Особенности восприятия человека. Зрение

Особенности человеческого зрения

Человек не может видеть в полной темноте. Для того, чтобы человек увидел предмет, необходимо, чтобы свет отразился от предмета и попал на сетчатку глаза. Источники света могут быть естественные (огонь, Солнце) и искусственные (различные лампы).

глаз человека представляет собой радиоприемник, способный принимать электромагнитные волны определенного (оптического) диапазона частот. Первичными источниками этих волн являются тела, их излучающие (солнце, лампы и т.п.), вторичными – тела, отражающие волны первичных источников. Свет от источников попадает в глаз и делает их видимыми человеку. Таким образом, если тело является прозрачным для волн видимого диапазона частот (воздух, вода, стекло и т.п.), то оно не может быть зарегистрировано глазом.

Благодаря зрению мы получаем 90% информации об окружающем мире, поэтому глаз - один из важнейших органов чувств. Глаз можно назвать сложным оптическим прибором. Его основная задача - "передать" правильное изображение зрительному нерву.

Световая чувствительность человеческого глаза

Способность глаза воспринимать свет и распознавать различной степени его яркости называется светоощущением, а способность приспосабливаться к разной яркости освещения - адаптацией глаза; световая чувствительность оценивается величиной порога светового раздражителя. Человек с хорошим зрением способен разглядеть ночью свет от свечи на расстоянии нескольких километров. Максимальная световая чувствительность достигается после достаточно длительной темновой адаптации.

В глазу человека содержатся два типа светочувствительных клеток (рецепторов): высоко чувствительные палочки, отвечающие за сумеречное (ночное) зрение, и менее чувствительные колбочки, отвечающие за цветное зрение.

В сетчатке глаза человека есть три вида колбочек, максимумы чувствительности которых приходятся на красный, зелёный и синий участки спектра. Распределение типов колбочек в сетчатке неравномерно: «синие» колбочки находятся ближе к периферии, в то время как «красные» и «зеленые» распределены случайным образом. Соответствие типов колбочек трём «основным» цветам обеспечивает распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что способствует явлению метамерии. Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета.

Равномерное раздражение всех трёх элементов, соответствующее средневзвешенному дневному свету, также вызывает ощущение белого цвета. За цветовое зрение человека отвечают гены, кодирующие светочувствительные белки опсины. По мнению сторонников трёхкомпонентной теории, наличие трёх разных белков, реагирующих на разные длины волн, является достаточным для цветового восприятия. У большинства млекопитающих таких генов только два, поэтому они имеют черно-белое зрение.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.[

Изменение зрения с возрастом

У новорожденных и детей дошкольного возраста хрусталик более выпуклый и более эластичный, чем у взрослого, его преломляющая способность выше. Это позволяет ребенку четко видеть предмет на меньшем расстоянии от глаза, чем взрослому. И если у младенца он прозрачный и бесцветный, то у взрослого человека хрусталик имеет легкий желтоватый оттенок, интенсивность которого с возрастом может усиливаться. Это не отражается на остроте зрения, но может повлиять на восприятие синего и фиолетового цветов. Сенсорные и моторные функции зрения развиваются одновременно. В первые дни после рождения движения глаз несинхронны, при неподвижности одного глаза можно наблюдать движение другого. Способность фиксировать взглядом предмет формируется в возрасте от 5 дней до 3–5 месяцев. Реакция на форму предмета отмечается уже у 5-месячного ребенка. У дошкольников первую реакцию вызывает форма предмета, затем его размеры и уже в последнюю очередь – цвет. Острота зрения с возрастом повышается, улучшается и стереоскопическое зрение. Стереоскопическое зрение (от греч. στερεός - твёрдый, пространственный) - вид зрения, при котором возможно восприятие формы, размеров и расстояния до предмета, например благодаря бинокулярному зрению Стереоскопическое зрение к 17–22 годам достигает своего оптимального уровня, причем с 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков. Поле зрения интенсивно увеличивается. К 7 годам его размер составляет приблизительно 80 % от размера поля зрения взрослого. После 40 лет наблюдается падение уровня периферического зрения, то есть происходит сужение поля зрения и ухудшение бокового обзора. Примерно после 50 лет сокращается выработка слезной жидкости, поэтому глаза увлажняются хуже, чем в более молодом возрасте. Чрезмерная сухость может выражаться в покраснении глаз, рези, слезотечении под действием ветра или яркого света. Это может не зависеть от обычных факторов (частые напряжения глаз или загрязненность воздуха). С возрастом человеческий глаз начинает воспринимать окружающее более тускло, с понижением контрастности и яркости. Также может ухудшиться способность распознавать цветовые оттенки, особенно близкие в цветовой гамме. Это напрямую связано с сокращением количества клеток сетчатой оболочки, воспринимающих оттенки цвета, контрастность, яркость. Некоторые возрастные нарушения зрения обусловлены пресбиопией, которая проявляется нечеткостью, размытостью картинки при попытке рассмотреть предметы, расположенные близко от глаз. Возможность фокусировки зрения на небольших предметах требует аккомодацию около 20 диоптрий (фокусировка на объекте в 50 мм от наблюдателя) у детей, до 10 диоптрий в возрасте 25 лет (100 мм) и уровни от 0,5 до 1 диоптрии в возрасте 60 лет (возможность фокусировки на предмете в 1-2 метрах). Считается, что это связано с ослаблением мышц, которые регулируют зрачок, при этом так же ухудшается реакция зрачков на попадающий в глаз световой поток. Поэтому возникают трудности с чтением при тусклом свете и увеличивается время адаптации при перепадах освещенности.

Так же с возрастом начинает быстрее возникать зрительное утомление и даже головные боли.

Психология восприятия цвета

Психология восприятия цвета - способность человека воспринимать, идентифицировать и называть цвета. Ощущение цвета зависит от комплекса физиологических, психологических и культурно-социальных факторов. Первоначально исследования восприятия цвета проводились в рамках цветоведения; позже к проблеме подключились этнографы, социологи и психологи. Зрительные рецепторы по праву считаются «частью мозга, вынесенной на поверхность тела». Неосознаваемая обработка и коррекция зрительного восприятия обеспечивает «правильность» зрения, и она же является причиной «ошибок» при оценке цвета в определенных условиях. Так, устранение «фоновой» засветки глаза (например, при разглядывании удаленных предметов через узкую трубку) существенно меняет восприятие цвета этих предметов. В силу природы глаза, свет, вызывающий ощущение одного и того же цвета (например белого), то есть одну и ту же степень возбуждения трёх зрительных рецепторов, может иметь разный спектральный состав. Человек в большинстве случаев не замечает данного эффекта, как бы «домысливая» цвет. Это происходит потому, что хотя цветовая температура разного освещения может совпадать, спектры отражённого одним и тем же пигментом естественного и искусственного света могут существенно отличаться и вызывать разное цветовое ощущение.

Периферическое зрение (поле зрения ) - определяют границы поля зрения при проекции их на сферическую поверхность (при помощи периметра).

Благодаря зрительному аппарату (глазу) и мозгу человек способен различать и воспринимать цвета окружающего его мира. Довольно нелегко сделать анализ эмоционального воздействия цвета, по сравнению с физиологическими процессами, появляющимися в результате световосприятия. Однако большое количество людей предпочитает определённые цвета и полагает, что цвет оказывает непосредственное воздействие на настроение. Трудно объяснить то, что многие люди находят сложным жить и работать в помещениях, где цветовое оформление кажется неудачным. Как известно, все цвета разделяют на тяжелые и лёгкие, сильные и слабые, успокаивающие и возбуждающие.

Строение человеческого глаза

Опытами ученых сегодня доказано, что у многих людей существует похожее мнение относительно условного веса цветов. Например, по их мнению, красный является самым тяжёлым, за ним следует оранжевый, потом синий и зелёный, затем - жёлтый и белый.

Строение человеческого глаза достаточно сложное:

склера;
сосудистая оболочка;
зрительный нерв;
сетчатка;
стекловидное тело;
ресничный поясок;
хрусталик;
передняя камера глаза, наполненная жидкостью;
зрачок;
радужная оболочка;
роговица.

