Основные элементарные функции и их свойства. Показательная функция – свойства, графики, формулы

Представлены свойства и графики степенных функций при различных значениях показателя степени. Основные формулы, области определения и множества значений, четность, монотонность, возрастание и убывание, экстремумы, выпуклость, перегибы, точки пересечения с осями координат, пределы, частные значения.

Формулы со степенной функцией

На области определения степенной функции y = x p имеют место следующие формулы:
; ;
;
; ;
; ;
; .

Свойства степенных функций и их графики

Степенная функция с показателем равным нулю, p = 0

Если показатель степенной функции y = x p равен нулю, p = 0 , то степенная функция определена для всех x ≠ 0 и является постоянной, равной единице:
y = x p = x 0 = 1, x ≠ 0 .

Степенная функция с натуральным нечетным показателем, p = n = 1, 3, 5, ...

Рассмотрим степенную функцию y = x p = x n с натуральным нечетным показателем степени n = 1, 3, 5, ... . Такой показатель также можно записать в виде: n = 2k + 1 , где k = 0, 1, 2, 3, ... - целое не отрицательное. Ниже представлены свойства и графики таких функций.

График степенной функции y = x n с натуральным нечетным показателем при различных значениях показателя степени n = 1, 3, 5, ... .

Область определения: -∞ < x < ∞
Множество значений: -∞ < y < ∞
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно возрастает
Экстремумы: нет
Выпуклость:
при -∞ < x < 0 выпукла вверх
при 0 < x < ∞ выпукла вниз
Точки перегибов: x = 0, y = 0
x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1,
y(-1) = (-1) n ≡ (-1) 2k+1 = -1
при x = 0, y(0) = 0 n = 0
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = 1 , функция является обратной к самой себе: x = y
при n ≠ 1 , обратной функцией является корень степени n :

Степенная функция с натуральным четным показателем, p = n = 2, 4, 6, ...

Рассмотрим степенную функцию y = x p = x n с натуральным четным показателем степени n = 2, 4, 6, ... . Такой показатель также можно записать в виде: n = 2k , где k = 1, 2, 3, ... - натуральное. Свойства и графики таких функций даны ниже.

График степенной функции y = x n с натуральным четным показателем при различных значениях показателя степени n = 2, 4, 6, ... .

Область определения: -∞ < x < ∞
Множество значений: 0 ≤ y < ∞
Четность: четная, y(-x) = y(x)
Монотонность:
при x ≤ 0 монотонно убывает
при x ≥ 0 монотонно возрастает
Экстремумы: минимум, x = 0, y = 0
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1 , y(-1) = (-1) n ≡ (-1) 2k = 1
при x = 0, y(0) = 0 n = 0
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = 2 , квадратный корень:
при n ≠ 2 , корень степени n :

Степенная функция с целым отрицательным показателем, p = n = -1, -2, -3, ...

Рассмотрим степенную функцию y = x p = x n с целым отрицательным показателем степени n = -1, -2, -3, ... . Если положить n = -k , где k = 1, 2, 3, ... - натуральное, то ее можно представить в виде:

График степенной функции y = x n с целым отрицательным показателем при различных значениях показателя степени n = -1, -2, -3, ... .

Нечетный показатель, n = -1, -3, -5, ...

Ниже представлены свойства функции y = x n с нечетным отрицательным показателем n = -1, -3, -5, ... .

Область определения: x ≠ 0
Множество значений: y ≠ 0
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно убывает
Экстремумы: нет
Выпуклость:
при x < 0 : выпукла вверх
при x > 0 : выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак:
при x < 0, y < 0
при x > 0, y > 0
Пределы:
; ; ;
Частные значения:
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = -1 ,
при n < -2 ,

Четный показатель, n = -2, -4, -6, ...

Ниже представлены свойства функции y = x n с четным отрицательным показателем n = -2, -4, -6, ... .

Область определения: x ≠ 0
Множество значений: y > 0
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 : монотонно возрастает
при x > 0 : монотонно убывает
Экстремумы: нет
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак: y > 0
Пределы:
; ; ;
Частные значения:
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = -2 ,
при n < -2 ,

Степенная функция с рациональным (дробным) показателем

Рассмотрим степенную функцию y = x p с рациональным (дробным) показателем степени , где n - целое, m > 1 - натуральное. Причем, n, m не имеют общих делителей.

