенды).

Непостоянные шумы , в свою очередь, делят на колебательные (уровень звука все время меняется), прерывистые (уровень звука резко падает до фонового несколько раз за период наблюдения, причем продолжительность интервалов, в течение которых уровень шума остается постоянным и превышает фоновый, составляет 1 с и более) и импульсные (состоящие из одного или нескольких последовательных ударов продолжительностью до 1 с), ритмичные и неритмичные.

К непостоянному относится шум транспорта. Прерывистый шум - это шум от работы лебедки лифта, периодически включающихся агрегатов холодильников, некоторых установок промышленных предприятий или мастерских.

К импульсным могут быть отнесены шумы от пневматического молотка, кузнечно-прессового оборудования, хлопанья дверьми и т. п.

По уровню звукового давления шум делят на низкий, средней мощности, сильный и очень сильный.

Методы оценки шума зависят, прежде всего, от характера шума. Постоянный шум оценивают в уровнях звукового давления (L) в децибелах в октавных полосах со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц. Это основной метод оценки шума.

Для оценки непостоянных шумов, а также ориентировочной оценки постоянных шумов используют термин "уровень звука", т. е. общий уровень звукового давления, который определяют шумомером на частотной коррекции А, характеризующей частотные показатели восприятия шума ухом человека1. Непостоянные шумы принято оценивать по эквивалентным уровням звука. Эквивалентный (по энергии) уровень звука (LA экв, дБА) определенного непостоянного шума - это уровень звука постоянного широкополосного неимпульсного шума, который имеет то же среднеквадратическое звуковое давление, что и данный непостоянный шум в течение определенного времени.

В среде, которая обладает массой и упругостью, любое механическое возмущение создает шум. Без наличия упругой среды распространения звука не происходит. Чем плотнее среда, тем больше будет сила звука. Например, в сгущенном воздухе звуки передаются с большей силой, чем в разреженном.

Звук - это волнообразно распространяющиеся механические колебания упругой среды.

Шум - специфическая форма звука, нежелательная для человека, мешающая ему в данный момент работать, нормально разговаривать или отдыхать.

Основными физическими параметрами, характеризующими звук как колебательное движение, являются скорость, длина и амплитуда волны, частота, сила и акустическое давление.

Скорость звука - это расстояние, на которое в упругой среде распространяется звуковая волна в единицу времени. Скорость звука зависит от плотности и температуры среды.

Звуки различной частоты, будь то пронзительный свист или глухое рычание, распространяются в одной и той же среде с одинаковой скоростью.

Скорость звука является некоторой константой, характерной для данного вещества. Скорость распространения звука в воздухе (при 0°С) составляет 340 м/с, в воде - 1450 м/с, в кирпиче - 3000 м/с, в стали - 5000 м/с.

С изменением температуры среды изменяется скорость звука. Чем выше температура среды, тем с большей скоростью в ней распространяется звук. Так, на каждый градус увеличения температуры скорость звука в газах возрастает на 0,6 м/с, в воде - на 4,5 м/с.

В воздухе звуковые волны распространяются в виде расходящейся сферической волны, которая заполняет большой объем, так как колебания частиц, вызванные источником звука, передаются значительной массе воздуха. Однако с увеличением расстояния колебания частиц среды ослабевают.

Ослабление звука зависит также от его частоты. Звуки высоких частот поглощаются в воздухе больше, чем звуки низких частот.

Возможна субъективная оценка производственного шума. На рис. показана зависимость уровня звукового давления от расстояния.

Рис. График субъективной оценки шума: 1 - очень громкий разговор; 2 - громкий разговор; 3 - повышенный голос; 4 - нормальный голос

По этой зависимости можно ориентировочно установить величину уровня звукового давления, если два человека, находящихся в цехе, достаточно хорошо слышат и понимают речь при разговоре между собой. Например, если разговор нормальным голосом можно вести на расстоянии 0,5 м друг от друга, то это означает, что величина шума не превышает 60 дБ; на расстоянии 2,5 м при этой величине уровня звукового давления будет услышана и понятна только громкая речь.