Когда человек наблюдает объект, то отраженный свет сначала попадает на его роговицу, затем проходит через переднюю камеру, и отверстие в радужной оболочке (зрачок). Свет попадает на сетчатку глаза, но прежде он проходит через хрусталик, который может изменять свою кривизну, и стекловидное тело, где появляется уменьшенное зеркально-шарообразное изображение видимого объекта.
Для того, чтобы полосы на французском флаге казались одинаковой ширины на судах их делают в пропорции 33:30:37

На сетчатке глаза расположены два вида светочувствительных клеток (фоторецепторов), которые при освещении изменяют все световые сигналы. Они также называются колбочками и палочками.

Их существует около 7 млн, и они распределены по всей поверхности сетчатки, за исключением слепого пятна и имеют малую светочувствительность. Кроме того, колбочки подразделяются на три вида, это чувствительные к красному свету, зелёному и синему, соответственно реагирующие лишь на синюю, зелёную и красную часть видимых оттенков. Если же передаются остальные цвета, например жёлтый, то возбуждаются два рецептора (красно- и зелёночувствительный). При таком значительном возбуждении всех трёх рецепторов появляется ощущение белого, а при слабом возбуждении напротив - серого цвета. Если возбуждения трёх рецепторов отсутствуют, то возникает ощущение чёрного цвета.

Можно привести также следующий пример. Поверхность объекта, имеющего красный цвет, при интенсивном освещении белым светом, поглощает синие и зелёные лучи, и отражает красные, а также зелёные. Именно благодаря разнообразию возможностей смешения световых лучей различных длин спектра, появляется такое многообразие цветовых тонов, из которых глаз отличает примерно 2 млн. Вот так колбочки обеспечивают глаз человека восприятием цвета.

На чёрном фоне цвета кажутся интенсивнее, по сравнению со светлым.

Палочки наоборот, имеют намного большую чувствительность, чем колбочки, а также чувствительны к синезелёной части видимого спектра. В сетчатке глаза расположено около 130 млн. палочек, которые в основном не передают цвета, а работают при небольших освещённостях, выступая аппаратом сумеречного зрения.

Цвет способен изменять представление человека о настоящих размерах предметов, а те цвета, которые кажутся тяжёлыми, заметно уменьшают такие размеры. Например, французский флаг, состоящий из трёх цветов, включает синюю, красную, белую вертикальные полосы одинаковой ширины. В свою очередь, на морских судах соотношение таких полос меняют в пропорции 33:30:37 для того, чтобы на большом расстоянии они казались равнозначными.

Огромное значение на усиление или ослабление восприятия глазом контрастных цветов имеют такие параметры как расстояние и освещение. Таким образом, чем больше расстояние между глазом человека и контрастной парой цветов, тем наименее активно они кажутся нам. Фон, на котором находится предмет определённого цвета, также воздействует на усиление и ослабление контрастов. То есть на чёрном фоне они кажутся интенсивнее, по сравнению с любым светлым.

Мы обычно не задумываемся о том, что есть свет. А между тем именно эти волны несут в себе большое количество энергии, которая используется нашим организмом. Нехватка света в нашей жизни не может не отразиться отрицательно для нашего организма. Не даром сейчас становится всё более популярным лечение, основанное на воздействие этих электромагнитных излучений (цветотерапия, хромотерапия, ауро-сома, цветовая диета, графохромотерапия и многое другое).

Что такое свет и цвет?

Свет - это электромагнитное излучение с длиной волны от 440 до 700 нм. Человеческий глаз воспринимает часть солнечного света и охватывает излучение с длиной волны от 0,38 до 0,78 микрон.

Световой спектр состоит из лучей очень насыщенного цвета. Свет распространяется со скоростью 186 000 миль в секунду (300 млн. километров в секунду).

Цвет - основной признак, по которому различаются лучи света, то есть это отдельные участки световой шкалы. Восприятие цвета формируется в результате того, что глаз, получив раздражение от электромагнитных колебаний, передаёт его в высшие отделы головного мозга человека. Цветовые ощущения имеют двойственную природу: они отражают свойства, с одной стороны, внешнего мира, а с другой - нашей нервной системы.

Минимальные значения соответствуют синей части спектра, а максимальные - красной части спектра. Зелёный цвет - находится в самой середине этой шкалы. В цифровом выражении цвета можно определить следующим образом:
красный - 0,78-9,63 микрон;
оранжевый - 0,63-0,6 микрон;
жёлтый - 0,6-0,57 микрон;
зелёный - 0,57-0,49; микрон
голубой - 0,49-0,46 микрон;
синий - 0,46-0,43 микрон;
фиолетовый - 0,43-0,38 микрон.

Белый свет - это сумма всех волн видимого спектра.

За пределами этого диапазона находятся ультрафиолетовые (УФ) и инфракрасные (ИК) световые волны, их человек зрительно уже не воспринимает, хотя они оказывают очень сильное воздействие на организм.

Характеристики цвета

Насыщенность - это интенсивность цвета.
Яркость - это количество световых лучей, отражённых поверхностью данного цвета.
Яркость определяется освещением, то есть количеством отражённого светового потока.
Для цветов характерно свойство перемешиваться между собой и тем самым давать новые оттенки.

На усиление или ослабление восприятия человеком контрастных цветов влияют расстояние и освещение. Чем больше расстояние между контрастной парой цветов и глазом, тем менее активно они выглядят и наоборот. Окружающий фон так же влияет на усиление или ослабление контрастов: на чёрном фоне они сильнее, чем на любом светлом.

Все цвета делятся на следующие группы

Первичные цвета: красный, жёлтый и синий.
Вторичные цвета, которые образовываются посредством соединения между собой первичных цветов: красный + жёлтый = Оранжевый, жёлтый + синий = зелёный. Красный + синий = фиолетовый. Красный + жёлтый + синий = коричневый.
Третичные цвета - это те цвета, которые были получены посредством смешения вторичных цветов: оранжевый + зелёный = жёлто-коричневый. Оранжевый + фиолетовый = красно-коричневый. Зелёный + фиолетовый = сине-коричневый.

Польза цвета и света

Чтобы восстановить здоровье, нужно передать в организм соответствующую информацию. Эта информация закодирована в цветовых волнах. Одной из главных причин большого числа, так называемых, болезней цивилизации - гипертонии, высокого уровня холестерина, депрессии, остеопороза, диабета и т. д. может быть назван недостаток естественного света.

Меняя длину световых волн, можно передавать клеткам именно ту информацию, которая необходима для восстановления их жизнедеятельности. Цветотерапия и направлена на то, чтобы организм получил не хватающую ему цветовую энергию.

Ученые до сих пор не пришли к единому мнению о том, как свет проникает в тело человека и воздействует на него.

Действуя на радужку глаза, цвет возбуждает определённые рецепторы. Те, кто хоть однажды проходил диагностику по радужной оболочке глаза, знает, что по ней можно «прочитать» болезнь любого из органов. Оно и понятно, ведь «радужка» рефлекторно связана со всеми внутренними органами и, разумеется, с мозгом. Отсюда нетрудно догадаться, что тот или иной цвет, действуя на радужную оболочку глаза, тем самым рефлекторно воздействует и на жизнедеятельность органов нашего тела.

Возможно, свет проникает через сетчатку глаза и стимулирует гипофиз, который в свою очередь стимулирует тот или иной орган. Но тогда не понятно, почему полезен такой метод как цветопунктура отдельных секторов человеческого тела.

Вероятно, наше тело способно чувствовать эти излучения с помощью рецепторов кожного покрова. Это подтверждает наука радионика - согласно этому учению вибрации света вызывают вибрации в нашем организме. Свет вибрирует во время движения, наше тело начинает вибрировать во время энергетического излучения. Это движение можно увидеть на фотографиях Кирлиана, с помощью которых можно запечатлеть ауру.

Возможно, эти вибрации начинают воздействовать на мозг, стимулируя его и заставляя вырабатывать гормоны. В последствии эти гормоны попадают в кровь и начинают воздействовать на внутренние органы человека.

