Представление зависимостей между величинами. Зависимость между случайными величинами

Разработка урока математики в 6 классе

Тема урока «Зависимость между величинами».

Цели урока:

1.Дать понятие зависимости между величинами, выяснить способы их задания.

2.Развивать способность учащихся анализировать и синтезировать учебный материал.

3.Воспитывать творческое отношение к учебному труду.

4.Преподнести учебный материал через эмоционально - переживательную сферу ученика.

А теперь опишем по технологию построения учителем методики урока по технологии деятельностного метода.

1. Этап самоопределения нормы N

На этом этапе определяется тема и обучающая цель урока: «На уроке мы рассмотрим зависимость между различными величинами», то есть объявляется операция без уточнения условий ее применения.

2. Этап актуализации знаний и фиксация затруднения в деятельности.

На этом этапе учитель предлагает список заданий, выполнение которых предполагает выполнение известной ранее нормы.

Как найти:

Площадь прямоугольника?

Периметр прямоугольника?

Объем прямоугольного параллелепипеда?

Скорость по течению?

Скорость против течения?

Последним вопросом на этапе актуализации знаний должен быть вопрос, который фиксирует затруднения в деятельности учащихся, то есть, ранее изученных знаний не хватает, возникает учебная проблема. В данном случае это вопрос: «Для чего нужны эти правила и соответствующие формулы?».

3. Этап постановки учебной задачи.

Учитель ставит перед учащимися проблему: Как измерить площадь участка прямоугольной формы, если мы не знаем формулу S =ав? Можно разбить участок на прямоугольники размером в 1 кв. метр и сосчитать их количество. Удобно ли это?

Учащиеся отвечают, что это возможно, но неудобно. Значит, формулы нужны для вычисления величин, измерение которых затруднительно.

Учитель ставит еще более убедительную проблему: как измерить расстояние от Земли до Солнца? Итак, налицо кризис ранее известной нормы N .

4. Этап построения проекта выхода из затруднения.

Ученые установили, что расстояние от Земли до Солнца 150 млн. км. А как они узнали об этом? Совместно с детьми выясняется формула вычисления расстояния от Земли до Солнца s = ct , где с=300000км, t =8 мин, время, за которое свет доходит до Земли. Вычисления показывают, что s =2400000 км. Почему у нас получилось расхождение с известным фактом?

Вывод: Формулу можно применить только в том случае, когда единицы измерения входящих в нее величин согласованы между собой.

На этом этапе уместно воздействие на эмоционально – переживательную сферу ученика с помощью небольшой воспитательной беседы. « Свет от Земли до Солнца идет в течение 8 минут, значит, мы видим Солнце таким, каким оно было 8 минут назад. Есть звезды, свет от которых идет до нас миллионы лет: звезда может уже погасла, а свет от нее идет до сих пор. Так же бывают и люди: человека уже нет с нами, а его тепло, свет согревают нас всю жизнь. Таким человеком был народный поэт Башкортостана Мустай Карим, день памяти которого мы отмечаем сегодня. Его духовная энергия, тепло его сердца будет нам служить нравственным ориентиром многие годы».

На данном этапе урока учащимся предлагаются различные способы задания зависимостей между величинами: табличный, графический и с помощью формулы.

Дети на этом этапе включаются в ситуацию выбора метода решения учебной задачи: они сравнивают различные способы задания зависимостей между величинами. Результаты сравнения фиксируются на опорно – узловой матрице.

1 2

Способы задания Формула график таблица

1-универсальность, 2-точность, 3-наглядность;

(Условные обозначения «Д»- да, «Н»- нет)

На основе анализа опорно – узловой матрицы учащиеся делают вывод о том, что наиболее лучшим является задание зависимости между величинами с помощью формулы, потому что он обладает свойством универсальности: из формулы можно получить таблицу зависимости и построить график зависимости между величинами.

5. Этап первичного закрепления во внешней речи.

Разбирается задача №90

По одной формуле зависимости ширины прямоугольника от его длины при постоянной площади: b =12/а составить таблицу этой зависимости и построить её график.

1 ,5

1,5

График зависимости длины прямоугольника от ширины

Итак, мы связали 3 способа задания зависимостей между величинами:

С помощью формулы,

Графический,

Табличный.

6. Этап самостоятельной работы с самопроверкой по эталону.

Учащиеся самостоятельно решают задания на новый способ действий, выполняют самопроверку по эталону и сами оценивают свои результаты. Создаётся ситуация успеха, снова задействована эмоционально-переживательная сфера ученика. На одном этапе учащимся предлагают задания №133, №140. Для реализации принципа минимакса деятельностной технологии обучения учащимся предлагают задания двух уровней: М, А и В.