Знаменатель дробного показателя - нечетный

Пусть знаменатель дробного показателя степени нечетный: m = 3, 5, 7, ... . В этом случае, степенная функция x p определена как для положительных, так и для отрицательных значений аргумента x . Рассмотрим свойства таких степенных функций, когда показатель p находится в определенных пределах.

Показатель p отрицательный, p < 0

Пусть рациональный показатель степени (с нечетным знаменателем m = 3, 5, 7, ... ) меньше нуля: .

Графики степенных функций с рациональным отрицательным показателем при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Нечетный числитель, n = -1, -3, -5, ...

Приводим свойства степенной функции y = x p с рациональным отрицательным показателем , где n = -1, -3, -5, ... - нечетное отрицательное целое, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: x ≠ 0
Множество значений: y ≠ 0
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно убывает
Экстремумы: нет
Выпуклость:
при x < 0 : выпукла вверх
при x > 0 : выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак:
при x < 0, y < 0
при x > 0, y > 0
Пределы:
; ; ;
Частные значения:
при x = -1, y(-1) = (-1) n = -1
при x = 1, y(1) = 1 n = 1
Обратная функция:

Четный числитель, n = -2, -4, -6, ...

Свойства степенной функции y = x p с рациональным отрицательным показателем , где n = -2, -4, -6, ... - четное отрицательное целое, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: x ≠ 0
Множество значений: y > 0
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 : монотонно возрастает
при x > 0 : монотонно убывает
Экстремумы: нет
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак: y > 0
Пределы:
; ; ;
Частные значения:
при x = -1, y(-1) = (-1) n = 1
при x = 1, y(1) = 1 n = 1
Обратная функция:

Показатель p положительный, меньше единицы, 0 < p < 1

График степенной функции с рациональным показателем (0 < p < 1 ) при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Нечетный числитель, n = 1, 3, 5, ...

< p < 1 , где n = 1, 3, 5, ... - нечетное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < +∞
Множество значений: -∞ < y < +∞
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно возрастает
Экстремумы: нет
Выпуклость:
при x < 0 : выпукла вниз
при x > 0 : выпукла вверх
Точки перегибов: x = 0, y = 0
Точки пересечения с осями координат: x = 0, y = 0
Знак:
при x < 0, y < 0
при x > 0, y > 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = -1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Четный числитель, n = 2, 4, 6, ...

Представлены свойства степенной функции y = x p с рациональным показателем , находящимся в пределах 0 < p < 1 , где n = 2, 4, 6, ... - четное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < +∞
Множество значений: 0 ≤ y < +∞
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 : монотонно убывает
при x > 0 : монотонно возрастает
Экстремумы: минимум при x = 0, y = 0
Выпуклость: выпукла вверх при x ≠ 0
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Знак: при x ≠ 0, y > 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = 1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Показатель p больше единицы, p > 1

График степенной функции с рациональным показателем (p > 1 ) при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Нечетный числитель, n = 5, 7, 9, ...

Свойства степенной функции y = x p с рациональным показателем, большим единицы: . Где n = 5, 7, 9, ... - нечетное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < ∞
Множество значений: -∞ < y < ∞
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно возрастает
Экстремумы: нет
Выпуклость:
при -∞ < x < 0 выпукла вверх
при 0 < x < ∞ выпукла вниз
Точки перегибов: x = 0, y = 0
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = -1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Четный числитель, n = 4, 6, 8, ...

Свойства степенной функции y = x p с рациональным показателем, большим единицы: . Где n = 4, 6, 8, ... - четное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < ∞
Множество значений: 0 ≤ y < ∞
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 монотонно убывает
при x > 0 монотонно возрастает
Экстремумы: минимум при x = 0, y = 0
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = 1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Знаменатель дробного показателя - четный

Пусть знаменатель дробного показателя степени четный: m = 2, 4, 6, ... . В этом случае, степенная функция x p не определена для отрицательных значений аргумента. Ее свойства совпадают со свойствами степенной функции с иррациональным показателем (см. следующий раздел).