Так как все цвета различны по своей структуре, то не трудно догадаться, что и воздействие каждого отдельного цвета будет различным. Цвета разделяют на сильные и слабые, успокаивающие и возбуждающие, даже на тяжёлые и легкие. Красный был признан самым тяжёлым, за ним шли равные по весу цвета: оранжевый, синий и зелёный, затем - жёлтый и последним - белый.

Общее влияние цвета на физическое и психическое состояние человека

На протяжении многих столетий у людей по всему миру складывалась определённая ассоциация определённым цветом. Например, римляне и египтяне соотносили чёрный цвет с печалью и скорбью, белый цвет - с чистотой, однако в Китае и Японии белый цвет - символ скорби, а вот у населения Южной Африки цветом печали был красный, в Бирме напротив, печаль ассоциировалась с жёлтым, а в Иране - с синим.

Влияние цвета на человека достаточно индивидуально, и зависит также от определённого опыта, например от метода подбора цвета определённых торжеств или же повседневной работы.

В зависимости от времени воздействия на человека, либо количества занимаемой цветом площади, он вызывает положительные или отрицательные эмоции, и влияет на его психику. Глаз человека способен распознавать 1,5 миллиона цветов и оттенков, а цвета воспринимаются даже кожей, воздействуют и на людей, лишённых зрения. В процессе исследований, проведённых учёными в Вене, имели место испытания с завязанными глазами. Людей ввели в комнату с красными стенами, после чего их пульс увеличился, затем их поместили в помещение с жёлтыми стенами, причём пульс резко нормализовался, а в комнате с синими стенами, он заметно понизился. Кроме того, заметное воздействие на цветовосприятии и снижении цветовой чувствительности оказывает возраст и пол человека. До 20-25 восприятие возрастает, а после 25 уменьшается по отношению к определённым оттенкам.

Исследования, имевшие место в американских университетах доказали, что основные цвета, преобладающие в детской комнате, могут воздействовать на изменение давления у детей, снижать или повышать их агрессивность, причем у зрячих и незрячих. Можно сделать соответствующий вывод, что цвета могут оказывать негативное и позитивное воздействие на человека.

Восприятие цветов и оттенков можно сравнить с музыкантом, настраивающим свой инструмент. Все оттенки способны вызывать в душе человека неуловимые отклики и настроения, поэтому он и ищет резонанс колебаний цветовых волн с внутренними отголосками своей души.

Ученые разных стран мира утверждают, что красный цвет помогает вырабатыванию красных телец в печени, а также помогает скорейшему выведению ядов из организма человека. Полагают, что красный цвет способен уничтожать различные вирусы и значительно снижает воспаления в организме. Зачастую в специальной литературе встречается мысль о том, что любому органу человека присущи вибрации определённых цветов. Разноцветную окраску внутренностей человека можно встретить на древних китайских рисунках, иллюстрирующих методы восточной медицины.

Кроме того, цвета не только влияют на настроение и психическое состояние человека, но и приводят к некоторым физиологическим отклонениям в организме. Например, в помещении с красными или оранжевыми обоями заметно учащается пульс и повышается температура. В процессе окраски помещений выбор цвета обычно предполагает очень неожиданный эффект. Нам известен такой случай, когда хозяин ресторана, хотевший улучшить аппетит у посетителей, приказал покрасить стены в красный цвет. После чего аппетит гостей улучшился, однако чрезвычайно увеличилось количество разбитой посуды и число драк и происшествий.

Известно также, что цветом можно вылечить даже многие серьезные заболевания. К примеру, во многих банях и саунах благодаря определенному оборудованию существует возможность принимать целебные цветовые ванны.

Цветоощущение (цветовая чувствительность, цветовое восприятие) - способность зрения воспринимать и преобразовывать световое излучение определённого спектрального состава в ощущение различных цветовых оттенков и тонов, формируя целостное субъективное ощущение («хроматичность», «цветность», колорит).

Цвет характеризуется тремя качествами:

  • цветовым тоном, который является основным признаком цвета и зависит от длины световой волны;
  • насыщенностью, определяемой долей основного тона среди примесей другого цвета;
  • яркостью, или светлотой, которая проявляется степенью близости к белому цвету (степень разведения белым цветом).

Человеческий глаз замечает изменения цвета только в случае превышения так называемого цветового порога (минимального изменения цвета, заметного глазом).

Физическая сущность света и цвета

Светом или световым излучением называются видимые электромагнитные колебания.

Световые излучения подразделяются на сложные и простые .

Белый солнечный свет - сложное излучение, которое состоит из простых цветных составляющих – монохроматических (одноцветных) излучений. Цвета монохроматических излучений называют спектральными.

Если луч белого цвета разложить с помощью призмы в спектр, то можно увидеть ряд непрерывно изменяющихся цветов: темно-синий, синий, голубой, сине-зеленый, желто-зеленый, желтый, оранжевый, красный.

Цвет излучения определяется длиной волны. Весь видимый спектр излучений расположен в диапазоне длин волн от 380 до 720 нм (1 нм = 10 -9 м, т.е. одной миллиардной доли метра).

Всю видимую часть спектра можно разделить на три зоны

  • Излучением длиной волны от 380 до 490 нм называется синей зоной спектра;
  • от 490 до 570 нм - зеленой;
  • от 580 до 720 нм - красной.

Различные предметы человек видит окрашенными в разные цвета потому, что монохроматические излучения отражаются от них по-разному, в разных соотношениях.

Все цвета делятся на ахроматические и хроматические

  • Ахроматические (бесцветные) - это серые цвета различной светлоты, белый и черный цвета. Ахроматические цвета характеризуются светлотой.
  • Все остальные цвета – хроматические (цветные): синий, зеленый, красный, желтый и т.д. Хроматические цвета характеризуются цветовым тоном, светлотой и насыщенностью.

Цветовой тон - это субъективная характеристика цвета, которая зависит не только от спектрального состава излучений, попавших в глаз наблюдателя, но и от психологических особенностей индивидуального восприятия.

Светлота субъективно характеризует яркость цвета.

Яркость определяет силу света, излучаемую или отражаемую с единицы поверхности в перпендикулярном к ней направлении (единица яркости – кандела на метр, кд/м).

Насыщенность субъективно характеризует интенсивность ощущения цветового тона.
Поскольку в возникновении зрительного ощущения цвета участвует не только источник излучения и окрашенный предмет, но и глаз и мозг наблюдателя, то следует рассмотреть некоторые основные сведения о физической сущности процесса цветового зрения.

Восприятие цвета глазом

Известно, что глаз по устройству представляет собой подобие фотоаппарата, в котором сетчатка играет роль светочувствительного слоя. Излучения различного спектрального состава регистрируются нервными клетками сетчатки (рецепторами).

Рецепторы, обеспечивающие цветовое зрение, подразделяются на три типа. Каждый тип рецепторов по-разному поглощает излучение трех основных зон спектра - синей, зеленой и красной, т.е. обладает различной спектральной чувствительностью. Если на сетчатку глаза попадает излучение синей зоны, то оно будет воспринято только одним типом рецепторов, которые и передадут информацию о мощности этого излучения в мозг наблюдателя. В результате возникнет ощущение синего цвета. Аналогично будет протекать процесс и в случае попадания на сетчатку глаза излучений зеленой и красной зон спектра. При одновременном возбуждении рецепторов двух или трех типов будет возникать цветовое ощущение, зависящее от соотношения мощностей излучения различных зон спектра.

При одновременном возбуждении рецепторов, регистрирующих излучения, например, синей и зеленой зон спектра, может возникнуть световое ощущение, от темно-синего до желто-зеленого. Ощущение в большей степени синих оттенков цвета будет возникать в случае большей мощности излучений синей зоны, а зеленых оттенков - в случае большей мощности излучения зеленой зоне спектра. Равные по мощности излучения синей и зеленой зон вызовут ощущение голубого цвета, зеленый и красной зон - ощущение желтого цвета, красной и синей зон - ощущение пурпурного цвета. Голубой, пурпурный и желтый цвета называются в связи с этим двухзональными. Равные по мощности излучения всех трех зон спектра вызывают ощущение серого цвета различной светлоты, который превращается в белый цвет при достаточной мощности излучений.

Аддитивный синтез света

Это процесс получения различных цветов за счет смешивания (сложения) излучений трех основных зон спектра - синего, зеленого и красного.