Уровень М: №133, А: №140. Уровень В: № 145

7. Включение новых знаний в знаний.

На данном этапе учащиеся убеждаются, что вновь приобретённые знания имеют ценность для дальнейшего обучения. Выполняя упражнение №139, они устанавливают зависимость между

Объёмом V куба и его ребром а;

Площадью S прямоугольного треугольника и катетами а и b

Диаметром D и радиусом R этой окружности;

Длиной стороны а прямоугольника, его периметром Р и площадью S ;

S куба и его ребром а

Площадью полной поверхности S прямоугольного параллелепипеда и его измерениями а, b и с.

8. Рефлексия деятельности (итог урока)

Учащиеся выполняют самооценку собственной деятельности (что нового узнали, какой метод использовали, успешность выполненных шагов). Происходит фиксация успешности деятельности и вывод о следующих шагах. Выявляются ученики, выполнившие задания уровня А и В.

Примечание.

Урок проведён по учебнику Г.В.Дорофеева, Л.Г.Петерсон. Математика, учебник для 6 класса. Часть 2. Ювента. 2011г

Предварительная подготовка. Вопросы и задания

При решении каких информационных задач используются
электронные таблицы?

а) Как адресуются данные в электронной таблице?

б) Данные каких типов могут храниться в ячейках ЭТ?

в) Что такое принцип относительной адресации?

г) Как можно отменить действие относительной адресации?

В чем состоит назначение диаграмм?

Как определяется область выбора данных из таблицы для построения диаграммы и порядок выбора? Какие величины откладываются по горизонтальной (ОХ) оси и вертикальной (OY) оси?

В каких ситуациях предпочтительнее использовать: гистограммы; графики; круговые диаграммы?


Информационное моделирование в планировании и управлении производством

Изучаемые вопросы

Наиболее распространенные типы задач планирования и управления

Представление зависимостей между величинами

Статистика и статистические данные

Метод наименьших квадратов

Построение регрессионных моделей с помощью табличного процессора

Прогнозирование по регрессионной модели

Понятие о корреляционных зависимостях. Расчет корреляционных зависимостей в электронной таблице

Оптимальное планирование. Использование MS Excel для решения задачи оптимального планирования

Наиболее распространенные типы задач планирования и управления

В управлении и планировании существует целый ряд ти­повых задач, которые можно переложить на плечи компью­тера. Пользователь таких программных средств может даже и не знать глубоко математику, стоящую за применяемым аппаратом. Он лишь должен понимать суть решаемой проб­лемы, готовить и вводить в компьютер исходные данные, интерпретировать полученные результаты.

В данной теме рассмотрим три типа задач, которые часто приходится решать специалистам в области планирования и управления:

1) прогнозирование - поиск ответа на вопросы «Что будет через какое-то время?», или «Что будет, если...?»;

2) определение влияния одних факторов на другие - поиск ответа на вопрос «Как сильно влияет фактор Б на фактор А?», или «Какой фактор - Б или В - влияет сильнее на фактор А?»;

3) поиск оптимальных решений - поиск ответа на вопрос «Как спланировать производство, чтобы достичь оптимального значения некоторого показателя (например, максимума прибыли, или минимума расхода электроэнергии)? ».

Инструментом информационных технологий, который мы будем использовать, является табличный процессор MS Excel.

Представление зависимостей между величинами

Решение задач планирования и управления постоянно требует учета зависимостей одних факторов от других. Примеры зависимостей:

‒ время падения тела на землю зависит от первоначальной высоты;

‒ давление зависит от температуры газа в баллоне;

‒ частота заболевания жителей бронхиальной астмой зависит от качества городского воздуха.

Рассмотрим различные методы представления зависимостей .

Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта (процесса, явления). Такие характеристики называются величинами.

Со всякой величиной связаны три основные свойства : имя, значение, тип.

Имя величины может быть полным (подчеркивающим ее смысл), а может быть символическим. Примером полного имени является «Давление газа»; а символическое имя для этой же величины - Р. В базах данных величинами явля­ются поля записей. Для них, как правило, используются полные имена, например: «Фамилия», «Вес», «Оценка» и т. п. В физике и других науках, использующих математи­ческий аппарат, применяются символические имена для обозначения величин.

Если значение величины не изменяется, то она называет­ся постоянной величиной или константой. Пример кон­станты - число Пифагора π=3,14159... Величина, меняю­щая свое значение, называется переменной . Например, в описании процесса падения тела переменными величинами являются высота (Н) и время падения (t).

