Урок «Решение неравенств с одной переменной и их систем. Урок алгебры "Неравенства






















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока : урок применения знаний, умений, навыков в новой ситуации.

Цели урока :

  • обучающая : в результате урока учащиеся обобщают и систематизируют знания по теме «Неравенства», знакомятся с новым способом решения некоторых логарифмических неравенств.
  • развивающая : в результате урока учащиеся учатся анализировать, выделять главное, доказывать и опровергать логические выводы;
  • воспитательная : в результате урока учащиеся развивают коммуникативные навыки, ответственное отношение к достижению цели.

Оборудование компьютер, мультимедийный проектор.

Ход урока

I. Актуализация опорных знаний

«Решение неравенств» – тема очень актуальная в математике. С неравенствами мы встречались на уроках алгебры, начиная с 8 класса. Мы рассматривали разные виды и разные способы решения неравенств. Сегодня мы вспомним основные виды неравенств, назовём способы их решений и познакомимся с некоторыми приёмами, упрощающими их решения. Слайд 1

Чтобы решать сложные неравенства, надо хорошо знать решение простейших неравенств.

Сообщение учащегося

1. Виды неравенств и их решение.

Вид неравенства Решение
Линейные
Содержащие чётную степень
Содержащие нечётную степень
Иррациональные
Иррациональные
Показательные

Логарифмические

Тригонометрические
При решении используют тригонометрическую окружность или график соответствующей функции

Вопрос учащимся: Какие преобразования используют при решении неравенств?

Учащиеся называют : возведение в чётную или нечётную степень, логарифмирование, потенцирование, применение формул, позволяющие привести неравенство к более простому виду.

Вопрос: Что может произойти с множеством решений неравенства в процессе преобразований?

Учащиеся отмечают, что множество решений либо не меняется, либо расширяется (можно получить посторонние решения), либо сужается (можно потерять решения).

Поэтому важно знать какие преобразования неравенств, являются равносильными и при каких условиях.

Сообщение учащегося

2. Равносильность неравенств.

Перечислим некоторые преобразования неравенств, приводящие данное неравенство к неравенству, равносильному ему на множестве всех действительных чисел.

Назовем преобразования неравенств, приводящие исходное неравенство к неравенству равносильному ему на некотором множестве чисел

  1. Возведение неравенства в чётную степень; (на множестве где обе функции неотрицательны)
  2. Потенцирование неравенства; (на множестве где обе функции положительны)
  3. Умножение обеих частей неравенства на функцию; (на множестве где функция положительна)
  4. Применение некоторых формул (логарифмических, тригонометрических и др.) (на множестве где одновременно определены обе части применяемой формулы)

Фронтальная работа

Вопрос учащимся: Равносильны ли неравенства? Почему?

II. Изучение нового материала

Учитель: В зависимости от интерпретации неравенства различают

  • алгебраический
  • функциональный
  • графический
  • геометрический

подходы в решении неравенств. При алгебраическом подходе выполняют равносильные общие или частичные преобразования неравенств. При функциональном подходе используют свойства функций (монотонность, ограниченность и т.д.). Основой геометрического подхода является интерпретация неравенств и их решений на координатной прямой, координатной плоскости или в пространстве. В некоторых случаях алгебраический и функциональный подходы взаимно заменяемые.

Среди алгебраических методов решения неравенств выделяют:

  • Сведение неравенства к равносильной системе или совокупности систем
  • Метод замены
  • Разбиение области определения неравенства на подмножества

Говорят, что лучше решить одно неравенство, но разными способами, чем несколько неравенств одним и тем же способом. Поиски разных способов решения, рассмотрение всех возможных случаев, критическая оценка их с целью выделения наиболее рационального, красивого, является важным фактором развития математического мышления, уводят от шаблона. Поэтому сегодня мы попытаемся искать наиболее рациональные способы решения неравенств.

Логарифмическое неравенство можно свести к равносильной совокупности систем неравенств

Решите неравенство : (учащиеся работают в группах)

Ответ:

Учитель: Оказывается, что данное неравенство можно решить иначе.

Зная свойства логарифма о том, что log а b < 0, если a и b по разные стороны от 1, log a b > 0, если a и b по одну сторону от 1, можно получить очень интересный и неожиданный способ решения неравенства. Об этом способе написано в статье “Некоторые полезные логарифмические соотношения” в журнале “Квант” № 10 за 1990 год.

