Какие объекты изучает геология. Прикладная геология - что это за специальность

Геология – это наука, которая изучает состав, строение и закономерности Земли, а также других планет и их спутников, входящих в Солнечную систему.

Геологические области

На сегодняшний день существуют, как минимум, три области геологии: историческая, описательная и динамическая. У абсолютно каждого из этих направлений имеются свои методы, а также принципы исследования. Историческая геология изучает последовательность геологических процессов, которые происходили в прошлом. Описательная геология изучает размещение и состав геологических объектов, а также их размер и форму, залегание и описание разнообразных минеральных и горных отложений или пород. Динамическая геология изучает развитие геологических процессов: разрушение горных пород движение земной коры, а также землетрясения и внутренние извержения вулканов. В этих понятиях и заключаются основы геологии

Геологические разделы

Геологические науки ведут свою деятельность во всех трех областях геологии и, следовательно, точного разделения на группы нет. Однако новые науки появляются при симбиозе геологии с другими областями познания. Во многих источниках имеется следующая классификация:

  1. Науки о земной коре (минералогия, геокриология, петрография, структурная геология, кристаллография).
  2. Науки о геологических процессах, происходящих сегодня (тектоника, вулканология, сейсмология, геокриология, петрология).
  3. Науки о историческом происхождении и развитии геологических процессов (историческая геология, палеонтология, стратиграфия).
  4. Прикладные науки (геология полезных ископаемых, гидрогеология, инженерная геология)
  5. Симбиоз геологии с другими науками (геохимия, геофизика, геодинамика, геохронология, литология).

Принципы и задачи геологии

Геология – это историческая наука, поэтому наиболее важными ее задачами является определение происходящих геологических событий. Также к задачам геологии можно отнести:

  1. Более рациональное использование природных недр, а также их охрана
  2. Нахождение новых месторождений полезных ископаемых, а также разработка новых методов и способов их добычи
  3. Изучение происхождения подземных вод
  4. Другие геологические задачи, которые связаны с изучением условий строительства разнообразных зданий и сооружений.

Методы геологии

Для выполнения всех этих задач разработан простейший ряд очевидных методов геологии:

  • нтрузивный метод представлен связью интрузивных пород и вмещающих их толщ. Нахождение таких связей указывает на то, что сами интрузии появились гораздо раньше, чем вмещающие их толщи.
  • Секущий метод также позволяет определить относительный возраст. Если какой-либо разлом разрывает горную породу, то явно он появился позже, чем сами горные породы.
  • Ксенолиты и обломки могут попадать в породы из-за разрушения своего первоначального источника. Следовательно, они образовались намного раньше, чем вмещающие их породы и могут быть использованы специалистами для определения геологического возраста.
  • Метод первичной горизонтальности полагает, что при своем образовании морские осадки залегают горизонтально.
  • Метод суперпозиции утверждает, что породы, которые находятся в ненарушенном залегании, следуют по порядку или по степени их образования. Например, те породы, которые залегают выше моложе, а те породы, которые залегают ниже, соответственно более древние.
  • Метод финальной сукцессии полагает, что по всему океану распространены абсолютно одинаковые организмы. Следовательно, палеонтологи, определив некоторые остатки ископаемых в породе, при этом одновременно могут найти другие породы, которые также образовались с этими породами.

Теперь Вы знаете ответ на вопрос о том, что такое геология. Рад был помочь.

О геологии знает каждый, несмотря на то, что она является, пожалуй, единственной естественнонаучной дисциплиной, не изучаемой в школьном курсе. Развитие «геологических» знаний сопутствовало развитию человечества на всех этапах его истории. Достаточно вспомнить, что общая периодизация истории основана на характере используемых для производства орудий труда материалов: каменный, бронзовый и железный века. Добыча и совершенствование технологии обработки полезных ископаемых неизбежно связаны с увеличением знаний о свойствах минералов и горных пород, выработкой критериев поиска месторождений и совершенствованием способов их разработки.

Вместе с тем, в понимании, близком к современному, термин «геология» впервые был применен лишь в 1657 году норвежским естествоиспытателем М. П. Эшольтом, а как самостоятельная ветвь естествознания геология начала развиваться только во второй половине 18 века. В это время были разработаны элементарные приёмы наблюдения и описания геологических объектов и процессов, первые методы их изучения, проведена систематизация разрозненных знаний, возникли первые гипотезы. Этот период связан с именами выдающихся учёных А. Броньяра, А. Вернера, Ж. Кювье, Ч. Лайеля, М. Ломоносова, У. Смита и многих других. Геология становится наукой – выработанной в результате деятельности человека взаимосвязанной развивающейся системой знаний о законах мира.

Геология в современном понимании – это развивающаяся система знаний о вещественном составе, строении, происхождении и эволюции геологических тел и размещении полезных ископаемых.
Таким образом, объектами изучения геологии являются:

  • состав и строение природных тел и Земли в целом;
  • процессы на поверхности и в глубинах Земли;
  • история развития планеты;
  • размещение полезных ископаемых.

Можно выделить несколько уровней организации минерального ("геологического") вещества (в которых тела каждого последующего ранга организации вещества образованы закономерным сочетанием тел предыдущего ранга): минерал - горная порода - геологическая формация - геосфера - планета в целом . «Минимальным» объектом, изучаемым в геологии, выступает минерал (составляющие минералы элементарные частицы и химические элементы рассматриваются в соответствующих разделах физики и химии).

Минералы - природные химические соединения с кристаллической структурой , образовавшиеся в ходе геологических процессов на Земле или внеземных телах. Каждый минерал обладает определённой конституцией – совокупностью кристаллической структуры и химического состава. Изучению минералов посвящена одна из ветвей геологии - минералогия. Минералогия - это наука о составе, свойствах, строении и условиях образования минералов. Это одна из старейших геологических наук, по мере развития которой, от неё отделялись самостоятельные ветви геологических наук.