Третьим свойством величины является ее тип . Тип определяет множество значений, которые может прини­мать величина. Основные типы величин: числовой, символь­ный, логический.

А теперь вернемся к примерам 1-3 и обозначим (поименуем) все переменные ве­личины, зависимости между которыми нас будут интересо­вать. Кроме имен укажем размерности величин. Размерности определяют единицы, в которых представляются значения величин.

1. t (сек) - время падения; Н (м) - высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха. Ускорение свободного падения g (м/сек 2) - константа.

2. Р (кг/м 2) - давление газа; t (С) - температура газа. Давление при нуле градусов Р о считается константой для данного газа.

3. Загрязненность воздуха будем характеризовать концентрацией примесей - С (мг/куб. м). Единица измерения - масса примесей, содержащихся в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будем характеризовать числом хронических больных астмой, приходящимся на 1000 жителей данного города - Р (бол./тыс).

Если зависимость между величинами удается предста­вить в математической форме, то мы имеем математическую модель.

Математическая модель - это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке ма­тематики.

Хорошо известны математические модели для первых двух примеров из перечисленных выше. Они отражают фи­зические законы, и представляется в виде формул:

Это примеры зависимостей, представленных в функциональной форме. Первую зависимость называют корневой (время пропорционально квадратному корню от высоты), вторую - линейной (давление прямо пропорционально тем­пературе).

В более сложных задачах математические модели пред­ставляются в виде уравнений или систем уравнений. В этом случае для извлечения функциональной зависимости вели­чин нужно уметь решать эти уравнения. В конце данной главы будет рассмотрен пример математической модели, ко­торая выражается системой неравенств.

Рассмотрим примеры двух других способов представления зависимостей между величинами: табличного и графического . Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организовали следующим образом: бросаем стальной шарик с балкона 2-го этажа, 3-го этажа (и так далее) десятиэтажного дома, замеряя высоту начального положения шарика и время падения. По результатам эксперимента мы со­ставили таблицу и нарисовали график.

Величинами являются количественные значения предметов, длин отрезков, времени, углов и т.д.

Определение. Величина - результат измерения, представленный числом и наименованием единицы измерения.

Например: 1 км; 5 ч. 60 км/ч; 15 кг; 180 °.

Величины могут быть независимыми или зависимыми одна от другой. Связь величин может быть жестко установлена (как. например, 1 дм = 10 см) или может отражать зависимость между величинами, выраженную формулой для определения конкретного численного значения (так, например, путь зависит от скорости и продолжительности движения; площадь квадрата — от длины его стороны и т. д.).

Основа метрической системы мер длины - метр - была введена в России в начале XIX века, а до этого для измерения длин использовались: аршин (= 71 см), верста (= 1067 м), косая сажень (= 2 м 13 см), маховая сажень (= 1 м 76 см), простая сажень (= 1 м 52 см), четверть (= 18 см), локоть (приблизительно от 35 см до 46 см), пядь (от 18 см до 23 см).

Как видим, было много величин для измерения длины. С вводом метрической системы мер жестко закреплена зависимость величин длины:

  • 1 км = 1 000 м; 1 м = 100 см;
  • 1 дм = 10 см; 1 см = 10 мм.

В метрической системе мер определены единицы измерения времени, длины, массы, объема, площади и скорости.

Между двумя и более величинами или системами мер тоже можно устанавливать зависимость, она зафиксирована в формулах, а формулы выведены опытным путем.

Определение. Две взаимно зависимые величины называются пропорциональными , если отношение их значений остается неизменным.

Неизменное отношение двух величин называется коэффициентом пропорциональности. Коэффициент пропорциональности показывает, сколько единиц одной величины приходится на единицу другой величины. Если коэффициенты равны. То и отношения равны.

Расстояние есть произведение скорости и времени движения: отсюда вывели основную формулу движении:

где S - путь; V - скорость; t - время.

Основная формула движения — это зависимость расстояния от скорости и времени движения. Такая зависимость называется пряно пропорциональной .

Определение. Две переменные величины прямо пропорциональны, если с увеличением (или уменьшением) в несколько раз одной величины другая величина увеличивается (или уменьшается) во столько же раз; т.е. отношение соответствующих значений таких величин является величиной постоянной.

При неизменном расстоянии скорость и время связаны другой зависимостью, которая называется обратно пропорциональной .

Правило. Две переменные величины обратно пропорциональны, если с увеличением (или уменьшением) одной величины в несколько раз другая величина уменьшается (или увеличивается) во столько же раз; т.е. произведение соответствующих значений таких величин является величиной постоянной.