В этом видеоматериале пойдет речь о решении неравенств, которые имеют переменную. Они так и называются - неравенствами с одной переменной. Что же является решением таких неравенств? Это такие значения переменной, при которых решаемое нами неравенство становится верным числовым неравенством. А решить неравенство с переменной - значит найти все его решения или доказать, что их нет. Для нахождения этих решений мы используем свойства числовых неравенств, которые рассматривались ранее.

Рассмотренный в видео уроке простой пример показывает, как важно иметь четкий алгоритм решения, иначе говоря, знать правила решения неравенств.

Вот предлагается простое неравенство 2х + 5 < 7. Представим себе, что алгоритма решения у нас нет. Значит, мы будем перебирать все числа и смотреть, какие из них нам подходят, то есть при каких значениях переменной х данное неравенство станет верным числовым неравенством. Просматривая видео, замечаем, что подстановка одних чисел дает нам верное числовое неравенство, а подстановка других этого не дает. Приведенный пример показывает неэффективность данного способа решения.

Обратимся к свойствам числовых неравенств. Мы знаем, что к обеим частям неравенства можно прибавить одно и то же число. От этого неравенство не изменится. Также мы знаем, что обе части неравенства можно делить или умножать на одно и то же положительное число. В видео уроке показано, как, используя эти свойства, можно найти решение заданного неравенства. Получилось, что х < 1. Это значит, что все числа х, меньше единицы, являются решением неравенства. Они образуют открытый промежуток от минус бесконечности до единицы (числовой луч). Другими словами, у нас есть множество решений заданного неравенства. Окончательное решение неравенства можно записать, используя такие формы.

Первая форма записи: х < 1 (х меньше единицы).

Вторая форма записи: х Є (-∞; 1) (х принадлежит промежутку от минус бесконечности до единицы).

На основании рассмотренных ранее свойств числовых неравенств, можно сформулировать правила, с помощью которых решаются неравенства с одной переменной. Эти правила сформулированы в настоящем видео уроке.

Неравенства с одной переменной вида ах + b > 0 или ах + b < 0 называются линейными неравенствами. Неравенства могут также быть нестрогими, то есть содержать знак ≥ или ≤.

Зх - 5 ≥ 7х - 15.

Для решения неравенства применяются уже известные нам правила. Сначала члены, содержащие переменную, собираем в левой части. При переносе из правой части в левую часть, слагаемое 7х, меняет знак. Числовые члены неравенства собираем в правой части, опять же не забывая менять знаки.

Далее придется разделить обе части неравенства на отрицательное число -4. В результате такого деления получается неравенство противоположного смысла. Обратите внимание, что в ходе решения мы постоянно пользуемся правилами решения неравенств. Окончательно получается, что х ≤ 2,5. Решение можно записать, используя любую из форм:

1. х ≤ 2,5 (х меньше либо равен 2,5);

2. х Є (-∞; 2,5] (х принадлежит промежутку от минус бесконечности до 2,5).

При изучении уравнений было рассмотрено понятие об их равносильности. Для неравенств тоже существует это понятие. Два неравенства с одной переменной будут равносильными, если решения этих неравенств совпадают. Если неравенства не имеют решений, то они также являются равносильными.

Существование равносильных неравенств позволяет намного упростить решение. Ведь тогда неравенство можно заменить равносильным ему, но более простым неравенством.

С помощью таких равносильных преобразований решается пример 2 настоящего видео урока.

Даный урок проводится в 11 классе по программе базового уровня. Цель урока: обобщить знания по теме «Решение неравенств с одной переменной». Рассматриваются неравенства разного вида. Повторяются способы решения неравенств.

Скачать:


Предварительный просмотр:

Конспект открытого урока

«Решение неравенств с одной переменной»

Класс: 11б

Уровень:

Цель урока: обобщить знания по теме «Решение неравенств с одной переменной».

Задачи урока:

обучающие:

  • обобщить и систематизировать знания, полученные при изучении темы «Решение неравенств с одной переменной»;
  • рассмотреть решение неравенств с одной переменной различного вида;
  • рассмотреть общие способы решения неравенств с одной переменной (метод последовательных упрощений, метод интервалов, метод замены переменной, функционально-графический метод);
  • закрепить умение применять основные теоремы равносильности при решении неравенств с одной переменной;
  • способствовать расширению знаний по изучаемой теме;

развивающие:

  • развитие логического мышления, памяти, умения рассуждать, искать рациональный способ решения поставленной задачи;
  • формирование умений сравнивать, обобщать, анализировать изучаемые факты;
  • развитие у учащихся самостоятельности в мышлении и учебной деятельности;
  • развитие математической речи;

воспитывающие:

  • воспитание самоконтроля, ответственности, настойчивости в достижении поставленных целей;
  • повышать уровень учебной мотивации с использованием компьютерных технологий;
  • воспитание коллективизма, взаимопомощи и ответственности за общую работу;
  • воспитание аккуратности при выполнении практических заданий;
  • воспитывать внимательность, активность, уверенность в себе.