Эти цвета называются основными или первичными излучениями адаптивного синтеза.

Различные цвета могут быть получены этим способом, например, на белом экране с помощью трех проекторов со светофильтрами синего (Blue), зеленого (Green) и красного (Red) цветов. На участках экрана, освещаемых одновременно из разных проекторов могут быть получены любые цвета. Изменение цвета достигается при этом изменением соотношения мощности основных излучений. Сложение излучений происходит вне глаза наблюдателя. Это одна из разновидностей аддитивного синтеза.

Еще одна разновидность аддитивного синтеза - пространственное смещение. Пространственное смещение основано на том, что глаз не различает отдельно расположенных мелких разноцветных элементов изображения. Таких, например, как растровые точки. Но вместе с тем мелкие элементы изображения перемещаются по сетчатке глаза, поэтому на одни и те же рецепторы последовательно воздействует различное излучение соседних разноокрашенных растровых точек. В связи с тем, что глаз не различает быстрой смены излучений, он воспринимает их как цвет смеси.

Субтрактивный синтез цвета

Это процесс получения цветов за счет поглощения (вычитания) излучений из белого цвета.

В субтрактивном синтезе новый цвет получают с помощью красочных слоев: голубого (Cyan), пурпурного (Magenta) и желтого (Yellow). Это основные или первичные цвета субтрактивного синтеза. Голубая краска поглощает (вычитает из белого) красные излучения, пурпурная - зеленые, а желтая - синие.

Для того, чтобы субтрактивным способом, получить, например, красный цвет нужно на пути белого излучения поместить желтый и пурпурный светофильтры. Они будут поглощать (вычитать) соответственно синие и зеленые излучения. Такой же результат будет получен, если на белую бумагу нанести желтую и пурпурные краски. Тогда до белой бумаги дойдет только красное излучение, которое отражается от нее и попадает в глаз наблюдателя.

  • Основные цвета аддитивного синтеза - синий, зеленый и красный и
  • основные цвета субтрактивного синтеза - желтый, пурпурный и голубой образуют пары дополнительных цветов.

Дополнительными называют цвета двух излучений или двух красок, которые в смеси делают ахроматический цвет: Ж + С, П + З, Г + К.

При аддитивном синтезе дополнительные цвета дают серый и белый цвета, так как в сумме представляют излучение всей видимой части спектра, а при субтрактивном синтезе смесь указанных красок дает серый и черный цвета, в виде того, что слои этих красок поглощают излучения всех зон спектра.

Рассмотренные принципы образования цвета лежат и в основе получения цветных изображений в полиграфии. Для получения полиграфических цветных изображений используют так называемые триадные печатные краски: голубую, пурпурную и желтую. Эти краски прозрачны и каждая из них, как уже было указано, вычитает излучение одной из зон спектра.

Однако, из-за неидеальности компонентов субтактивного синтеза при изготовлении печатной продукции используют четвертую дополнительную черную краску.

Из схемы видно, что если наносить на белую бумагу триадные краски в различном сочетании, то можно получить все основные (первичные) цвета как для аддитивного синтеза, так и для субтрактивного. Это обстоятельство доказывает возможность получения цветов необходимых характеристик при изготовлении цветной полиграфической продукции триадными красками.

Изменение характеристик воспроизводимого цвета происходит по-разному, в зависимости от способа печати. В глубокой печати переход от светлых участков изображения к темным осуществляется благодаря изменению толщины красочного слоя, что и позволяет регулировать основные характеристики воспроизводимого цвета. В глубокой печати образование цветов происходит субтрактивно.

В высокой и офсетной печати цвета различных участков изображения передаются растровыми элементами различной площади. Здесь характеристики воспроизводимого цвета регулируются размерами растровых элементов различного цвета. Ранее уже отмечалось, что цвета в этом случае образуются аддитивным синтезом – пространственным смешиванием цветов мелких элементов. Однако, там, где растровые точки различных цветов совпадают друг с другом и краски накладываются одна на другую, новый цвет точек образуется субтрактивным синтезом.

Оценка цвета

Для измерения, передачи и хранения информации о цвете необходима стандартная система измерений. Человеческое зрение может считаться одним из наиболее точных измерительных приборов, но оно не в состоянии ни присваивать цветам определенные числовые значения, ни в точности их запоминать. Большинство людей не осознает, насколько значительно воздействие цвета на их повседневную жизнь. Когда дело доходит до многократного воспроизведения, цвет, кажущийся одному человеку «красным», другим воспринимается как «красновато-оранжевый».

Методы, которыми осуществляется объективная количественная характеристика цвета и цветовых различий, называют колориметрическими методами.

Трехцветная теория зрения позволяет объяснить возникновение ощущений различного цветового тона, светлоты и насыщенности.

Цветовые пространства

Координаты цвета
L (Lightness) - яркость цвета измеряется от 0 до 100%,
a - диапазон цвета по цветовому кругу от зеленого -120 до красного значения +120,
b - диапазон цвета от синего -120 до желтого +120

В 1931 г. Международная комиссия по освещению – CIE (Commission Internationale de L`Eclairage) предложила математически рассчитанное цветовое пространство XYZ, в котором весь видимый человеческим глазом спектр лежал внутри. В качестве базовых была выбрана система реальных цветов (красного, зеленого и синего), а свободный пересчет одних координат в другие позволял проводить различного рода измерения.

Недостатком нового пространства была его неравноконтрастность. Понимая это, ученые проводили дальнейшие исследования, и в 1960 г. Мак-Адам внес некоторые дополнения и изменения в существовавшее цветовое пространство, назвав его UVW (или CIE-60).

Затем в 1964 г. по предложению Г. Вышецкого было введено пространство U*V*W* (CIE-64).
Вопреки ожиданию специалистов предложенная система оказалась недостаточно совершенной. В одних случаях используемые при расчете цветовых координат формулы давали удовлетворительные результаты (в основном при аддитивном синтезе), в других (при субтрактивном синтезе) погрешности оказывались чрезмерными.

Это заставило CIE принять новую равноконтрастную систему. В 1976 г. были устранены все разногласия и на свет появились пространства Luv и Lab, базирующиеся на том же XYZ.

Эти цветовые пространства принимают за основу самостоятельных колориметрических систем CIELuv и CIELab. Считается, что первая система в большей мере отвечает условиям аддитивного синтеза, а вторая - субтрактивного.

В настоящее время цветовое пространство CIELab (CIE-76) служит международным стандартом работы с цветом. Основное преимущество пространства - независимость как от устройств воспроизведения цвета на мониторах, так и от устройств ввода и вывода информации. С помощью стандартов CIE могут быть описаны все цвета, которые воспринимает человеческий глаз.

Количество измеряемого цвета характеризуется тремя числами, показывающими относительные количества смешиваемых излучений. Эти числа называются цветовыми координатами. Все колориметрические методы основаны на трехмерности т.е. на своего рода объемности цвета.

Эти методы дают столь же надежную количественную характеристику цвета, как например измерение температуры или влажности. Отличие состоит лишь в количестве характеризующих значений и их взаимосвязи. Эта взаимосвязь трех основных цветных координат выражается в согласованном изменении при изменении цвета освещения. Поэтому «трехцветные» измерения проводятся в строго определенных условиях при стандартизованном белом освещении.

Таким образом, цвет в колориметрическом понимании однозначно определяется спектральным составом измеряемого излучения, цветовое же ощущение не однозначно определяется спектральным составом излучения, а зависит от условий наблюдения и в частности от цвета освещения.

Физиология рецепторов сетчатки

Восприятие цвета связано с функцией колбочковых клеток сетчатки глаза. Пигменты, содержащиеся в колбочках поглощают часть падающего на них света и отражающее остальную. Если какие-то спектральные компоненты видимого света поглощаются лучше других, то этот предмет мы воспринимаем как окрашенный.

Первичное различение цветов происходит в сетчатке- в палочках и колбочках свет вызывает первичное раздражение, которое превращается в электрические импульсы для окончательного формирования воспринимаемого оттенка в коре головного мозга.