Из формулы движения можно вывести еще два соотношения, выражающих прямую и обратную зависимости входящих в них величин:

t = S: V - время движения прямо пропорционально пройденному пути и обратно пропорционально скорости движении (для одинаковых отрезков пути чем больше скорость, тем меньше времени требуется для преодоления расстояния).

V = S: t - скорость движения прямо пропорциональна пройденному пути и обратно пропорциональна времени движения (для одинаковых отрезков пути чем больше
времени движется предмет, тем меньшая скорость требуется для преодоления расстояний).

Все три формулы движения равносильны и используются для решения задач.

Регрессионного анализа

Обработка результатов эксперимента методом

При изучении процессов функционирования сложных систем приходится иметь дело с целым рядом одновременно действующих случайных величин. Для уяснения механизма явлений, причинно-следственных связей между элементами системы и т.д., по полученным наблюдениям мы пытаемся установить взаимоотношения этих величин.

В математическом анализе зависимость, например, между двумя величинами выражается понятием функции

где каждому значению одной переменной соответствует только одно значение другой. Такая зависимость носит название функциональной .

Гораздо сложнее обстоит дело с понятием зависимости случайных величин. Как правило, между случайными величинами (случайными факторами), определяющими процесс функционирования сложных систем, обычно существует такая связь, при которой с изменением одной величины меняется распределение другой. Такая связь называется стохастической , или вероятностной . При этом величину изменения случайного фактора Y , соответствующую изменению величины Х , можно разбить на два компонента. Первый связан с зависимостью Y от X , а второй с влиянием "собственных" случайных составляющих величин Y и X . Если первый компонент отсутствует, то случайные величины Y и X являются независимыми. Если отсутствует второй компонент, то Y и X зависят функционально. При наличии обоих компонент соотношение между ними определяет силу или тесноту связи между случайными величинами Y и X .

Существуют различные показатели, которые характеризуют те или иные стороны стохастической связи. Так, линейную зависимость между случайными величинами X и Y определяет коэффициент корреляции.

где – математические ожидания случайных величин X и Y .

– средние квадратические отклонения случайных величин X и Y .


Линейная вероятностная зависимость случайных величин заключается в том, что при возрастании одной случайной величины другая имеет тенденцию возрастать (или убывать) по линейному закону. Если случайные величины X и Y связаны строгой линейной функциональной зависимостью, например,

y=b 0 +b 1 x 1 ,

то коэффициент корреляции будет равен ; причем знак соответствует знаку коэффициента b 1 .Если величины X и Y связаны произвольной стохастической зависимостью, то коэффициент корреляции будет изменяться в пределах

Следует подчеркнуть, что для независимых случайных величин коэффициент корреляции равен нулю. Однако коэффициент корреляции как показатель зависимости между случайными величинами обладает серьезными недостатками. Во-первых, из равенства r = 0 не следует независимость случайных величин X и Y (за исключением случайных величин, подчиненных нормальному закону распределения, для которых r = 0 означает одновременно и отсутствие всякой зависимости). Во- вторых, крайние значения также не очень полезны, так как соответствуют не всякой функциональной зависимости, а только строго линейной.



Полное описание зависимости Y от X , и притом выраженное в точных функциональных соотношениях, можно получить, зная условную функцию распределения .

Следует отметить, что при этом одна из наблюдаемых переменных величин считается неслучайной. Фиксируя одновременно значения двух случайных величин X и Y , мы при сопоставлении их значений можем отнести все ошибки лишь к величине Y . Таким образом, ошибка наблюдения будет складываться из собственной случайной ошибки величины Y и из ошибки сопоставления, возникающей из-за того, что с величиной Y сопоставляется не совсем то значение X , которое имело место на самом деле.

Однако отыскание условной функции распределения, как правило, оказывается весьма сложной задачей. Наиболее просто исследовать зависимость между Х и Y при нормальном распределении Y , так как оно полностью определяется математическим ожиданием и дисперсией. В этом случае для описания зависимости Y от X не нужно строить условную функцию распределения, а достаточно лишь указать, как при изменении параметра X изменяются математическое ожидание и дисперсия величины Y .

Таким образом, мы приходим к необходимости отыскания только двух функций:

(3.2)

Зависимость условной дисперсии D от параметра Х носит название сходастической зависимости. Она характеризует изменение точности методики наблюдений при изменении параметра и используется достаточно редко.

Зависимость условного математического ожидания M от X носит название регрессии , она дает истинную зависимость величин Х и У , лишенную всех случайных наслоений. Поэтому идеальной целью всяких исследований зависимых величин является отыскание уравнения регрессии, а дисперсия используется лишь для оценки точности полученного результата.