Тип урока: урок повторения и обобщения

Оборудование: две ученических доски, интерактивная доска, проектор, компьютер.

Программное обеспечение: Microsoft Word, Microsoft PowerPoint, 1С Математический конструктор 4.0, презентация к уроку.

Учебник: Алгебра и начала математического анализа. 11 класс. В 2 ч. Учебник для учащихся общеобразовательных учреждений (базовый уровень) / [А. Г. Мордкович и др.] ; под ред. А. Г. Мордковича. – 4-е изд., стер. – М. : Мнемозина, 2013.

План урока:

1) организационный момент

2) повторение теоретических сведений по изучаемой теме

3) проверка домашнего задания, работа по карточкам

4) применение теоретических знаний на практике (решение задач устно и письменно по изучаемой теме)

5) самостоятельная работа

6) рефлексия

7) подведение итогов урока

8) запись домашнего задания

Ход урока.

  1. Организационный момент.

Приветствие учащихся, проверка готовности к уроку, вступительное слово учителя, название темы, целей урока, запись в тетрадях числа и темы урока (слайд 1)

Ребята, на доске отображено множество различных неравенств. Какие неравенства вы видите? (Тригонометрические, иррациональные, степенные, линейные, квадратные, логарифмические, показательные, дробно-рациональные.)

Что общего у этих неравенств? (Все неравенства содержат одну переменную.)

Начиная с восьмого класса вы изучаете решение таких неравенств. Сегодня на уроке мы поговорим о равносильности неравенств, применении теорем равносильности при их решении, а также вспомним основные методы решения неравенств с одной переменной. К концу урока пусть каждый из вас ответит на вопрос: «Насколько хорошо я владею тем или иным методом решения неравенств с одной переменной?»

Запишите в тетради число и тему урока «Решение неравенств с одной переменной».

  1. Повторение теоретических сведений по изучаемой теме.

Учитель выдаёт карточки с индивидуальными заданиями разного уровня сложности.

Решите неравенство (1 уровень)

Решите неравенство (2 уровень)

№ 57.16а (домашнее задание)

№ 57.24а (домашнее задание)

Ответьте на вопрос: «Что называют решением неравенства?» (Решением неравенства f(x) > g(x) называют всякое значение переменной х, которое обращает неравенство в верное числовое неравенство.) Рассмотрите пример. Назовите другие частные решения данного неравенства и числа, не являющиеся решением. Найдите общее решение данного неравенства. Что является общим решением неравенства с одной переменной? (слайд 2)

Следующий вопрос: «Какие неравенства называются равносильными?» (Неравенства f(x) > g(x) и p(x) > h(x) равносильны, если их решения совпадают.) Равносильны ли неравенства: x 2 ≥ 0 и |x| ≥ 0; ? (Все неравенства решение которых множество действительных чисел – равносильны. Все неравенства решение которых пустое множество – равносильны.) (слайд 3) Используется инструмент «шторка».

Получить неравенство равносильное данному помогают теоремы равносильности. Повторим их и используем в решении неравенств устно. (слайд 5-10)

Используется инструмент «шторка».

Нам известны и ранее неоднократно при решении неравенств применялись четыре метода. Назовите их. (Метод последовательных упрощений, метод интервалов, метод замены переменной, функционально-графический метод.)

На экране вы видите четыре неравенства. Соотнесите каждое неравенство с соответствующем методом решения. (слайд 11)

  1. Проверка домашнего задания. Учащиеся поясняют свое решение.

№ 57.16а (домашняя работа)

Решаем показательное неравенство методом замены переменной.

Пусть . Решаем методом интервалов.

t≥3,

Ответ:

Ответ:

х=1,5 х ∈ (0;1) ∪ (1; ∞ )

х=1

Ответ: х ∈ (1; 1,5) ∪ (2; ∞ )

№ 57.23б Выполнение данного номера предусмотрено на дополнительной доске.