Горные породы - естественные минеральные агрегаты, образующиеся в глубинах Земли или на её поверхности в ходе различных геологических процессов. По способу образования (генетически) горные породы подразделяются на следующие типы:

  • магматические , возникшие за счёт глубинного вещества, находившегося в расплавленном состоянии; иначе говоря, образующиеся в результате кристаллизации огненно-жидкого природного расплава, называемого магмой и лавой;
  • осадочные , формирующиеся на поверхности Земли в результате физического и химического разрушений существующих пород, осаждения минералов из водных растворов или в результате жизнедеятельности живых организмов;
  • метаморфические , возникшие за счёт преобразования магматических, осадочных или других горных пород под воздействием высоких температур и давлений и сохранившие в процессе преобразования твёрдое состояние и свой химический состав;
  • метасоматические , возникшие за счёт преобразования магматических, осадочных или других горных пород, сохранивших в ходе преобразования твёрдое состояние, но утратившие частично или полностью свои исходные минеральный и химический составы;
  • мигматитовые , возникшие за счёт преобразования магматических, осадочных или других горных пород в условиях высоких температур и давлений, сопровождающегося их частичным плавлением; эти породы являются продуктами прогрессивно направленных процессов метаморфизма и метасоматоза;
  • импактные (или коптогенные ), возникшие в следствии импактных событий – падений космических тел; образование импактных пород может быть связано с высоким давлением в ходе удара, частичным или полным плавлением вещества.

В общем виде все горные породы могут быть разделены на возникшие в поверхностных условиях, со свойственным этим условиям сочетанием температур, активности кислорода, воды, органических веществ и иных факторов – это осадочные породы, и породы, образованные под воздействием глубинных процессов, с присущими этим условиям повышенными температурой и давлением, иным химическим составом среды - магматические, метаморфические, метасоматические, мигматитовые; импактные породы, образованные в ходе преобразования существующих пород в условиях высоких давлений и возникающих в ходе взрыва температур, в целом близки ко второй названной группе. Такое разделение определило развитие двух научных направлений, изучающих горные породы. Изучению осадочных пород и современных осадков, их состава, строения, происхождения и закономерностей размещения посвящена наука литология. Изучению, описанию и классификации магматических, метаморфических, метасоматических, мигматитовых и импактных породы, и образованных ими геологических тел посвящена петрография. В ходе развития петрографии из неё выделилась как самостоятельная, но тесно связанная, дисциплина петрология – наука, занимающаяся изучением условий происхождения горных пород и экспериментальным воспроизведением этих условий.

Геологические формации - закономерное сочетание определенных генетических типов горных пород, связанных общностью условий образования.

Геологические формации рассматриваются во многих разделах геологии (петрографии, литологии, геотектонике и др., даже выделяется особое направление - учение о формациях). Учитывая, что выявление формаций, как объектов высокого ранга, возможно лишь при изучении крупных участков земной коры, важная роль в их исследовании отводится региональной геологии. Региональная геология - раздел геологии, занимающийся изучением геологического строения и развития определенных участков земной коры.

Геосферы - концентрические слои (оболочки), образованные веществом Земли. В направлении от периферии к центру Земли расположены атмосфера, гидросфера (образующие внешние геосферы), земная кора, мантия и ядро Земли (внутренние геосферы). Область обитания организмов, включающая нижнюю часть атмосферы, всю гидросферу и верхнюю часть земной коры, называется биосферой.

Важнейшая роль в изучении геосфер, их состава, протекающих в них процессов и их взаимосвязи, отводится геофизике и геохимии. Геофизика - комплекс наук, изучающих физические свойства Земли в целом и физические процессы, происходящие в её твёрдых сферах, а также в жидкой (гидросфера) и газовой (атмосфера) оболочках. Геохимия - наука, изучающая историю химических элементов, законы их распределения и миграции в недрах Земли и на её поверхности. Наука, исследующая глубинные процессы, изменяющие состав и строение твердых оболочек Земли, называется геодинамика . Изучению геологических процессов, протекающих в земной коре и на её поверхности, посвящено ещё одно направление геологии – динамическая геология .

Минералы и горные породы залегают в виде определённых геологических тел. Важными направлением геологии является науки, изучающие формы залегания пород, механизм и причины образования этих форм. Наука, изучающая формы залегания горных пород в земной коре и механизм образования этих форм называется структурная геология (обычно рассматривается как раздел тектоники). Тектоника - наука о строении, движениях и деформациях литосферы и её развитии в связи с развитием Земли в целом.

Геологам приходится иметь дело с толщами горных пород, накопившимися на миллиарды лет. Поэтому ещё одно важнейшее направление включает науки, восстанавливающие по следам, сохранившимся в толщах горных пород, события геологической истории и их последовательность. Геохронология - учение о последовательности формирования и возрасте горных пород. Стратиграфия - раздел геологии, занимающийся изучением последовательности образования и расчленением толщ осадочных, вулканогенно-осадочных и метаморфических пород, слагающих земную кору. Обобщающей дисциплиной этого направления является историческая геология - наука, изучающая геологическое развитие планеты, отдельных геосфер и эволюцию органического мира. Все названные геологические науки тесно связаны с палеонтологией, возникшей и развивающейся на стыке геологии и биологии. Палеонтология – наука, изучающая по ископаемым остаткам организмов и следам их жизнедеятельности историю развития растительного и животного миров прошлых геологических эпох.

Одной из важнейших задач геологии служит открытие месторождений новых полезных ископаемых - минеральных образований земной коры, химический состав и физические свойства которых позволяют эффективно использовать их в сфере материального производства. Скопления полезных ископаемых образуют месторождения . Наука о закономерностях образования и размещения месторождений полезных ископаемых называется металлогения . К полезным ископаемым принадлежат и подземные воды, их изучением занимается гидрогеология . Важная прикладная задача связана с изучением геологических условий строительства различных сооружений, что обусловило формирование ещё одного направления геологии - инженерной геологии .