В отличие от палочек, содержащих родопсин, колбочки содержат белок йодопсин. Йодопсин - общее название зрительных пигментов колбочек. Существует три типа йодопсина:

  • хлоролаб («зелёный», GCP),
  • эритролаб («красный», RCP) и
  • цианолаб («синий», BCP).

В настоящее время известно, что светочувствительный пигмент йодопсин находящийся во всех колбочках глаза, включает в себя такие пигменты, как хлоролаб и эритролаб. Оба эти пигмента чувствительны ко всей области видимого спектра, однако первый из них имеет максимум поглощения, соответствующий жёлто-зеленой (максимум поглощения около 540 нм.), а второй жёлто-красной (оранжевой) (максимум поглощения около 570 нм.) частям спектра. Обращает на себя внимание тот факт, что их максимумы поглощения расположены рядом. Это не соответствуют принятым «основным» цветам и не согласуется с основными принципами трёхкомпонентной модели.

Третий, гипотетический пигмент, чувствительный к фиолетово-синей области спектра, заранее получивший название цианолаб, на сегодняшний день так и не найден.

Кроме того, найти какую-либо разницу между колбочками в сетчатке глаза не удалось, не удалось и доказать наличие в каждой колбочке только одного типа пигмента. Более того, было признано, что в колбочке одновременно находятся пигменты хлоролаб и эритролаб.

Неаллельные гены хлоролаба (кодируется генами OPN1MW и OPN1MW2) и эритролаба (кодируется геном OPN1LW) находятся в Х-хромосомах. Эти гены давно хорошо выделены и изучены. Поэтому чаще всего встречаются такие формы дальтонизма, как дейтеронопия (нарушение образования хлоролаба) (6 % мужчин страдают этим заболеванием) и протанопия (нарушение образования эритолаба) (2 % мужчин). При этом некоторые люди, имеющие нарушения восприятия оттенков красного и зелёного, лучше людей с нормальным восприятием цветов воспринимают оттенки других цветов, например, цвета хаки.

Ген цианолаба OPN1SW расположен в седьмой хромосоме, поэтому тританопия (аутосомная форма дальтонизма, при которой нарушено образования цианолаба) - редкое заболевание. Человек, больной тританопией, всё видит в зеленых и красных цветах и не различает предметы в сумерках.

Нелинейная двухкомпонентная теория зрения

По другой модели (нелинейная двухкомпонентная теория зрения С. Ременко), третий «гипотетический» пигмент цианолаб не нужен, приёмником синей части спектра служит палочка. Это объясняется тем, что при яркости освещения достаточной для различения цветов, максимум спектральной чувствительности палочки (благодаря выцветанию содержащегося в ней родопсина) смещается от зелёной области спектра к синей. По этой теории колбочка должна содержать в себе всего два пигмента с рядом расположенными максимами чувствительности: хлоролаб (чувствительный к жёлто-зелёной области спектра) и эритролаб (чувствительный к жёлто-красной части спектра). Эти два пигмента давно найдены и тщательно изучены. При этом колбочка является нелинейным датчиком отношений, выдающем не только информацию о соотношении красного и зелёного цвета, но и выделяющем уровень жёлтого цвета в этой смеси.

Доказательством того, что приёмником синей части спектра в глазу является палочка, может служить и тот факт, что при цветоаномалии третьего типа (тританопия), глаз человека не только не воспринимает синей части спектра, но и не различает предметы в сумерках (куриная слепота), а это указывает именно на отсутствие нормальной работы палочек. Сторонники трёхкомпонентных теорий объяснить, почему всегда, одновременно с прекращением работы синего приёмника, перестают работать и палочки до сих пор не могут.

Кроме того, подтверждением этого механизма является и давно известный Эффект Пуркинье, суть которого заключается в том, что при наступлении сумерек, когда освещённость падает, красные цвета чернеют, а белые кажутся голубоватыми . Ричард Филлипс Фейнман отмечает, что: «это объясняется тем, что палочки видят синий край спектра лучше, чем колбочки, но зато колбочки видят, например, тёмно красный цвет, тогда как палочки его совершенно не могут увидеть».

В ночное время, когда поток фотонов недостаточен для нормальной работы глаза, зрение обеспечивают в основном палочки, поэтому ночью человек не может различать цвета.

На сегодняшний день придти к единому мнению о принципе цветовосприятия глазом пока не удалось.

«Цвет – это то, что вы видите, а не то, что вы могли бы видеть»

Ральф М. Ивенс

«Цвет никогда не бывает одинок, он всегда воспринимается в окружении других цветов»

Иоханнес Иттен

Разделение проблемы цвета на физический, психофизический и психологический аспекты не является искусственным приемом. Излучение видимого света, оценка цвета стандартным наблюдателем в стандартных условиях и восприятие цвета, возникающее индивидуально и в реальных условиях, это три отдельных явления, каждое из которых подчиняется собственным законам и имеет свои специфичные отличия. Их ни в коем случае нельзя смешивать.

Восприятие и различение цветов каждым человеком определяется взаимовлиянием физиологических процессов и культурных традицией, в которых этот человек вырос, зависит от системы названий цветов в его родном языке и индивидуальных особенностей индивидуума. Видеть цвет в конкретных условиях – это сочетание внимания, целенаправленности, памяти и мотивов индивидуума. Обычный наблюдатель скажет, что лист зеленый, даже если свет, достигающий его глаз, синий. Он этого может не заметить. Художник, который смотрит через зеленую листву, скажет, что вид вдаль розоватый: он смотрел на цвет, и его адаптация на листву вызвала розоватый цвет далекого тумана. Все по-своему правы и все имеют право на свое суждение.

Восприятие цветов изменяется с возрастом, зависит от остроты зрения, от национальности человека, даже от цвета его волос и оттого, что он ел (после еды повышается чувствительность глаза к коротковолновой (синей части спектра). Правда, подобные различия относятся в основном к тонким оттенкам цвета, поэтому с некоторым допущением можно сказать, что большинство людей воспринимает основные цвета одинаково (за исключением, разумеется, дальтоников).

Дин Джадд рассчитал, что при достаточно больших вариациях условий наблюдения число воспринимаемых цветов, достигает 10 млн. Но это не все. Различие физических качеств – свойств поверхности или материала может явиться препятствием для признания их идентичности. Образ окружающего нас мира вызван бесконечными вариациями цвета и формы, создаваемыми множеством типов и качеств объектов при разных видах освещения. Кроме того, восприятие цвета зависит и от условий наблюдения: цветовой адаптации, фона, на котором рассматривается данный цвет, настроения человека, цветовых предпочтений и т.д.

Существуют понятия изолированного и неизолированного воспринимаемого цвета (рис. 12).

Рис 12. Изолированный цвет и неизолированные воспринимаемые цвета

Отличие между ними состоит в том, что изолированным считается цвет поверхности или цветного света, наблюдаемый в полностью черном окружении, неизолированным – цвет, видимый на фоне, отличающемся от черного. В первом случае наблюдатель оценивает цвет, полностью основываясь на визуальной информации от глаз (отсутствует контекст), во втором, когда вводится белый фон вокруг сравниваемых цветов, который несет информацию об источнике, он позволяет наблюдателю оценить его яркость и цвет. В этом случае цвета уже не являются изолированными. Они подвергаются воздействию соседних цветов и источника освещения.


Цвет является трехмерной величиной и для характеристики каждого из трех измерений используются субъективные цветовые характеристики (рис. 13) :

· светлота (относится к несамосветящимся объектам) – характеристика цвета, в соответствии с которой поверхность воспринимается диффузно отражающей или пропускающей большую или меньшую долю падающего света;

· цветовой тон – характеристика цвета, служащая для установления сходства данного цвета с тем или иным спектральным или пурпурным цветом, определяется наименованием красный, синий, зеленый и т.д.

· насыщенность – характеристика цвета, служащая для оценки отличия данного цвета от равного ему по светлоте ахроматического цвета.

Рис. 13 Иллюстрация изменения одной из трех цветовых характеристик: светлоты, цветового тона и насыщенности.