Решаем неравенство графическим методом.

Построим график показательной функции y= . Построим график функции y= . Наблюдая за поведением графиков, выясняем, что решением неравенства является промежуток

И) - 2; - 1; 0; 1; 2 К) – 3; - 2; - 1; 0; 1; 2 Н) - 2; - 1; 0; 1 У) - 2; - 1; 1; 2

ТЕСТ «НЕРАВЕНСТВА»

    Решить неравенство: Х 8

И) (-∞; 8) М) (∞; 8) Н) [ 8; +∞) У) (8; + ∞)

х 6

И) [ - 4; +∞) М) [ 6; +∞) Н) (6; + ∞) У) (4; + ∞)

    Укажите решение двойного неравенства: - 5 Х 3

И) [ - 5; +∞) М) (-∞; 3) Н) [ - 5; 3) Ц) (- 5; 3)

    Если а

а Х в, называется:

И) интервалом М) отрезком Н) полуинтервалом Ц) лучом

    Решите уравнение: /Х/ = - 9

И) 9 К) - 9; 9 Н) - 9 Ц) нет корней

    Укажите целые решения неравенства:

- 1 Х 3 или x Є (- 1;3]

И) - 1; 0; 1; 2 Ы) 0; 1; 2; 3 Н) - 1; 0; 1 Ц) - 1; 1; 2 ; 3

Неравенство Эдуард Асадов
Так уж устроено у людей,


Родителям это всегда, признаться,
Обидно и странно. И всё же, и всё же
Не надо тут, видимо, удивляться
И обижаться не надо тоже.

Любовь ведь не лавр под кудрявой, кущей,
И чувствует в жизни острее тот,
Кто жертвует, действует, отдаёт,
Короче: дающий, а не берущий.

Любя безгранично детей своих,
Родители любят не только их,
Но плюс ещё то, что в них было вложено:
Нежность, заботы, труды свои,
С невзгодами выигранные бои,
Всего и назвать даже невозможно!

А дети, приняв отеческий труд
И становясь усатыми "детками",
Уже как должное всё берут
И покровительственно зовут
Родителей "стариками" и "предками".

Когда же их ласково пожурят,
Напомнив про трудовое содружество,
Дети родителям говорят:
– Не надо, товарищи, грустных тирад!
Жалоб поменьше, побольше мужества!

Да, так уж устроено у людей,
Хотите вы этого, не хотите ли,
Но только родители любят детей
Чуть больше, чем дети своих родителей.

И всё же – не стоит детей корить.
Ведь им не всегда щебетать на ветках.
Когда-то и им малышей растить,
Всё перечувствовать, пережить
И побывать в "стариках" и "предках".

Урок по теме: «Решение неравенств методом интервалов».

Тип урока: Урок обобщения и систематизации знаний.

ЦЕЛИ УРОКА:

    Обобщить, расширить знания школьников по изучаемой теме.

    Способствовать развитию наблюдательности, умения анализировать. Побуждать учеников к самоконтролю, самоанализу своей учебной деятельности.

    Воспитывать такие качества личности, как познавательная активность, самостоятельность.

Оборудование и материалы : компьютер, проектор, экран, презентация для сопровождения занятия, раздаточный материал для учащихся, оценочные листы.

Работа учащихся состоит из этапов. Итоги своей деятельности они фиксируют в оценочных листах, выставляя себе оценку за работу на каждом этапе урока.

ОЦЕНОЧНЫЙ ЛИСТ УЧАЩЕГОСЯ.

этап

Вид работы

Оценка

Повторение. Тест.

Графический диктант.

Практическая работа.

Исследование.

Оценка урока.

Этапы урока:

    Повторение (тест)

    Графический диктант.

    Практическая работа.

    Изучение нового.

    Подведение итогов урока (рефлексия, самооценка).

Ход урока

    Организационный момент.

    Учитель сообщает учащимся тему и цель урока.

Тема «Решение неравенств методом интервалов». Цель урока: обобщение и расширение знаний по данной теме.

    Знакомит с требованиями ведения оценочного листа.

    Сообщение темы и цели урока .(приложение №1-слайд1)

Тема, которую мы сейчас изучаем, поможет вам, ребята, при сдаче не только экзаменов за курс базовой школы, но и поможет успешно сдать централизованное тестирование и непременно понадобится вам для продолжения образования. А в том, что вы захотите его продолжить, я ничуть не сомневаюсь.