Многогранность объектов изучаемых геологией превращает её в комплекс взаимосвязанных научных дисциплин . При этом, в большинстве случаев, каждая отдельная дисциплина включает в себя три аспекта: описательный (изучающий свойства объекта, классифицирующий их и пр.), динамический (рассматривающий процессы их образования и изменения) и исторический (рассматривающий эволюцию объектов во времени).

По области использования результатов научные исследования делятся на фундаментальные и прикладные. Цель фундаментальных исследований - открытие новых основополагающих законов природы или способов и средств познания. Цель прикладных - создание новых технологий, технических средств, предметов потребления. Применительно к геологии необходимо отметить следующие практические задачи:

  • открытие новых месторождений полезных ископаемых и новых способов их разработки;
  • изучение ресурсов подземных вод (также являющихся полезным ископаемым);
  • инженерно-геологические задачи, связанные с изучением геологических условий строительства различных сооружений;
  • охрана и рациональное использование недр.

Геология имеет тесную связь со многими науками. На приведенном рисунке указаны разделы наук, возникшие в результате взаимодействия геологии со смежными дисциплинами.

В заключение кратко коснёмся особенностей методов геологических исследований. В этом отношении, прежде всего, следует отметить, что в геологии очень тесно связаны теоретические и эмпирические методы. Важнейшим методом геологических исследований является геологическая съёмка - комплекс полевых геологических исследований, производимых с целью составления геологических карт и выявления перспектив территорий в отношении наличия полезных ископаемых. Геологическая съёмка заключается в изучении естественных и искусственных обнажений (выходов на поверхность) горных пород (определение их состава, происхождения, возраста, форм залегания); затем на топографическую карту наносятся границы распространения этих пород с указанием характера их залегания. Анализ полученной геологической карты даёт возможность создания модели строения территории и данных о размещении на ней различных полезных ископаемых.

Геология - наука о составе, строении и закономерностях развития Земли, других планет Солнечной системы и их естественных спутников.

История геологии

Изучение физических материалов (минералов) Земли восходит по крайней мере к древней Греции, когда Теофраст (372-287 до н. э.) написал работу «Peri Lithon» («О камнях»). В римский период Плиний Старший подробно описал многие минералы и металлы, и их практическое использование, а также правильно определил происхождение янтаря.

Некоторые современные ученые, такие как Филдинг Х. Гаррисон, считают, что современная геология началась в средневековом исламском мире. Аль-Бируни (973-1048 н. э.) был одним из первых мусульманских геологов, чьи работы содержат раннее описание геологии Индии. Он предполагал, что индийский субконтинент был когда-то морем. Исламский ученый Ибн Сина (Авиценна, 981-1037) предложил подробное объяснение формирования гор, происхождение землетрясений и другие темы, которые являются центральными в современной геологии, и в котором содержится необходимый фундамент для дальнейшего развития науки. В Китае энциклопедист Shen Kuo (1031-1095) сформулировал гипотезу о процессе формирования земли: на основе наблюдений над ископаемыми раковин животных в геологическом слое в горах в сотнях километров от океана он сделал вывод, что суша была сформирована в результате эрозии гор и осаждения ила.

Нильсу Стенсену (1638-1686) приписывают три определяющих принципа стратиграфии: принцип суперпозиции (англ.), принцип первичной горизонтальности слоёв (англ.), и принцип последовательности образования геологических тел (англ.).

Слово «геология» было впервые использовано Улиссе Альдрованди в 1603 году, затем Жан Андре Делюк в 1778 году, и представлен как закреплённый термин Орасом Бенедиктом де Соссюром в 1779 году. Слово происходит от греческого??, означающее «Земля» и?????, означающее «учение». Однако согласно другому источнику, слово «Геология» впервые использовал норвежский священник и ученый Миккель Педерсон Эсхолт (Mikkel Peders?n Escholt, 1600-1699). Эсхолт впервые использовал этот термин в своей книге под названием Geologica Norvegica (1657).

Исторически использовался также термин «геогнозия» (или геогностика). Такое название для науки o минералах, рудах, и горных породах было предложено немецкими геологами Г. Фюкселем (в 1761) и A. Г. Bернером (в 1780). Авторы термина обозначили им практические области геологии, изучавщие объекты, которые можно было наблюдать на поверхности, в отличие от чисто теоретической тогда геологии, которая занималась происхождением и историей Земли, её корой и внутренним строением. Термин использовался в специальной литературе в XVIII и начале XIX векa, но начал выходить из употребления уже во второй половине XIX века. В России термин сохранился до конца XIX века в названиях учёного звания и степени «доктор минералогии и геогнозии» и «профессор минералогии и геогнозии».

Уильям Смит (1769-1839) нарисовал одни из первых геологических карт и начал процесс упорядочивания горных пластов, изучая содержащиеся в них окаменелости.

Джеймс Хаттон часто рассматривается как первый современный геолог. В 1785 году он представил для Королевского Общества Эдинбурга документ, озаглавленный «Теория Земли». В этой статье он объяснил свою теорию о том, что Земля должна быть намного старше, чем ранее предполагалось, для того, чтобы обеспечить достаточное время для эрозии гор, и чтобы седименты (отложения) образовали новые породы на дне моря, которые, в свою очередь, были подняты чтобы стать сушей. В 1795 Хаттон опубликовал двухтомный труд, описывающий эти идеи (Vol. 1, Vol. 2).

Последователи Хаттона были известны как плутонисты, из-за того что они считали, что некоторые породы были сформированы в результате вулканической деятельности и является результатом осаждение лавы из вулкана, в отличие от нептунистов, во главе с Авраамом Вернером, который считал, что все породы осели из большого океана, уровень которого с течением времени постепенно снизился.