Степенная функция с иррациональным показателем

Рассмотрим степенную функцию y = x p с иррациональным показателем степени p . Свойства таких функций отличаются от рассмотренных выше тем, что они не определены для отрицательных значений аргумента x . Для положительных значений аргумента, свойства зависят только от величины показателя степени p и не зависят от того, является ли p целым, рациональным или иррациональным.

y = x p при различных значениях показателя p .

Степенная функция с отрицательным показателем p < 0

Область определения: x > 0
Множество значений: y > 0
Монотонность: монотонно убывает
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Пределы: ;
Частное значение: При x = 1, y(1) = 1 p = 1

Степенная функция с положительным показателем p > 0

Показатель меньше единицы 0 < p < 1

Область определения: x ≥ 0
Множество значений: y ≥ 0
Монотонность: монотонно возрастает
Выпуклость: выпукла вверх
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
Частные значения: При x = 0, y(0) = 0 p = 0 .
При x = 1, y(1) = 1 p = 1

Показатель больше единицы p > 1

Область определения: x ≥ 0
Множество значений: y ≥ 0
Монотонность: монотонно возрастает
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
Частные значения: При x = 0, y(0) = 0 p = 0 .
При x = 1, y(1) = 1 p = 1

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Раздел содержит справочный материал по основным элементарным функциям и их свойствам. Приводится классификация элементарных функций. Ниже даны ссылки на подразделы, в которых рассматриваются свойства конкретных функций - графики, формулы, производные, первообразные (интегралы), разложения в ряды, выражения через комплексные переменные.

Страницы со справочным материалом по элементарным функциям

Классификация элементарных функций

Алгебраическая функция - это функция, которая удовлетворяет уравнению:
,
где - многочлен от зависимой переменной y и независимой переменной x . Его можно записать в виде:
,
где - многочлены.

Алгебраические функции делятся на многочлены (целые рациональные функции), рациональные функции и иррациональные функции.

Целая рациональная функция , которая также называется многочленом или полиномом , получается из переменной x и конечного числа чисел с помощью арифметических действий сложения (вычитания) и умножения. После раскрытия скобок, многочлен приводится к каноническому виду:
.

Дробно-рациональная функция , или просто рациональная функция , получается из переменной x и конечного числа чисел с помощью арифметических действий сложения (вычитания), умножения и деления. Рациональную функцию можно привести к виду
,
где и - многочлены.

Иррациональная функция - это алгебраическая функция, не являющаяся рациональной. Как правило, под иррациональной функцией понимают корни и их композиции с рациональными функциями. Корень степени n определяется как решение уравнения
.
Он обозначается так:
.

Трансцендентными функциями называются неалгебраические функции. Это показательные, тригонометрические, гиперболические и обратные к ним функции.

Обзор основных элементарных функций

Все элементарные функции можно представить в виде конечного числа операций сложения, вычитания, умножения и деления, произведенных над выражением вида:
z t .
Обратные функции могут выражаться также через логарифмы. Ниже перечислены основные элементарные функции.

Степенная функция :
y(x) = x p ,
где p - показатель степени. Она зависит от основания степени x .
Обратной к степенной функции является также степенная функция:
.
При целом неотрицательном значении показателя p она является многочленом. При целом значении p - рациональной функцией. При рациональном значении - иррациональной функцией.

Трансцендентные функции

Показательная функция :
y(x) = a x ,
где a - основание степени. Она зависит от показателя степени x .
Обратная функция - логарифм по основанию a :
x = log a y .

Экспонента, е в степени х :
y(x) = e x ,
Это показательная функция, производная которой равна самой функции:
.
Основанием степени экспоненты является число e :
≈ 2,718281828459045... .
Обратная функция - натуральный логарифм - логарифм по основанию числа e :
x = ln y ≡ log e y .

Тригонометрические функции :
Синус : ;
Косинус : ;
Тангенс : ;
Котангенс : ;
Здесь i - мнимая единица, i 2 = -1 .

Обратные тригонометрические функции :
Арксинус: x = arcsin y , ;
Арккосинус: x = arccos y , ;
Арктангенс: x = arctg y , ;
Арккотангенс: x = arcctg y , .

Пределы и непрерывность

Множества

Под множеством понимается совокупность однородных объектов. Объекты, которые образуют множество, называются элементами или точками этого множества. Множества обозначают прописными буквами, а их элементы – строчными. Если a является элементом множества A , то используется запись a ÎA . Если b не является элементом множества A , то это записывается так: b ÏA . Множество, не содержащее ни одного элемента, называется пустым множеством и обозначается так: Ø.