Источники шума обладают определенной направленностью излучения. Наличие в атмосфере слоев воздуха с различной температурой приводит к преломлению звуковых волн.

Днем, когда температура воздуха с высотой уменьшается, звуковые волны от источника, расположенного вблизи поверхности земли, загибаются кверху и на некотором расстоянии от источника звук не слышен.

Если же с высотой температура воздуха повышается, звуковые волны загибаются книзу и звук доходит до более отдаленных точек земной поверхности. Этим объясняется тот факт, что ночью, когда верхние слои воздуха нагреваются за день, звук слышен на более далекие расстояния, чем днем, особенно при распространении его над поверхностью воды, почти полностью отражающей звуковые волны вверх.

Когда температура воздуха с высотой изменяется незначительно и ветер отсутствует, то звук распространяется, не испытывая заметного преломления. Например, в зимние морозные дни за несколько километров слышен гудок паровоза, далеко слышен скрип саней, стук топора в лесу и т. п.

Как любое волнообразное движение, звук характеризуется длиной волны. Длиной волны называется расстояние между двумя последовательными гребнями и впадинами.

Амплитудой волны называют расстояние, на которое частица среды отклоняется от своего положения равновесия.

Органы слуха человека воспринимают длины звуковых волн от 20 м до 1,7 см. Сила звука прямо пропорциональна длине звуковой волны.

Частота звука - число колебаний звуковой волны в единицу времени (секунду) и измеряется в Гц.

По частоте звуковые колебания подразделяют на три диапазона:

инфразвуковые колебания с частотой менее 16 Гц;

звуковые - от 16 до 20 000 Гц;

ультразвуковые - более 20 000 Гц.

Органы слуха человека воспринимают звуковые колебания в интервале частот 16 ... 20 000 Гц.

Звуковой диапазон принято подразделять на низкочастотный -до 400 Гц, среднечастотный - 400 ... 1000 Гц и высокочастотный -свыше 1000 Гц.

Инфразвуки не воспринимаются органом слуха человека, но могут воздействовать на организм в целом, вызывая тяжелые последствия. Дело в том, что внутренние органы человека имеют собственную частоту колебаний 6 ... 8 Гц.

При воздействии инфразвука этой частоты возникает резонанс, т. е. частота инфразвуковых волн совпадает с собственной (резонансной) частотой внутренних органов, что сопровождается увеличением амплитуды колебаний системы. Человеку кажется, что внутри у него все вибрирует. Кроме того, инфразвуковые колебания обладают биологической активностью, которая объясняется также совпадением их частот с ритмом головного мозга. Инфразвук определенной частоты вызывает расстройство работы мозга, слепоту, а при частоте 7 Гц - смерть.

Основными источниками инфразвука на предприятиях общественного питания могут быть непрерывно работающие машины и механизмы, имеющие число циклов менее 20 в секунду, - механизмы для перемешивания салатов, нарезки свежих и вареных овощей, рыхлители, взбивальные машины и другие виды технологического оборудования, имеющего относительно небольшую частоту вращения основных рабочих органов.

Одна из особенностей инфразвука заключается в том, что он хорошо распространяется на большие расстояния и почти не ослабляется препятствиями. Поэтому при борьбе с ним традиционные методы звукоизоляции и звукопоглощения малоэффективны. В этом случае наиболее приемлем метод борьбы с инфразвуком как вредным производственным фактором в источнике его возникновения.

Ультразвук - упругие волны малой длины с частотой колебаний более 20000 Гц. Специфическая особенность ультразвука заключается в его возможности генерировать пучкообразные волны, которые могут переносить значительную механическую энергию. Эта способность ультразвука нашла широкое применение в различных отраслях промышленности, в том числе и пищевой. Так, например, обработка молока ультразвуком позволяет значительно снизить содержание в нем микрофлоры. Ультразвук используют на предприятиях, производящих животные и растительные жиры, при хлебопекарном и кондитерском производстве, на мясо- и рыбоперерабатывающих заводах, в виноделии и парфюмерии.