Чарлз Лайель впервые опубликовал свою знаменитую книгу «Основы геологии» в 1830 году. Книга, которая повлияла на идеи Чарльза Дарвина, успешно способствовала распространению актуализма. Эта теория утверждает, что медленные геологические процессы имели место на протяжении истории Земли и все еще происходят сегодня, в отличие от катастрофизма, теории утверждающей, что особенности Земли формируются в одном, катастрофическом событии и остаются неизменными в дальнейшем. Хотя Хаттона верил в актуализм, идея не была широко принята в то время.

Большую часть XIX века геология вращалась вокруг вопроса о точном возрасте Земли. Оценки варьировались от 100 000 до нескольких миллиардов лет. В начале XX века радиометрическое датирование позволило определить возраст Земли, оценка составила два миллиарда лет. Осознание этого огромного промежутка времени открыло двери для новых теорий о процессах, которые сформировали планету.

Самым значительным достижением геологии в XX веке было развитие теории тектоники плит в 1960 году и уточнение возраста планеты. Теория тектоники плит возникла из двух отдельных геологических наблюдений: спрединга морского дна и континентального дрейфа. Теория революционизировала науки о Земле. В настоящее время известно, что возраст Земли составляет около 4,5 миллиардов лет.

С целью пробудить интерес к геологии Организацией Объединённых Наций 2008 год провозглашён «Международным годом планеты Земля».

Разделы геологии

В процессе развития и углубления специализации в геологии сформировался ряд научных направлений (разделов).

Внизу перечислены разделы геологии.

  • Геология полезных ископаемых изучает типы месторождений, методы их поисков и разведки.
  • Гидрогеология - раздел геологии, изучающий подземные воды.
  • Инженерная геология - раздел геологии, изучающий взаимодействия
  • геологической среды и инженерных сооружений.
  • Геохимия - раздел геологии, изучающий химический состав Земли, процессы, концентрирующие и рассеивающие химические элементы в различных сферах Земли.
  • Геофизика - раздел геологии, изучающий физические свойства Земли, включающая также комплекс разведочных методов: гравиразведка, сейсморазведка, магниторазведка, электроразведка различных модификаций и пр.
  • Изучением Солнечной системы занимаются следующие разделы геологии: космохимия , космология, космическая геология и планетология.
  • Минералогия - раздел геологии, изучающий минералы, вопросы их генезиса, квалификации. Изучением пород, образованных в процессах, связанных с атмосферой, биосферой и гидросферой Земли, занимается литология. Эти породы не совсем точно называются ещё осадочными горными породами. Многолетнемёрзлые горные породы приобретают ряд характерных свойств и особенностей, изучением которых занимается геокриология.
  • Петрография - раздел геологии, изучающий магматические и метоморфические породы преимущественно с описательной стороны - их генезис, состав, текстурно-структурные особенности, а также классификацию.
  • Петрология - раздел геологии, изучающий генезис и условия происхождения магматических и метаморфических горных пород.
  • Литология (Петрография осадочных пород) - раздел геологии, изучающий Осадочные породы.
  • Геобаротермометрия - наука, изучающая комплекс методов определения давления и температур образования минералов и горных пород.
  • Структурная геология - раздел геологии, изучающий нарушения земной коры.
  • Микроструктурная геология - раздел геологии, изучающий деформацию пород на микроуровне, в масштабе зёрен минералов и агрегатов.
  • Геодинамика - наука, изучающая процессы самого планетарного масштаба в результате эволюции Земли. Она изучает связь процессов в ядре, мантии и земной коре.
  • Тектоника - раздел геологии, изучающий движение Земной коры.
  • Историческая геология - отрасль геологии, изучающая данные о последовательности важнейших событий в истории Земли. Все геологические науки в той или иной степени имеют исторический характер, рассматривают существующие образования в историческом аспекте и занимаются в первую очередь выяснением истории формирования современных структур. История Земли делится на два крупнейших этапа - эона, по появлению организмов с твёрдыми частями, оставляющих следы в осадочных породах и позволяющих по данным палеонтологии провести определение относительного геологического возраста. С появлением ископаемых на Земле начался фанерозой - время открытой жизни, а до этого был криптозой или докембрий - время скрытой жизни. Геология докембрия выделяется в особую дисциплину, так как занимается изучением специфических, часто сильно и многократно метаморфизованных комплексов и имеет особые методы исследования.
  • Палеонтология изучает древние формы жизни и занимается описанием ископаемых остатков, а также следов жизнедеятельности организмов.
  • Стратиграфия - наука об определении относительного геологического возраста осадочных горных пород, расчленении толщ пород и корреляции различных геологических образований. Одним из основных источников данных для стратиграфии является палеонтологические определения.
  • Геохронология - раздел геологии, определяющий возраст пород и минералов.
  • Геокриология - раздел геологии, изучающий многолетнемёрзлые породы.
  • Сейсмология - раздел геологии, изучающий геологические процессы при землетрясениях, сейсморайонирование.
  • Вулканология - раздел геологии, изучающий

Основные принципы геологии

Геология - наука историческая, и важнейшей её задачей является определение последовательности геологических событий. Для выполнения этой задачи с давних времён разработан ряд простых и интуитивно очевидных признаков временных соотношений пород.

Интрузивные взаимоотношения представлены контактами интрузивных пород и вмещающих их толщ. Обнаружение признаков таких взаимоотношений (зоны закалки, даек и т. п.) однозначно указывает на то, что интрузия образовалась позже, чем вмещающие породы.

Секущие взаимоотношения также позволяют определить относительный возраст. Если разлом рвёт горные породы, значит он образовался позже, чем они.

Геология как наука

Вступление

Геология - комплекс наук о земной коре и более глубоких сферах Земли, в узком смысле слова - наука о составе, строении, движении и истории развития земной коры, размещении в ней полезных ископаемых.