Если множество B состоит из части элементов множества A или совпадает с ним, то множество B называют подмножеством множества и обозначают B ÌA .

Два множества называют равными , если они состоят из одних и тех же элементов.

Объединением двух множеств A и B называется множество C , состоящее из всех элементов, принадлежащих хотя бы одному из множеств: C =A ÈB .

Пересечением двух множеств A и B называется множество C , состоящее из всех элементов, принадлежащих каждому из данных множеств: C =A ÇB .

Разностью множеств A и B называется множество E A , которые не принадлежат множеству B : .

Дополнением множества A ÌB называется множество C , состоящее из всех элементов множества B , не принадлежащих A .

Множества, элементами которых являются действительные числа, называются числовыми :

При этом N ÌZ ÌQ ÌR , I ÌR и R =I ÈQ .

Множество X , элементы которого удовлетворяют неравенству называется отрезком (сегментом) и обозначается [a ; b ]; неравенству a <x <b интервалом и обозначается () ; неравенствам и - полуинтервалами и обозначаются соответственно и . Также часто приходится иметь дело с бесконечными интервалами и полуинтервалами: , , , и . Все их удобно называть промежутками .

Интервал , т.е. множество точек удовлетворяющих неравенству (где ), называется -окрестностью точки a .

Понятие функции. Основные свойства функции

Если каждому элементу x множества X ставится в соответствие единственный элемент y множества Y , то говорят, что на множестве X задана функция y =f (x ). При этом x называют независимой переменной или аргументом , а y зависимой переменной или функцией , а f обозначает закон соответствия. Множество X называют областью определения функции, а множество Y областью значений функции.

Существует несколько способов задания функций.


1) Аналитический способ – функция задается формулой вида y =f (x ).

2) Табличный способ – функция задается таблицей, содержащей значения аргумента и соответствующие им значения функции y =f (x ).

3) Графический способ – изображение графика функции, т.е. множества точек (x ; y ) координатной плоскости, абсциссы которых представляют значения аргумента , а ординаты – соответствующие им значения функции y =f (x ).

4) Словесный способ – функция описывается правилом ее составления. Например, функция Дирихле принимает значение 1, если x – рациональное число и 0, если x – иррациональное число.

Выделяют следующие основные свойства функций.

1 Четность и нечетность Функция y =f (x ) называется четной , если для любых значений x из области ее определения выполняется f (–x )=f (x ), и нечетной , если f (–x )=–f (x ). Если не выполняется ни одно из перечисленных равенств, то y =f (x ) называется функцией общего вида . График четной функции симметричен относительно оси Oy , а график нечетной функции симметричен относительно начала координат.

2 Монотонность Функция y =f (x ) называется возрастающей (убывающей ) на промежутке X , если большему значению аргумента из этого промежутка соответствует большее (меньшее) значение функции. Пусть x 1 ,x 2 ÎX , x 2 >x 1 . Тогда функция возрастает на промежутке X , если f (x 2)>f (x 1), и убывает, если f (x 2)<f (x 1).

Наряду с возрастающими и убывающими функциями рассматривают неубывающие и невозрастающие функции. Функция называется неубывающей (невозрастающей ), если при x 1 ,x 2 ÎX , x 2 >x 1 выполняется неравенство f (x 2)≥f (x 1) (f (x 2)≤f (x 1)).

Возрастающие и убывающие функции, а также невозрастающие и неубывающие функции называют монотонными.

3 Ограниченность Функция y =f (x ) называется ограниченной на промежутке X , если существует такое положительное число M >0, что |f (x )|≤M для любого x ÎX . В противном случае функция называется неограниченной на X .

4 Периодичность Функция y =f (x ) называется периодической с периодом T ≠0, если для любых x из области определения функции f (x +T )=f (x ). В дальнейшем под периодом будем понимать наименьший положительный период функции.

Функция называется явной , если она задана формулой вида y =f (x ). Если функция задана уравнением F (x , y )=0, не разрешенным относительно зависимой переменной y , то ее называют неявной .