Наряду с многочисленными возможностями использования ультразвука в развитии технологических процессов он вредно воздействует на организм человека: вызывает нервные расстройства, головную боль, потерю слуховой чувствительности и даже изменение состава и свойств крови.

Защита от действия ультразвука может быть обеспечена изготовлением оборудования, излучающего ультразвук, в звукоизолирующем исполнении, устройством экранов, в том числе прозрачных, между оборудованием и работающим, размещением ультразвуковых установок в специальных помещениях.

При распространении звуковой волны в воздухе в нем образуются сгущения и разряжения, создающие добавочные давления по отношению к среднему внешнему давлению атмосферы. Именно на это давление, называемое звуковым, или акустическим, реагируют органы слуха человека. Единица измерения звукового давления - Н/м 2 или Па.

Звуковая волна в направлении своего движения несет с собой определенную энергию. Количество энергии, переносимой звуковой волной в единицу времени через площадку в 1 м 2 , расположенную перпендикулярно направлению распространения волны, называется силой звука, или интенсивностью звука (I), измеряется в Вт/м 2 .

Максимальные и минимальные звуковые давления и интенсивности звука, воспринимаемые человеком как звук, называют пороговыми.

Орган слуха человека способен различать прирост звука в 0,1 Б, поэтому на практике при измерении уровней звука используют внесистемную единицу децибел (дБ): 0,1 Б = 1дБ.

Увеличение шума на 1 дБ дает прирост звуковой энергии в 1,26 раза. Сравнивая силу двух шумов, например 10 и 20 дБ, нельзя сказать, что интенсивность второго в два раза больше первого. В действительности она будет больше в 10 раз.

Шкала громкости, воспринимаемая органом слуха человека, -от 1 до 130 дБ.

Давление звуковой волны на пороге болевого ощущения (130 дБ) равно примерно 20 Па.

Для лучшего представления уровня звука как силы слухового ощущения в децибелах можно привести следующие примеры: при

f= 1000 Гц нормальная разговорная речь соответствует 40 дБ, работа мотора легкового автомобиля - 50 дБ, двигателя самолета -100 ... 110 дБ, шум магистральных улиц и площадей городов-60 дБ.

Физиологическое воздействие шума на организм человека зависит от спектра и характера звука.

Спектр - это графическое изображение разложения уровня звукового давления по частотным составляющим. Спектральные характеристики помогают определить наиболее вредные звуки и разработать мероприятия по борьбе с производственным шумом.

Различают три вида спектров шума: дискретный или тональный, сплошной или широкополостный и смешанный.

Дискретный (от лат. discretus- раздельный, прерывистый) спектр (рис. а) характеризует непостоянный звук, когда из общего уровня резко выделяются отдельные частоты, а на некоторых частотах вообще отсутствует какой-либо звук.

Рис. Спектры шума: а - дискретный; б - сплошной; в - смешанный

Дискретный спектр характерен, например, для шума, издаваемого сиреной спецмашин, пилой и т. п.

Сплошной спектр (рис. б) является совокупностью уровней звукового давления, близко расположенных друг к другу частот, когда на каждой частоте присутствует уровень звукового давления.

Этот спектр шума характерен для работы реактивного двигателя, двигателей внутреннего сгорания, выхлопе газов, истечении воздуха через узкое отверстие и т. п.

Смешанный спектр (рис. в) - это спектр, когда на фоне сплошного шума имеются дискретные составляющие.

На предприятиях чаще всего имеют место смешанные спектры -это шум технологического оборудования, вентиляторов, компрессоров и т. п.

По характеру шум может быть стабильным и импульсным.

Стабильный шум характеризуется постоянством уровней звукового давления, а для импульсного характерно быстрое изменение уровня звукового давления во времени на порядок 8 ... 10 дБ/с. Импульсный шум воспринимается как отдельные, следующие друг за другом удары; его воздействие на организм человека носит более агрессивный характер, чем стабильный шум.