Так выглядит современное определение геологии. Однако, как и большинство важнейших естественных наук, геология берет свое начало в глубокой древности, наверное, с самого появления человека. Возникновение геологии связано с удовлетворением насущных потребностей людей: в жилище, его обогреве, в успешной охоте. Ведь надо знать свойства горных пород, чтобы научиться применять их. Так же необходимо уметь добывать горные породы, различать их и открывать новые месторождения. Для решения связанных с этим задач и необходимы геологические знания. Но изучение минералов для удовлетворения потребностей человека - это лишь корни геологии. В те давние времена ее еще сложно именовать наукой, т.к. люди не обобщали знания, не записывали их, не развивали, а лишь накапливали и применяли на практике.

Однако постепенно геология развивалась. Во времена античности уже зарождалось представление о минералах и геологических процессах, но только в рамках натурфилософии. Как науку геологию можно рассматривать с начала XIX века . Для этого этапа ее развития характерно обобщение накопленных знаний, создание научных гипотез и поиск их доказательств; использование новых методов исследования, разработанных другими науками, например, химией и физикой. Благодаря всему этому геология становится важной частью системы наук, помогающих человеку осуществлять научно-технический прогресс, удовлетворять его потребности, изучать и использовать природу. На этом этапе геология уже исследует очень сложные вопросы строения веществ, составляющих нашу планету, изучает историю развития Земли и одновременно решает практические проблемы. Это разведка и добыча полезных ископаемых, их переработка и использование, применение земных богатств в повседневной жизни.

Как мы видим, геология очень важна для современного человека, она имеет древнюю историю и изучает широкий спектр вопросов о природе, имеет большую практическую направленность.

Об истории, методах исследования и о будущих перспективах этой важной и очень интересной науки я написал в своей работе, основная цель которой описать геологию как науку.

Для достижения цели определены следующие задачи:

1.) Описать историю геологии, выделить основные особенности науки в различные периоды ее развития.

.) Рассказать о методах исследования, применяемых в геологии.

.) Объяснить значение геологии в современном мире.

.) Показать важность связи геологии с другими науками.

.) Рассказать о будущих перспективах развития геологии.

1. История геологии

геология наука знание

По моему мнению, чтобы понять какую-либо науку, необходимо знать, зачем она возникла, как развивалась, что новое появлялось в ней со временем. Эти вопросы наиболее полно раскрываются при изучении развития науки. Поэтому я решил начать свою работу с описания истории геологии.

Раскрывая историю геологии, я хочу выделить особенности ее развития в разные периоды, рассказать об основных идеях и открытиях, объяснить их смысл и значение и описать итоги достигнутого наукой.

Историю геологии обычно делят на два этапа - донаучный и научный. Их в свою очередь подразделяют на периоды. Именно по такой схеме я описал историю геологии.

.1 Донаучный этап (с древности до середины XVIII века)

Период становления человеческой цивилизации (с древнейших времен до V в. до н.э.)

В этот период люди накапливали самые первые сведения об окружающем мире. Как я уже говорил, сначала люди удовлетворяли свои важнейшие потребности при помощи различных горных пород, и для более полноценного применения требовалось изучить их свойства, места распространения и способы добычи. Начало изучения, связанных с этим вопросов, мы уже можем рассматривать как зарождение науки геологии.

Сейчас мы не можем точно сказать что значил камень для древних людей, мы можем лишь рассмотреть следы применения различных горных пород при раскопках стоянок древних людей и сделать свои выводы о применении ими минералогических богатств планеты. Как и наши предположения о необходимости для древних людей горных пород, так и результаты раскопок, говорят о том, что человек использовал камень, чуть ли не сразу после своего появления. Ведь применение орудий труда и отличает человека от обезьяны. Возможно, конечно, что самым примитивным орудием труда первоначально служила деревянная палка, но когда человек обнаружил такие свойства камня, как острота и твердость, он начал использовать острые куски кварца и кремния для своих нужд. Такой вывод о свойствах камней уже является примером накопления геологических знаний. Археологи находят на местах стоянок древних людей не только простые острые камни, но и каменные топоры, наконечники стрел. Несколько позже люди стали применять металлы для изготовления орудий труда. А ведь их поиск и выплавка требуют от человека еще больше знаний и умений.

Потребность человечества в минеральном сырье еще больше возросла с началом массового строительства городов, с развитием ремесел.

К концу периода человек уже занимался добычей и переработкой самородных меди, железа, золота, серебра, олова и других металлов. Глина широко применялась для строительства жилья и изготовления гончарных изделий. Драгоценные камни использовались для изготовления ювелирных украшений .

Так в древности уже начинается накопление некоторых знаний о свойствах горных пород, их добыче и применении.

Теоретическая ветвь геологии пополняется многочисленными гипотезами о происхождении и строении Земли. Однако в них всегда присутствует вымысел, т.к. древние не могли объяснить многие явления природы .

В период становления человеческой цивилизации люди используют для дальнейшего совершенствования умений обращения с камнем лишь опыт предыдущих поколений. Человек еще не обобщает знания, что является важной характеристикой периода.

При переходе к античному периоду развития геологии люди уже знали множество примет для поиска месторождений полезных ископаемых, обладали практическими навыками их использования. Для будущих поколений была создана база геологических знаний.

Античный период (V в. до н.э. - V в. н.э.)

В античный период геология развивалась в основном в Греции и в Римской империи. Первоначальный запас знаний о свойствах и применении горных пород в это время уже существовал, однако эти знания в основном имели практическое значение: добыча и использование минералогических богатств планеты. Но поскольку в античные времена люди уже рассуждали о жизни, интересовались устройством мира, то геологические знания стали пополнятся более логическими объяснениями различных явлений и гипотезами их происхождения. Выводы делались на основе осмысления и переработки данных, полученных при наблюдениях. Были более правдоподобными и обоснованными.