Ощущение цвета в некоторой степени зависит от всех его характеристик, поэтому все параметры цвета следует анализировать в тесной взаимосвязи. Насыщенность и светлота несамосветящихся предметов взаимосвязаны, так как усиление избирательного спектрального поглощения при увеличении количества (концентрации) красителя всегда сопровождается уменьшением интенсивности отражённого света, что вызывает ощущение уменьшения светлоты. Так, роза более насыщенного пурпурного цвета воспринимается более тёмной, чем роза с таким же, но менее выраженным цветовым тоном.

Следует детально остановиться на законах восприятия света и цвета, так они играют огромное значение в цветовом проектировании.

Законы восприятия света и цвета (закон Вебера-Фехнера, адаптация, константность, контраст) обусловлены тем, что все анализаторы человека (в том числе и глаза), при помощи которых энергия адекватного раздражителя трансформируется в процесс нервного возбуждения и, в конечном счете, приводит к формированию ощущения, обладают рядом психофизиологических или психофизических свойств. Эти свойства подробно рассмотрены:

1. Чрезвычайно высокая чувствительность к адекватным раздражителям . Количественной мерой чувствительности является пороговая интенсивность , то есть наименьшая интенсивность раздражителя, воздействие которого дает ощущение. Чем ниже пороговая интенсивность, или, просто порог , тем выше чувствительность.

2. Дифференциальная или контрастная чувствительность. Все анализаторы обладают способностью устанавливать различие по интенсивности между раздражителями. Главное – наличие количественного взаимоотношения между интенсивностью ощущения и интенсивностью раздражителя. В ряде экспериментов (1830–1834 гг.) Э. Вебер показал, что воспринимается не абсолютный, а относительный прирост силы раздражителя (света, звука, груза, давящего на кожу, и т.п.), то есть, DI/ I = const. Видимый порог составляет постоянную часть раздражителя. Если увеличивается интенсивность раздражителя – растет порог. На основе этих наблюдений Г. Фехнер в 1860 году сформулировал «основной психофизический закон», по которому интенсивность наших ощущений L пропорциональна логарифму интенсивности раздражителя I : L = k log I/I 0 , где I 0 – граничное значение интенсивности раздражителя.Закон Вебера-Фехнера при описании восприятия яркости светасоблюдается в небольшом интервале яркостей и определяет соотношение между светлотой и яркостью в наиболее благоприятных условиях наблюдения. Если, например, уменьшить резкость границы между сравниваемыми участками, порог возрастет. Известно, что в сумерках, когда освещенности низки, яркости предметов различаются хуже, чем при средних освещенностях, и порог, следовательно, тоже возрастает. В условиях слишком больших яркостей объекты оказывают на глаз слепящее действие, и порог опять увеличивается. Для яркостей, которые находятся на краях диапазона воспринимаемых яркостей, порог значительно больше. Контрастная чувствительность глаза имеет максимум при яркости адаптации .

Страсть к цвету

Восприятие цвета. Физика

Около 80% всей входящей информации мы получаем визуально
Мы познаем окружающий мир на 78% благодаря зрению, на 13% - слуху, на 3% - тактильным ощущениям, на 3% - обонянию и на 3% - вкусовым рецепторам.
Мы запоминаем 40% увиденного и только 20% услышанного*
*Источник: R. Bleckwenn & B. Schwarze. Учебник дизайна (2004)

Физика цвета. Цвет мы видим только благодаря тому, что наши глаза способны регистрировать электромагнитное излучение в оптическом его диапазоне. А электромагнитное излучение это и радиоволны и гамма излучение и рентгеновское излучение, терагерцевое, ультрафиолетовое, инфракрасное.

Цвет - качественная субъективная характеристика электромагнитного излучения оптического диапазона, определяемая на основании возникающего
физиологического зрительного ощущения и зависящая от ряда физических, физиологических и психологических факторов.
Восприятие цвета определяется индивидуальностью человека, а также спектральным составом, цветовым и яркостным контрастом с окружающими источниками света,
а также несветящимися объектами. Очень важны такие явления, как метамерия, индивидуальные наследственные особенности человеческого глаза
(степень экспрессии полиморфных зрительных пигментов) и психики.
Говоря простым языком цвет - это ощущение, которое получает человек при попадании ему в глаз световых лучей.
Одни и те же световые воздействия могут вызвать разные ощущения у разных людей. И для каждого из них цвет будет разным.
Отсюда следует что споры "какой цвет на самом деле" бессмысленны, поскольку для каждого наблюдателя истинный цвет - тот, который видит он сам


Зрение дает нам информации об окружающей действительности больше, чем другие органы чувств: самый большой поток информации в единицу времени мы получаем именно глазами.





Отраженные от объектов лучи попадают через зрачок на сетчатку, которая представляет собой прозрачный шарообразный экран толщиной 0.1 - 0.5 мм, на который проецируется окружающий мир. Сетчатка содержит 2 типа фоточувствительных клеток: палочки и колбочки.

Цвет происходит из света
Чтобы видеть цвета, необходим источник света. В сумерках мир теряет свою цветность. Там, где нет света, возникновение цвета невозможно.

Учитывая огромное, многомиллионное количество цветов и их оттенков, колористу нужно обладать глубокими, полноценными знаниями о цветовосприятии и происхождении цвета.
Все цвета представляют собой часть луча света – электромагнитных волн, исходящих от солнца.
Эти волны являются частью спектра электромагнитного излучения, в который входят гамма-излучение, рентгеновское излучение, ультрафиолетовое излучение, оптическое излучение (свет), инфракрасное излучение, электромагнитное терагерцевое излучение,
электромагнитные микро- и радиоволны. Оптическое излучение – это та часть электромагнитного излучения, которую способны воспринимать наши глазные сенсоры. Мозг обрабатывает полученные от глазных сенсоров сигналы и интерпретирует их в цвет и форму.

Видимое излучение (оптическое)
Видимое, инфракрасное и ультрафиолетовое излучение составляет так называемую оптическую область спектра в широком смысле этого слова.
Выделение такой области обусловлено не только близостью соответствующих участков спектра, но и сходством приборов, применяющихся для её исследования и разработанных исторически главным образом при изучении видимого света (линзы и зеркала для фокусирования излучения, призмы, дифракционные решётки, интерференционные приборы для исследования спектрального состава излучения и пр.).
Частоты волн оптической области спектра уже сравнимы с собственными частотами атомов и молекул, а их длины - с молекулярными размерами и межмолекулярными расстояниями. Благодаря этому в этой области становятся существенными явления, обусловленные атомистическим строением вещества.
По этой же причине, наряду с волновыми, проявляются и квантовые свойства света.

Самым известным источником оптического излучения является Солнце. Его поверхность (фотосфера) нагрета до температуры 6000 градусов по Кельвину и светит ярко-белым светом (максимум непрерывного спектра солнечного излучения расположен в «зелёной» области 550 нм, где находится и максимум чувствительности глаза).
Именно потому, что мы родились возле такойзвезды, этот участок спектра электромагнитного излучения непосредственно воспринимается нашими органами чувств.
Излучение оптического диапазона возникает, в частности, при нагревании тел (инфракрасное излучение называют также тепловым) из-за теплового движения атомов и молекул.
Чем сильнее нагрето тело, тем выше частота, на которой находится максимум спектра его излучения (см.: Закон смещения Вина). При определённом нагревании тело начинает светиться в видимом диапазоне (каление), сначала красным цветом, потом жёлтым и так далее. И наоборот, излучение оптического спектра оказывает на тела тепловое воздействие (см.: Болометрия).
Оптическое излучение может создаваться и регистрироваться в химических и биологических реакциях.
Одна из известнейших химических реакций, являющихся приёмником оптического излучения, используется в фотографии.
Источником энергии для большинства живых существ на Земле является фотосинтез - биологическая реакция, протекающая в растениях под действием оптического излучения Солнца.

Цвет играет огромную роль в жизни обычного человека. Жизнь колориста посвящена цвету.

Заметно, что цвета спектра, начинаясь с красного и проходя через оттенки противоположные, контрастные красному (зелёный, циан), затем переходят в фиолетовый цвет, снова приближающийся к красному. Такая близость видимого восприятия фиолетового и красного цветов связана с тем, что частоты, соответствующие фиолетовому спектру, приближаются к частотам, превышающим частоты красного ровно в два раза.
Но сами эти последние указанные частоты находятся уже вне видимого спектра, поэтому мы не видим перехода от фиолетового снова к красному цвету, как это происходит в цветовом круге, в который включены неспектральные цвета, и где присутствует переход между красным и фиолетовым через пурпурные оттенки.