Звук- это механические колебания частиц в упругой среде, распространяющиеся в форме продольных волн, частота которых лежит в пределах воспринимаемых человеческим ухом, в среднем от 16 до 20000 Гц.

Звуки, встречающиеся в природе, разделяют на несколько видов.

Тон -это звук, представляющий собой периодический процесс. Основной характеристикой тона является частота. Простой тон создается телом, колеблющимся по гармоническому закону (например, камертоном). Сложный тон создается периодическими колебаниями, которые не являются гармоническими (например, звук музыкального инструмента, звук, создаваемый речевым аппаратом человека).

Шум- это звук, имеющий сложную неповторяющуюся временную зависимость и представляющий собой сочетание беспорядочно изменяющихся сложных тонов (шелест листьев).

Звуковой удар- это кратковременное звуковое воздействие (хлопок, взрыв, удар, гром).

Сложный тон, как периодический процесс, можно представить в виде суммы простых тонов (разложить на составляющие тоны). Такое разложение называется спектром.

Акустический спектр тона- это совокупность всех его частот с указанием их относительных интенсивностей или амплитуд.

Наименьшая частота в спектре (н) соответствует основному тону, а остальные частоты называют обертонами или гармониками. Обертоны имеют частоты, кратные основной частоте: 2н, 3н, 4н, ... Акустический спектр шума является сплошным.

Физические характеристики звука

1. Скорость(v). Звук распространяется в любой среде, кроме вакуума. Скорость его распространения зависит от упругости, плотности и температуры среды, но не зависит от частоты колебаний. Скорость звука в газе зависит от его молярной массы (М) и абсолютной температуры (Т):

где R - универсальная газовая постоянная: г - отношение теплоемкостей газа при постоянном давлении и постоянном объеме.

От давления скорость звука не зависит.

Для воздуха (М=0,029 кг/моль, г = 1,4) в интервале температур -50 °С- + 50 °С можнос пользоваться приблежонной формулой

Скорость звука в воде равна 1500 м/с; близкое значение имеет скорость звука и в мягких тканях организма.

2. Звуковое давление. Распространение звука сопровождается изменением давления в среде.

Именно изменения давления вызывают колебания барабанной перепонки, которые и определяют начало такого сложного процесса, как возникновение слуховых ощущений.

Звуковое давление(ДС)-это амплитуда тех изменений давления в среде, которые возникают при прохождении звуковой волны.

3. Интенсивность звука(I). Распространение звуковой волны сопровождается переносом энергии.

Интенсивность звука - это плотность потока энергии, переносимой звуковой волной.

В однородной среде интенсивность звука, испущенного в данном направлении, убывает по мере удаления от источника звука. При использовании волноводов можно добиться и увеличения интенсивности. Типичным примером такого волновода в живой природе является ушная раковина.

Связь между интенсивностью (I) и звуковым давлением (ДС) выражается следующей формулой:

где с - плотность среды; v- скорость звука в ней.

Минимальные значения звукового давления и интенсивности звука, при которых у человека возникают слуховые ощущения, называются порогом слышимости.

Рассмотрим основные характеристики звука:

  • 1)Субъективные характеристики звука - характеристики, зависящие от свойств приемника:
    • - громкость. Громкость звука определяется амплитудой колебаний в звуковой волне.
    • - тон (высота тона). Определяется частотой колебаний.
    • - тембр (окраска звука).

Закон Вебера-Фехнера - эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности стимула. Если разряжение увеличивать в геометрической последовательности, то ощущение увеличится в арифметической.

Шум - сочетание различных по частоте и силе звуков, которые оказывают вредное и раздражающее действие на человека. В качестве звука мы понимаем упругие колебания частиц воздушной среды, которые распространяются волнообразно в твердой, жидкой или газообразной среде вследствие воздействия какой-либо возмущающей силы. Как физическое явление, шум – волновое движение упругой среды, как физиологическое: звуковые волны в диапазоне от 16 до 20000 Гц, воспринимаемые человеком с нормальным слухом. Слышимый шум - 20 - 20000 Гц, ультразвуковой диапазон - свыше 20 кГц, инфразвук - меньше 20 Гц. Наибольшая чувствительность 1000-4000 Гц.