Желаю вам успехов в сегодняшней работе и пусть эпиграфом нашего урока будут слова персидского поэта Рудаки: (приложение №1-слайд2)

« С тех пор, как существует мирозданье,

Такого нет, кто б не нуждался в знанье,

Какой мы не возьмём язык и век,

Всегда стремился к знанью человек».

Итак, ребята, открываем тетради, записываем дату и классная работа.

Сегодня на уроке: (приложение №1-слайд3)

    Повторение (тест) (использованы КИМы для подготовки к итоговой аттестации). – 10 мин.

    Графический диктант. – 5, 7 мин.

    Практическая работа. – 15 мин

    Изучение нового. – 10 мин.

    Подведение итогов урока. Рефлексия. – 3 мин.

    Повторение (чтение графиков; графический способ решения уравнений, систем уравнений, неравенств) (приложение №2)

    Графический диктант .( приложение №1- слайд4)

« V » – согласен с утверждением; «–» – не согласен с утверждением.

    Методом интервалов можно решать только неравенства II степени.

    Для решения неравенств методом интервалов левую часть нужно разложить на множители.

    Для решения дробно-рациональных неравенств методом интервалов необходимо находить ОДЗ.

    На числовой прямой отмечаем только нули функции.

    Знаки функции на каждом интервале всегда чередуются.

    Неравенства могут иметь решение, состоящее из единственного числа.

    Решением неравенства с одной переменной может быть множество всех чисел.

    Ответ обязательно нужно записывать в виде промежутков.

    Метод интервалов позволяет решать и другие задачи.

К л ю ч: ( приложение №1- слай5) 1) - 2) V 3) V 4) - 5) - 6) V 7) V 8) - 9) V

Оценка «5» – 9 правильных ответов;

Оценка «4» – 7, 8 правильных ответов;

Оценка «3» – 5, 6 правильных ответов;

Оценка «2» – меньше 5 правильных ответов.

    Практическая работа (с проверкой ) (приложение №1-слайд 6)

Вариант 1.

а) б) ; в)

Вариант 2.

1. Решите методом интервалов неравенства:

а) б) ; в)

2. Найдите область определения функции:

Самопроверка практической работы ( приложение №1- слайды 7-9).

Оценка практической работы ( приложение №1- слайд10)

    Изучение нового .( приложение №1-слайд11 )

Нами уже рассматривался метод интервалов для решения квадратных неравенств. Применим тот же метод к решению неравенств высоких степеней.

f (x ) > 0(<, ≤, ≥)

Обязательная фраза : Поскольку функция f (x ) непрерывна в каждой точке своей области определения, то для решения этого неравенства можно использовать метод интервалов. Функция может изменить свой знак при переходе через ноль или точку разрыва. Хотя может и не изменить. Между нулями и точками разрыва знак сохраняется. Тогда зачем при решении неравенства изображать саму функцию?

Достаточно разбить числовую прямую на интервалы нулями функции и точками разрыва и в каждом из них определить знак.

Пример. Решим неравенство

Решение:

Прежде всего, отметим, что если в разложении многочлена на множители входит сомножитель , то говорят, что - корень многочлена кратности .

Данный многочлен имеет корни: кратности 6; кратности 3; кратности 1; кратности 2; кратности 5.

Нанесем эти корни на числовую ось. Отметим корни четной кратности двумя черточками, нечетной кратности – одной чертой.

Определим знак многочлена на каждом интервале, при любом значении х не совпадающем с корнями и взятом из данного интервала. Получим полную диаграмму знаков многочлена на всей числовой оси:

Теперь легко ответить на вопрос задачи, при каких значениях х знак многочлена неотрицательный. Отметим на рисунке нужные нам области, получим:

Из рисунка видно, что такими х

Решение:

1 вариант: х=3; х=-2; х=7; х=10

+ - - - +

2 3 7 10

2 вариант: х=9; х=2; х=-6; х=1

- + _ + +

6 1 2 9

(Два ученика решают неравенства на доске, остальные выполняют задание самостоятельно, затем проверяем полученное решение по вариантам и снова делаем выводы о смене знака в зависимости от степени кратности корня).

Обобщая ваши наблюдения, приходим к важным выводам ( приложение №1- слайд13) :

    Домашнее задание .( приложение №1-Слайд14)

    Решить неравенство:

    Построить эскиз графика функции:

    Подведение итога урока. Рефлексия . ( приложение №1-слайд15)