Практическое направление геологии так же продолжало развиваться. Важным как для людей того времени, так и для нас стало, то, что в античный период многие наблюдения и гипотезы записывались. Эти сведения стали служить будущим поколениям, а мы по ним можем судить о развитии науки, в т.ч. и геологии, того времени.

Достижениями античных ученых-философов можно считать, например, вывод о том, что раньше на месте некоторых областей суши было море. Данный вывод был сделан Ксенофаном на основе нахождения морских раковин в земле. Так же в период античности уже предполагали, что наша планета шарообразная. Такое предположение было сделано на основании наблюдений земной тени на Луне во время лунного затмения. Тень имеет круглую форму, соответственно - отбрасывается круглым или шарообразным телом. А Эратосфен даже вычислил длину окружности Земли. Полученные им результаты лишь незначительно отличались от современных данных.

Большой вклад в развитие геологии внёс древнегреческий ученый и философ Аристотель. Он предлагал картину шарообразной Земли, внутри которой находятся полости и каналы, в которых циркулируют вода и воздух. Их перемещениями ученый объяснял происходящие на поверхности землетрясения. Интересно, что такая система взглядов соответствует природе Греции, для которой характерны карстовые полости, частые землетрясения. Аристотель внес в науку и некоторые минералогические сведения: составил первую классификацию ископаемых, разделив их на руды, камни и земли.

Плиний Старший, кроме землетрясений, выделял медленные вертикальные движения земли.

Страбон высказывал идею о вулканическом происхождении острова Сицилия .

Именно в период античности были созданы две основные гипотезы формирования Земли. Это плутонизм и нептунизм. Эти гипотезы существовали много веков и равноправно принимались многими великими людьми .

Плутонизм - это система взглядов, в основу которой входит понимание внутренних геологических сил Земли, как основных факторов формирования ее поверхности и недр. Нептунизм же подразумевает, что все горные породы образовались из вод океана при кристаллизации растворов. Воздействие внутренних сил Земли отвергается.

Борьба этих гипотез принесла большую пользу геологии, ведь для поиска их доказательств проводилось много исследований. Сейчас мы знаем, что победили сторонники идеи формирования Земли под действием ее внутренних сил (плутонисты). Однако доказано, что минералы могут образовываться и из водных растворов.

В античный период также были усовершенствованы способы применения геологических знаний на практике. Для обработки металлов стали использовать ковку. А добычу полезных ископаемых стали осуществлять с применением шахт вместо открытых карьеров .

Таким образом, античный период принес геологии множество полезных знаний. Было положено начало теоретической ветви геологии, записаны результаты наблюдений, что позволило в будущем отталкиваться от этих достижений.

Следующий период развития геологии был труден не только для нее. Эпоха средневековья характеризовалась застоем науки вообще. Но все-таки знания о Земле продолжали развиваться.

Схоластический период

Схоластический период длился с V по XV вв. в Западной Европе. В других странах он продолжался с VII по XVII вв. С падением Римской Империи научные знания прекращают свое стремительное развитие в ее пределах. Греция уже не являлась центром научных идей. Однако и в Западной Европе наука развивалась слабо. Естествознание в это время переходит к ученым Средней Азии, но об их исследованиях сохранилось очень мало данных. До нас дошли лишь некоторые их труды .

Ибн-Сина (или Авиценна) объяснял изменение земной поверхности двумя причинами. Одна - это воздействие внутренних сил Земли (под ними ученый подразумевал ветер, дующий в подземных пустотах). Благодаря этим силам земная поверхность поднимается, образуя возвышенность. Другая причина - внешние (метеорологические, гидросферные и др.) воздействия, разрушающие участки поверхности планеты, создающие углубления. В этой гипотезе даже учитывалось, что плотность составляющих поверхности, разрушающейся извне, различна. Тогда на месте рыхлых пород образуется понижение рельефа, на месте твердых - его повышение, т.к. вокруг них породы выветриваются сильнее.

Ибн-Сина также предполагал, что море неоднократно наступало на сушу и снова отступало. Свидетельством этого он видел нахождение в горах слоев различных горных пород. Ученый полагал, что когда суша освободилась от моря, реки промыли в ней долины, т.о. образовался современный ему рельеф.

Ибн-Синой была создана новая классификация минералов и горных пород. Он разделил их на камни, плавкие тела (металлы), горючие серные вещества и соли. Классификацию переняли европейцы, и она просуществовала достаточно долго.

Другой ученый Средней Азии - Бируни описал более 100 минералов и назвал их месторождения. Он также научился определять удельный вес минералов, сделав это почти на 700 лет раньше европейцев.

Некоторые другие азиатские исследователи продолжали развивать идеи античных представлений о мире.

Причиной медленного развития геологии в Европе явилось влияние церкви. Она вмешивалась в науку с библейской картиной мира и его происхождения. А поскольку геологи предлагали не соответствующее библейскому мировоззрение, их учения и труды подвергались критике или даже запрещались. Из-за этого возникло множество неверных гипотез, ложных учений. Произошло даже некоторое отставание науки от античной. Например, о найденных в земле останках ископаемых живых организмов говорили, будто это игра природы или пример самозарождения жизни, т.к. по церковному учению жизнь создана Богом в таком виде, в каком она есть сейчас, а находками были ныне не существующие организмы. Также вводились ложные учения о том, что Земля является прямоугольником, а звезды на небе передвигают ангелы.

Некоторые ученые в Европе, игнорируя церковь, предлагали свои идеи о мире. Но они лишь заимствовали античное мировоззрение .

Однако, несмотря на торможение развития теоретической геологии ее практическая направленность (прикладная геология) развивалась более успешно, особенно в Европе. Это было связано с развитием человечества, и как следствие, с возрастанием потребностей в минеральном сырье.

Строительство городов требовало природного материала для создания зданий. Возрастание числа городских ремесленников, нуждавшихся в материале для своих изделий, часто изготавливаемых из камня, также способствовало развитию горнорудного дела. Следствием этих факторов стало увеличение количества полезных ископаемых, извлекаемых людьми из земных недр .