Источники слуха характеризуются звуковой мощностью (W) – это общее количество звуковой энергии, излучаемой источником звука в единицу времени.

Физические характеристики шума

Интенсивность звука - кол-во звуковой энергии, переносимое звуковой волной за 1 с через площадь в 1 м2, перпендикулярно распространению звуковой волны. R – расстояние до поверхности.

Звуковое давление P [Па]- дополнительное давление воздуха, которое возникает при прохождении через него звуковой волны (разность между мгновенным значением полного давления и значением в невозмущенной среде).

Каждое колебание характеризуется частотой, то есть количеством колебаний в секунду. По частоте шумы разделяются на: низкочастотные (ниже 400 Гц), среднечастотные (400-1000), высокочастотные (свыше 1000).

Вредное воздействие шума: сердечно-сосудистая система; неравная система; органы слуха (барабанная перепонка), вызывая гипертонию, кожные заболевания, язвенную болезнь. Поэтому шум надо нормировать в соответствии с нормативными требованиями: ГОСТ. Шум. Общие требования безопасности, Санитарные нормы: Шум в рабочих местах в помещениях жилых общественных зданий и на территории жилой застройки. Нормирование шума призвано предотвратить нарушение слуха и снижение работоспособности и производительности труда работающих. Согласно этим документам, нормируется уровень звукового давления в зависимости от частотного спектра. Учитывая протяженный частотный диапазон (20-20000 Гц) при оценке источника шума, используется логарифмический показатель, который называется уровнем звукового давления (УЗД): . Р - звуковое давление в точке измерения [Па]; Р0 - минимальное значение, которое может воспринимать человеческое ухо 10в -3 [Па]. УЗД показывает во сколько раз фактическое значение превышает пороговое. 140 Дб – порог болевого ощущения.

Для постоянных шумов нормируются уровни звукового давления УЗД (дБ) в октавных полосах со среднегеометрическими частотами 31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Каждой частоте соответствует предельное значение УЗД,не оказывающее негативное влияние на человека в течении 8-часового рабочего дня.



Санитарными нормами СН 2.2.4 / 2.1.8.562 – 96 ²Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки², а также ГОСТ 12.1.003 – 83 с целью ограничения шумового воздействия на человека устанавливаются предельно допустимые значения уровня звука и предельный спектр шума для различных видов трудовой деятельности. При этом учитывается назначение помещений, характер территории застройки и время суток (таблица 56, 57, 58).

При нормировании параметров шума также учитываются их временные характеристики. Согласно ГОСТ 12.1.003 - ²Шум. Общие требования безопасности² по временным характеристикам шум классифицируется как постоянный, уровень звука которого за 8-часовой рабочий день изменяется во времени не более чем на
5 дБА, и непостоянный.

Непостоянный шум подразделяется на прерывистый и импульсный. Уровень звука прерывистого шума меняется ступенчато на 5 дБА и более, причем длительность интервалов, в течение которых уровень остается постоянным, составляет
1 секунду и более.

Импульсный шум состоит из одного или нескольких звуковых сигналов, каждый из которых имеет длительность менее одной секунды. При этом уровни звука должны отличаться не менее чем на 7 дБА.

Нормируемый параметр непостоянного шума – эквивалентный уровень звука в дБА, то есть значение уровня звука длительного постоянного шума, который в пределах регламентированного интервала времени T = t 2 – t 1 имеет то же самое значение уровня звука, что и рассматриваемый шум, уровень звука которого изменяется во времени:

где L Ai – средний уровень звука в i – том интервале, дБА;

t i – временной интервал, в течение которого уровень находится в заданных пределах, с;

i – номер интервала уровней (i = 1,2,…n).