При прохождении луча света через призму различные по длине волны, его составляющие, преломляются под разными углами. В результате мы можем наблюдать спектр света. Этот феномен очень похож на феномен радуги.

Следует различать солнечный свет и свет, исходящий от искусственных источников освещения. Только солнечный свет можно считать чистым светом.
Все остальные искусственные источники освещения будут влиять на восприятие цвета. Например, лампы накаливания являются источниками теплого (желтого) света.
Флуоресцентные лампы, чаще всего, дают холодный (синий) свет. Для корректной диагностики цвета необходим дневной свет или же источник освещения, максимально к нему приближенный.
Только солнечный свет можно считать чистым светом. Все остальные искусственные источники освещения будут влиять на восприятие цвета.

Многообразие цветов: Цветовосприятие основывается на способности различать изменения в направлении тона, светлоте/яркости и насыщенности цвета в оптическом диапазоне с длинами волн от 750 нм (красный) до 400 нм (фиолетовый).
Изучив физиологию восприятия цвета, мы можем лучше понять, как формируется цвет, и использовать эти знания на практике.

Мы воспринимаем все многообразие цветов только при наличии и нормальном функционировании всех конусных сенсоров.
Мы способны различать тысячи различных направлений тона. Точное количество зависит от способности глазных сенсоров улавливать и различать световые волны. Эти способности можно развивать тренировками и упражнениями.
Цифры, приведенные ниже, звучат невероятно, но это реальные способности здорового и хорошо подготовленного глаза:
Мы можем различать около 200 чистых цветов. Меняя их насыщенность, мы получаем приблизительно по 500 вариаций каждого цвета. Меняя их светлоту, получаем еще по 200 нюансов каждой вариации.
Хорошо подготовленный человеческий глаз способен различать до 20 миллионов цветовых нюансов!
Цвет субъективен, поскольку мы все воспринимаем его по-разному. Хотя, пока наши глаза здоровы, эти отличия незначительны.

Мы можем различать 200 чистых цветов
Меняя насыщенность и светлоту этих цветов, мы можем различать до 20 миллионов оттенков!

“You only see what you know. You only know what you see.”
«Вы видите только ведомое. Вы ведаете только видимое ».
Марсель Пруст (французский романист), 1871-1922.

Восприятие нюансов одного цвета не одинаково для разных цветов. Тоньше всего мы воспринимаем изменения в зеленом спектре - достаточно изменения длины волны всего на 1 нм, чтобы мы могли увидеть отличие. В красном и синем спектрах необходимо изменение длины волны на 3-6 нм, чтобы отличие стало заметно для глаза. Возможно, отличие в более тонком восприятии зеленого спектра было связано с необходимостью отличать съедобное от несъедобного во времена зарождения нашего вида (профессор, доктор археологии, Герман Крастел BVA).

Цветные картинки, возникающие в нашем сознании, – это кооперация глазных сенсоров и мозга. Мы «ощущаем» цвета, когда конические сенсоры, находящиеся в сетчатке глаза, генерируют сигналы под воздействием попадающих на них волн определенной длины и передают эти сигналы в мозг. Поскольку в цветовосприятии задействованы не только глазные сенсоры, но и мозг, то в результате мы не только видим цвет, но и получаем на него определенный эмоциональный отклик.

Наше уникальное цветоощущение никоим образом не меняет наш эмоциональный отклик на определенные цвета., отмечают ученые. Независимо от того, каков для человека голубой цвет, он всегда становится немного более спокойным и расслабленным, смотря на небо. Короткие волны голубого и синего цветов успокаивают человека, тогда как длинные волны (красный, оранжевый, желтый) наоборот – придают активности и живости человеку.
Эта система реакции на цвета присуща каждому живому организму на Земле – от млекопитающих до одноклеточных (например, одноклеточные «предпочитают» обрабатывать рассеянный свет желтого цвета в процессе фотосинтеза). Считается, что данная взаимосвязь цвета и нашего самочувствия, настроения обуславливается дневным/ночным циклом существования. Например, на рассвете все окрашено в теплые и яркие цвета – оранжевый, желтый – это сигнал каждому, даже самому маленькому существу, что начался новый день и пора приниматься за дела. Ночью и в полдень, когда течение жизни замедляется, вокруг доминируют синие и фиолетовые оттенки.
В своих исследованиях Джей Нейц и его коллеги из Университета штата Вашингтон отметили, что изменение цвета рассеянного света может изменить суточный цикл рыб, в то время как изменение интенсивности этого света не имеет решающего влияния. На этом эксперименте и базируется предположение ученых, что именно благодаря доминированию синего цвета в ночной атмосфере (а не просто темнота), живые существа чувствуют усталость и желание спать.
Но наши реакции не зависят от цветочувствительных клеток сетчатки. В 1998 году ученые обнаружили совершенно отдельный набор цветовых рецепторов – меланопсинов – в человеческом глазу. Эти рецепторы определяют количество синего и желтого цветов в окружающем нас пространстве и отправляют эту информацию в участки мозга, отвечающие за регулирование эмоций и циркадного ритма. Ученые считают, что меланопсины – очень древняя структура, отвечавшая за оценку количества цветов еще в незапамятные времена.
«Именно благодаря этой системе, наше настроение и активность поднимаются, когда вокруг преобладают оранжевый, красный или желтый цвета», - считает Нейц. «Но наши индивидуальные особенности восприятия различных цветов – это совсем другие структуры – синие, зеленые и красные колбочки. Поэтому, тот факт, что у нас одинаковые эмоциональные и физические реакции на одни и те же цвета не может подтвердить, что все люди видят цвета одинаково».
Люди, которые в силу некоторых обстоятельств имеют нарушения в цветовосприятии, часто не могут видеть красный, желтый или синий цвет, но, тем не менее, их эмоциональные реакции не разнятся с общепринятыми. Для вас небо всегда голубое и оно всегда дарит ощущение умиротворенности, даже если для кого-то ваш «голубой» является «красным» цветом.

Три характеристики цвета.

Светлота - степень близости цвета к белому называют светлотой.
Любой цвет при максимальном увеличении светлоты становится белым
Другое понятие светлоты относится не к конкретному цвету, а к оттенку спектра, тону. Цвета, имеющие различные тона при прочих равных характеристиках, воспринимаются нами с разной светлотой. Жёлтый тон сам по себе - самый светлый, а синий или сине-фиолетовый - самый тёмный.

Насыщенность – степень отличия хроматического цвета от равного ему по светлоте ахроматического, «глубина» цвета. Два оттенка одного тона могут различаться степенью блёклости. При уменьшении насыщенности каждый хроматический цвет приближается к серому.

Цветовой тон - характеристика цвета, отвечающая за его положение в спектре: любой хроматический цвет может быть отнесён к какому-либо определённому спектральному цвету. Оттенки, имеющие одно и то же положение в спектре (но различающиеся, например, насыщенностью и яркостью), принадлежат к одному и тому же тону. При изменении тона, к примеру, синего цвета в зеленую сторону спектра он сменяется голубым, в обратную - фиолетовым.
Иногда изменение цветового тона соотносят с «теплотой» цвета. Так, красные, оранжевые и жёлтые оттенки, как соответствующие огню и вызывающие соответствующие психофизиологические реакции, называют тёплыми тонами, голубые, синие и фиолетовые, как цвет воды и льда - холодными. Следует учесть, что восприятие «теплоты» цвета зависит как от субъективных психических и физиологических факторов (индивидуальные предпочтения, состояние наблюдателя, адаптация и др.), так и от объективных (наличие цветового фона и др.). Следует отличать физическую характеристику некоторых источников света - цветовую температуру от субъективного ощущения «теплоты» соответственного цвета. Цвет теплового излучения при повышении температуры проходит по «тёплым оттенкам» от красного через жёлтый к белому, но максимальную цветовую температуру имеет цвет циан.

Человеческий глаз – это орган, дающий нам возможность видеть окружающий мир.
Зрение даёт нам информации об окружающей действительности больше, чем другие органы чувств: самый большой поток информации в единицу времени мы получаем именно глазами.