Период возрождения (с XV-XVII вв. до середины XVIII в.)

Период был подготовлен эпохой великих географических открытий. Путешествия Колумба, Магеллана, Васко да Гама способствовали накоплению большого материала о всей поверхности Земли . Так, во время кругосветного путешествия Магеллана было окончательно доказано, что наша планета имеет шарообразную форму. Гипотезы ученых периода возрождения становятся настолько убедительными, подтверждаются такими неоспоримыми фактами, что церковь отступает перед наукой.

В период возрождения Николай Коперник, Галилео Галилей и Джордано Бруно утвердили гелиоцентрическую модель мира .

Как известно, в эпоху Возрождения происходит духовный подъем человечества. Хотя влияние церкви еще сохранялось, ее учения перестают быть единственным толкованием мира. Люди начинают верить науке.

Поскольку города продолжали расти, техника развивалась, добыча богатств Земли становилась более быстрой и эффективной. Увеличилось и количество разрабатываемых месторождений.

Конечно, во время добычи полезных ископаемых люди накапливали знания о свойствах горных пород, об особенностях их залегания, о строении земной коры. Обобщение этого материала приводило к важным теоретическим выводам.

Среди людей, внесших вклад в геологию во времена периода возрождения, следует выделить немецкого ученого Георга Бауэра (или Агриколу). Он обобщил все достижения горняков Западной Европы. Ученый описал способы прокладки шахт, их особенности. Также Агриколой впервые было установлено отличие минералов от горных пород. Ученый описал свойства множества минералов, что позволило другим геологам определять минералы. Агрикола занимался и изучением кристаллов.

Знаменитый Леонардо-да-Винчи тоже внес в науку, некоторые геологические сведения. Например, он высказал идею о том, что горные породы могут располагаться пластами, залегающими горизонтально, или в виде складок. Также Леонардо считал находки древних вымерших организмов действительно их останками, а не игрой природы, в противоположность ученым схоластического периода.

В период возрождения вклад в геологию внесла Россия. Поиск месторождений широко организовывался правительством. В 1584 г. был создан приказ Каменных дел. В пределах Российской империи добывалось множество полезных ископаемых. Они также экспортировались в другие страны.

Датчанин Нильс Стено основал стратиграфию и открыл первый закон кристаллографии о постоянстве углов кристаллов, сделал первое научное обобщение-сводку по земному магнетизму .

Закончился донаучный этап развития геологии. Уже было накоплено достаточно материала о Земле. Его необходимо было лишь обобщить и дополнить теоретическими выводами. В научный этап, вооружившись новыми технологиями, духовными силами человечество стало решать эту задачу. Но конечно, донаучный этап развития геологии не мог мгновенно смениться научным. Поэтому в ее истории выделяют также переходный период.

1.2 Переходный период (вторая половина XVIII в.)

Переходный период в развитии геологии характеризуется тем, что в это время одновременно встречаются как старые учения донаучного периода, так и научные обобщения. Накопленные донаучным этапом геологические знания систематизируются и, таким образом, в переходный период происходит становление геологии как науки.

Важным отличием переходного периода от донаучного стало то, что в это время в геологии утвердилась идея об изменчивости мира, тогда как раньше большинство ученых считало, что мир всегда существовал в неизменном виде. Идею развития Земли высказывали многие ученые переходного периода, но в первую очередь она связана с именами Ж. Бюффона, И. Канта и М.В. Ломоносова. В своих трудах они рассматривали всю историю Земли, от ее происхождения и до современного состояния, как единую картину мира. По мнению этих ученых Земля постоянно изменялась .

Достижением геологии стала классификация диагностических признаков минералов, разработанная Вернером. Он также исследовал рудные полезные ископаемые и предложил систему стратиграфической последовательности горных пород. В развитии теоретической геологии ученый сыграл скорее отрицательную роль: он разработал схему формирования горных стран на идеях нептунизма.

В противоположность А.Г. Вернеру Джеймс Геттон доказывал теорию плутонизма, говоря о решающем значении в формировании Земли ее внутренних сил .

Ученый И. Кант в 1755 г. выдвинул гипотезу происхождения Солнечной системы. Согласно ей элементарные частицы первоначально рассеянные во Вселенной, собирались в сгустки под действием взаимного притяжения. При сжатии и раскаливании одного из сгустков вещества образовалось Солнце. Вокруг него собрались туманности, в которых возникли планеты, в т.ч. Земля. Ж. Бюффон создал гипотезу развития Земли. Он считал, что когда наша планета затвердела, она покрылась океанами. Благодаря движениям вод в них образовались неровности дна. Возвышенности стали материками при отступании воды. Период существования Земли Бюффон определял в 75 тыс. лет. Сейчас нам кажется, что это очень малый срок, однако богословы подвергли критике гипотезу Бюффона, т.к. по библейскому учению Земля существует 6000 лет .

Итак, к началу XIX века геология сформировалась как наука. Следующий этап ее развития - научный, пополнил знания людей о Земле новейшими сведениями.


Героический период (первая половина XIX века)

С началом периода связано появление биостратиграфического метода. Он позволял определять относительный возраст горных пород по сложности устройства находящихся в них останков древних организмов (данный метод подробнее описан мной в п. 2.1 настоящей работы).

В качестве самостоятельной дисциплины в геологии выделилась палеонтология. (см. п. 1.4.).

В начале XIX века К.Л. фон Бухом была выдвинута первая тектоническая гипотеза. В ней ученый рассматривал вулканизм, как ведущий процесс, формирующий горы. Гипотеза была подтверждена исследованиями А. Гумбольдта. Ее приняли многие ученые, и она играла важную роль в представлении людей о горообразовательных процессах.