Пусть y =f (x ) есть функция от независимой переменной , определенная на множестве X с областью значений Y . Поставим в соответствие каждому y ÎY единственное значение x ÎX , при котором f (x )=y .Тогда полученная функция x =φ (y ), определенная на множестве Y с областью значений X , называется обратной и обозначается y =f –1 (x ). Графики взаимно обратных функций симметричны относительно биссектрисы первой и третьей координатных четвертей .

Пусть функция y =f (u ) есть функция переменной u , определенной на множестве U с областью значений Y , а переменная u в свою очередь является функцией u =φ (x ), определенной на множестве X с областью значений U . Тогда заданная на множестве X функция y =f (φ (x )) называется сложной функцией (композицией функций, суперпозицией функций, функцией от функции).

Элементарные функции

К основным элементарным функциям относят:

  • степенную функцию y =x n ; y =x – n и y =x 1/ n ;
  • показательную функцию y =a x ;
  • логарифмическую функцию y =log a x ;
  • тригонометрические функции y =sin x , y =cos x , y =tg x и y =ctg x ;
  • обратные тригонометрические функции y = arcsin x , y =arccos x , y =arctg x и y =arcctg x .

Из основных элементарных функций новые функции могут быть получены при помощи алгебраических действий и суперпозицией функций.

Функции, построенные из основных элементарных функций с помощью конечного числа алгебраических действий и конечного числа операций суперпозиции, называются элементарными .

Алгебраической называется функция, в которой над аргументом проводится конечное число алгебраических действий. К числу алгебраических функций относятся:

· целая рациональная функция (многочлен или полином)

· дробно-рациональная функция (отношение двух многочленов)

· иррациональная функция (если в составе операций над аргументом имеется извлечение корня).

Всякая неалгебраическая функция называется трансцендентной . К числу трансцендентных функций относятся показательная, логарифмическая, тригонометрические, обратные тригонометрические функции.

Приведены справочные данные по показательной функции - основные свойства, графики и формулы. Рассмотрены следующие вопросы: область определения, множество значений, монотонность, обратная функция, производная, интеграл, разложение в степенной ряд и представление посредством комплексных чисел.

Определение

Показательная функция - это обобщение произведения n чисел, равных a :
y(n) = a n = a·a·a···a ,
на множество действительных чисел x :
y(x) = a x .
Здесь a - фиксированное действительное число, которое называют основанием показательной функции .
Показательную функцию с основанием a также называют экспонентой по основанию a .

Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3,... , показательная функция является произведением x множителей:
.
При этом она обладает свойствами (1.5-8) (), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел , показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n рациональных чисел, , ее определяют по формуле(1.11). Для действительных , показательную функцию определяют как предел последовательности:
,
где - произвольная последовательность рациональных чисел, сходящаяся к x : .
При таком определении, показательная функция определена для всех , и удовлетворяет свойствам (1.5-8), как и для натуральных x .

Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции ».

Свойства показательной функции

Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел () :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:

При b = e , получаем выражение показательной функции через экспоненту:

Частные значения

, , , , .

На рисунке представлены графики показательной функции
y(x) = a x
для четырех значений основания степени : a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0 < a < 1 показательная функция монотонно убывает. Чем меньше показатель степени a , тем более сильное убывание.

Возрастание, убывание

Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = a x , a > 1 y = a x , 0 < a < 1
Область определения - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений 0 < y < + ∞ 0 < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 нет нет
Точки пересечения с осью ординат, x = 0 y = 1 y = 1
+ ∞ 0
0 + ∞

Обратная функция

Обратной для показательной функции с основанием степени a является логарифм по основанию a .

Если , то
.
Если , то
.

Дифференцирование показательной функции

Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.

Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных :
.

Пусть задана показательная функция:
.
Приводим ее к основанию e :

Применим правило дифференцирования сложной функции . Для этого вводим переменную

Тогда

Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку - это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.

Производная показательной функции

.
Производная n-го порядка:
.
Вывод формул > > >

Пример дифференцирования показательной функции

Найти производную функции
y = 3 5 x

Решение

Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда

Из таблицы производных находим:
.
Поскольку 5ln 3 - это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.

Ответ

Интеграл

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
f(z) = a z
где z = x + iy ; i 2 = - 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда


.
Аргумент φ определен не однозначно. В общем виде
φ = φ 0 + 2 πn ,
где n - целое. Поэтому функция f(z) также не однозначна. Часто рассматривают ее главное значение
.