Каждое новое утро мы просыпаемся и открываем глаза - наша деятельность не возможна без зрения.
Зрению мы доверяем больше всего и его больше всего используем для получения опыта («не поверю, пока сам не увижу!»).
Мы говорим «с широко открытыми глазами», когда открываем разум навстречу чему-то новому.
Глаза используются нами постоянно. Они позволяют нам воспринимать формы и размеры объектов.
И, что самое главное для колориста, они позволяют нам видеть цвет.
Глаз является очень сложным по своему строению органом. Для нас важно понять, как мы видим цвет и как воспринимаем полученные оттенки на волосах.
Восприятие глаза основывается на светочувствительном внутреннем слое глаза, именуемом сетчаткой.
Отражённые от объектов лучи попадают через зрачок на сетчатку, которая представляет собой прозрачный шарообразный экран толщиной 0.1 - 0.5 мм, на который проецируется окружающий мир. Сетчатка содержит 2 типа фоточувствительных клеток: палочки и колбочки.
Эти клетки являются своего рода датчиками, которые реагируют на падающий свет, преобразовывая его энергию в сигналы, передаваемые в мозг. Мозг переводит эти сигналы в образы, которые мы «видим».

Человеческий глаз представляет из себя сложную систему, главной целью которой является наиболее точное восприятие, первоначальная обработка и передача информации, содержащейся в электромагнитном излучении видимого света. Все отдельные части глаза, а также клетки, их составляющие, служат максимально полному выполнению этой цели.
Глаз - это сложная оптическая система. Световые лучи попадают от окружающих предметов в глаз через роговицу. Роговица в оптическом смысле - это сильная собирающая линза, которая фокусирует расходящиеся в разные стороны световые лучи. Причём оптическая сила роговицы в норме не меняется и дает всегда постоянную степень преломления. Склера является непрозрачной наружной оболочкой глаза, соответственно, она не принимает участия в проведении света внутрь глаза.
Преломившись на передней и задней поверхности роговицы, световые лучи проходят беспрепятственно через прозрачную жидкость, заполняющую переднюю камеру, вплоть до радужки. Зрачок, круглое отверстие в радужке, позволяет центрально расположенным лучам продолжить свое путешествие внутрь глаза. Более периферийно оказавшиеся лучи задерживаются пигментным слоем радужной оболочки. Таким образом, зрачок не только регулирует величину светового потока на сетчатку, что важно для приспособления к разным уровням освещённости, но и отсеивает боковые, случайные, вызывающие искажения лучи. Далее свет преломляется хрусталиком. Хрусталик тоже линза, как и роговица. Его принципиальное отличие в том, что у людей до 40 лет хрусталик способен менять свою оптическую силу - феномен, называемый аккомодацией. Таким образом, хрусталик производит более точную до фокусировку. За хрусталиком расположено стекловидное тело, которое распространяется вплоть до сетчатки и заполняет собой большой объем глазного яблока.
Лучи света, сфокусированные оптической системой глаза, попадают в конечном итоге на сетчатку. Сетчатка служит своего рода шарообразным экраном, на который проецируется окружающий мир. Из школьного курса физики мы знаем, что собирательная линза дает перевёрнутое изображение предмета. Роговица и хрусталик - это две собирательные линзы, и изображение, проецируемое на сетчатку, также перевёрнутое. Другими словами, небо проецируется на нижнюю половину сетчатки, море - на верхнюю, а корабль, на который мы смотрим, отображается на макуле. Макула, центральная часть сетчатки, отвечает за высокую остроту зрения. Другие части сетчатки не позволят нам ни читать, ни наслаждаться работой на компьютере. Только в макуле созданы все условия для восприятия мелких деталей предметов.
В сетчатке оптическая информация воспринимается светочувствительными нервными клетками, кодируется в последовательность электрических импульсов и передается по зрительному нерву в головной мозг для окончательной обработки и сознательного восприятия.

Конусные сенсоры (0,006 мм в диаметре) способны различать малейшие детали, соответственно активными они становятся при интенсивном дневном или искусственном освещении. Они гораздо лучше, чем палочки, воспринимают быстрые движения и дают высокое визуальное разрешение. Но их восприятие снижается при уменьшении интенсивности света.

Самая высокая концентрация колбочек находится в середине сетчатки, в точке называемой центральной ямкой. Здесь концентрация колбочек достигает 147,000 на квадратный миллиметр, обеспечивая максимальное визуальное разрешение картинки.
Чем ближе к краям сетчатки, тем ниже концентрация конусных сенсоров (колбочек) и тем выше концентрация цилиндрических сенсоров (палочек), отвечающих за сумеречное и периферийное зрение. В центральной ямке палочки отсутствуют, что объясняет нам, почему ночью мы лучше видим тусклые звезды, когда смотрим на точку рядом с ними, а не на них самих.

Существует 3 типа конусных сенсоров (колбочек), каждый из которых отвечает за восприятие одного цвета:
Чувствительный к красному (750 нм)
Чувствительный к зеленому (540 нм)
Чувствительный к синему (440 нм)
Функции колбочек: Восприятие в условиях интенсивной освещенности (дневное зрение)
Восприятие цветов и мелких деталей. Количество колбочек в человеческом глазе: 6-7 миллионов

Эти 3 типа колбочек позволяют нам видеть все многообразие цветов окружающего мира. Поскольку все остальные цвета являются результатом сочетания сигналов, поступающих от этих 3 видов колбочек.

Например: Если объект выглядит желтым – это означает, что отраженные от него лучи стимулируют чувствительные к красному и чувствительные к зеленому колбочки. Если цвет объекта оранжево-желтый – это означает, что чувствительные к красному колбочки были простимулированы сильнее, а чувствительные к зеленому – слабее.
Белый мы воспринимаем в тех случаях, когда все три типа колбочек простимулированы одновременно в равной интенсивности. Такое трехцветное зрение описывается в теории Юнга-Гельмгольца.
Теория Юнга-Гельмгольца объясняет восприятие цвета только на уровне колбочек сетчатки, не раскрывая все феномены цветоощущения, такие как цветовой контраст, цветовая память, цветовые последовательные образы, константность цвета и др., а также некоторые нарушения цветового зрения, например, цветовую агнозию.

Ощущение цвета зависит от комплекса физиологических, психологических и культурно-социальных факторов. Существует т.н. цветоведение - анализ процесса восприятия и различения цвета на основе систематизированных сведений из физики, физиологии и психологии. Носители разных культур по-разному воспринимают цвет объектов. В зависимости от важности тех или иных цветов и оттенков в обыденной жизни народа, некоторые из них могут иметь большее или меньшее отражение вязыке. Способность цветораспознавания имеет динамику в зависимости от возраста человека. Сочетания цветов воспринимаются гармоничными (гармонирующими) либо нет.

Тренировка цветовосприятия.

Изучение теорие цвета и тренировка цветовосприятия важны в любой профессии работающей с цветом.
Глаза и разум нужно тренировать для постижения всех тонкостей цвета, также как тренируются и оттачиваются навыки стрижки или иностранные языки: повторение и практика.

Эксперимент 1: Выполняйте упражнение ночью. Выключите свет в комнате – вся комната мгновенно погрузится во мрак, вы ничего не будете видеть. Через несколько секунд глаза привыкнут к низкой освещенности и начнут все четче выявлять контрасты.
Эксперимент 2: Положите перед собой два чистых белых листа бумаги. На середину одного из них положите квадратик красной бумаги. В середине красного квадратика нарисуйте маленький крестик и в течение нескольких минут смотрите на него, не отрывая взора. Затем переведите взгляд на чистый белый лист бумаги. Почти сразу вы увидите на нем образ красного квадратика. Только цвет у него будет другой - голубовато-зеленый. Через несколько секунд он начнет бледнеть и вскоре исчезнет. Почему это происходит? Когда глаза были сфокусированы на красном квадрате, интенсивно возбуждался соответствующий этому цвету тип колбочек. При переводе взгляда на белый лист интенсивность восприятия этих колбочек резко падает и более активными становятся два других типа колбочек – зелено- и синечувствительных.