Разложение в ряд


.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Область определения и область значений функции. В элементарной математике изучаются функции только на множестве действительных чисел R .Это значит, что аргумент функции может принимать только те действительные значения, при которых функция определена, т.e. она также принимает только действительные значения. Множество X всех допустимых действительных значений аргумента x , при которых функция y = f (x )определена, называется областью определения функции . Множество Y всех действительных значений y , которые принимает функция, называетсяобластью значений функции . Теперь можно дать более точное определение функции: правило (закон) соответствия между множествами X и Y , по которому для каждого элемента из множества X можно найти один и только один элемент из множества Y, называется функцией .

Из этого определения следует, что функция считается заданной, если:

Задана область определения функции X ;

Задана область значений функции Y ;

Известно правило (закон) соответствия, причём такое, что для каждого

Значения аргумента может быть найдено только одно значение функции.

Это требование однозначности функции является обязательным.

Монотонная функция. Если для любых двух значений аргумента x 1 и x 2 из условия x 2 > x 1 следует f (x 2) > f (x 1), то функция f ( x ) называетсявозрастающей ; если для любых x 1 и x 2 из условия x 2 > x 1 следует f ( x 2) < f ( x 1), то функция f ( x ) называется убывающей . Функция, которая только возрастает или только убывает, называется монотонной .

Ограниченная и неограниченная функции. Функция называется ограниченной , если существует такое положительное число M , что | f (x ) | M для всех значений x . Если такого числа не существует, то функция - неограниченная .

П р и м е р ы.


Функция, изображённая на рис.3, является ограниченной, но не монотонной. Функция на рис.4 - как раз наоборот, монотонная, но неограниченная. (Объясните это, пожалуйста!).

Непрерывная и разрывная функции. Функция y = f (x ) называется непрерывной в точке x = a , если:

1) функция определена при x = a , т.e. f (a ) существует;

2) существует конечный предел lim f (x ) ;

x a

(см. «Пределы функций»)

3) f (a ) = lim f (x ) .

x a

Если не выполняется хотя бы одно из этих условий, то функция называется разрывной в точке x = a .

Если функция непрерывна во всех точках своей области определения , то она называется непрерывной функцией .


Чётная и нечётная функции. Если для любого x f (- x ) = f (x ), то функция называется чётной ;если же имеет место: f (- x ) = - f (x ), то функция называется нечётной . График чётной функции симетричен относительно оси Y (рис.5), a график нечётной функции сим метричен относительно начала координат (рис.6).


Периодическая функция. Функция f (x ) - периодическая , если существует такое отличное от нуля число T , что для любого x из области определения функции имеет место: f (x + T ) = f (x ). Такое наименьшее число называется периодом функции . Все тригонометрические функции являются периодическими.

П р и м е р 1 . Доказать, что sin x имеет период 2 .

Р е ш е н и е. Мы знаем, что sin (x+ 2n ) = sin x , где n = 0, ± 1, ± 2, …

Следовательно, добавление 2n к аргументу синуса не

Меняет его значениe. Существует ли другое число с таким

Же свойством?

Предположим, что P - такое число, т.e. равенство:

Sin (x+ P ) = sin x ,

Справедливо для любого значения x . Но тогда оно имеет

Место и при x = / 2 , т.e.

Sin ( / 2 + P ) = sin / 2 = 1.

Но по формуле приведения sin ( / 2 + P ) = cos P . Тогда

Из двух последних равенств следует, что cos P = 1, но мы

Знаем, что это верно лишь при P = 2n . Так как наименьшим

Отличным от нуля числом из 2n является 2, то это число

И есть период sin x . Аналогично доказывается, что 2 из n есть , таким образом, это период sin 2x .

Нули функции. Значение аргумента, при котором функция равна 0, называется нулём ( корнем) функции . Функция может иметь несколько нулей.Например, функция y = x (x + 1) (x -3) имеет три нуля: x = 0, x = -1, x = 3. Геометрически нуль функции - это абсцисса точки пересечения графика функции с осью Х .

На рис.7 представлен график функции с нулями: x = a , x = b и x = c .

Асимптота. Если график функции неограниченно приближается к некоторой прямой при своём удалении от начала координат, то эта прямая называется асимптотой .