Сведения, полученные о химическом составе минералов и о законах образования их кристаллов, позволили к концу героического периода создать химическую классификацию минералов. Эта классификация длительное время составляла основу минералогии.

В конце героического периода в геологию был внесен еще один важный вклад. Представители стратиграфии заметили, что в некоторых слоях горных пород между организмами, относящимися к разному геологическому времени, не обнаружена эволюционная связь. Т.е. у одних организмов не могли найти предков, у других потомков. Чтобы объяснить эти факты, ученые создали теорию катастроф. Теория включала в себя идею существования в истории Земли многочисленных катастроф, которые, по мнению ученых, периодически полностью уничтожали жизнь на планете, затем она возникала заново. Ч. Лайель впервые возразил против этого в своем труде «Основы геологии…» (1830-1833 гг.). Он писал, что органический мир развивался на Земле последовательно и постоянно. Однако идеи ученого были подтверждены и приняты лишь спустя 20 лет .

В героический период геологами была решена еще одна задача. Давно стоял вопрос происхождения странных валунов, районы распространения которых удалены на тысячи километров от мест их находок. Объяснить этот факт позволила ледниковая теория, которая предполагала влияние многочисленных оледенений на земную поверхность. Впоследствии эта гипотеза не только доказала перенос валунов ледниками, но и была подтверждена сама, а эпохи оледенений стали считать частью истории Земли.

Итак, героический период недаром получил свое название. Геология действительно достигла огромных успехов. Итогами периода стало создание первых геологических обществ, национальных геологических служб в России, Англии, Франции. Также характерными для этого периода стали большой масштаб исследований и более организованный характер их проведения .

Геология стала самостоятельной дисциплиной естествознания. Появилась новая профессия - геолог.

Классический период (вторая половина XIX века)

В начале классического периода появилась книга Ч. Дарвина «Происхождение видов путем естественного отбора…». Она подтверждала гипотезу Ч. Лайеля. Поскольку гипотеза эволюционного развития жизни стала подтверждаться и находками организмов, являющихся переходным звеном между теми формами жизни, которые раньше считались несвязанными друг с другом, то геологи, наконец, отказались от катастрофизма. Они приняли теорию эволюции.

Период также характеризуется появлением гипотезы контракции, выдвинутой Эли де Бомоном. Ученый считал, что в процессе остывания Земли ее объем уменьшался, это приводило к появлению складок в земной коре. Так он объяснял происхождение гор. Кажущаяся внутренняя логичность гипотезы контракции и отсутствие ей альтернативы привело к тому, что эта идея закрепилась в геологии на весь классический период .

В классический период возникло понятие о магме - жидком веществе, которое в некоторых случаях может образовываться в твердой земной мантии. В частности магма извергается через кратеры вулканов и, освобождаясь от газов, превращается в лаву. Дифференциацией магмы назвали процесс превращения ее в различные горные породы при застывании. Этим объяснялось происхождение многих горных пород.

Хочется отметить, что во второй половине XIX века в связи с развитием промышленности во многих странах увеличился и объем добычи полезных ископаемых. Мировая выплавка стали выросла с 500 тыс. до 28 млн. тонн, в 3 раза больше стала мировая добыча угля. Поскольку все страны нуждались в еще большем количестве минерального сырья, то их правительства выделяли большие средства на развитие геологии. Следствием этого стало появление геофизики, которая позволила изучать глубинное строение нашей планеты .

Можно также выделить, что в классический период многое было сделано для изучения геологического строения России. В 1882 г. был основан Геологический комитет России.

В классический период произошло значительное развитие петрографии. В руках специалистов о горных породах появился поляризационный микроскоп. С его помощью изучали тончайшие прозрачные пластинки горных пород - шлифы (оптическая петрография).

Из минералогии как самостоятельная дисциплина выделилась кристаллография.

Также было положено начало геологии нефти. Ее стали рассматривать как полезное ископаемое, были созданы гипотезы ее образования .

Таким образом, классический период развития геологии принес этой науке много пользы. Геология стала играть важную роль среди естественных научных дисциплин.

Следующий период развития геологии - «критический», стал переломным этапом в развитии естествознания в целом. Почва для совершенных в «критический» период открытий была подготовлена геологическими достижениями классического периода.

«Критический» период» (первая половина XX века)

Этот период развития геологии, не случайно получил такое название. Стоит отметить, что его становление как «критического» периода обусловлено многочисленными новыми открытиями в разных областях науки. Это и успехи в познании микромира, и открытие рентгеновского излучения, естественной радиоактивности. Все это оказывало существенное влияние и на геологию .

В начале периода произошло крушение гипотезы контракции. Вместо нее появились другие тектонические гипотезы. Наиболее соответствующей современным представлениям о Земле стала гипотеза дрейфа континентов, предложенная А. Вегенером. Она подразумевала, что земная кора состоит из целостных блоков - литосферных плит, которые двигаются относительно друг друга, а вместе с ними и материки (см. рис. 1). Гипотеза играла очень важную роль в геологии. Она объясняла процессы горообразования смятием земной коры при столкновении литосферных плит. Также этим объяснялись землетрясения и вулканизм. Гипотеза находила подтверждение в том, что горные области зоны землетрясений и вулканизма почти всегда совпадают - они соответствуют границам литосферных плит. Также гипотезу подтверждало и то, что восточное побережье Южной Америки соответствовало западному берегу Африки, т.е., если убрать Атлантический океан, приблизив Африку к Южной Америке, они бы составили единый континент, который и образовал эти материки, расколовшись в прошлом.

Однако, несмотря на такие веские доводы в пользу правильности гипотезы, она подвергалась критике и долго не принималась в геологии. Из-за неправдоподобности гипотеза была отклонена . Основной же стала ундационная гипотеза. Она подразумевала формирование рельефа за счет вертикальных движений в земной коре .

В «критический» период происходит выделение геотектоники в отдельную научную дисциплину. Она оказала большое влияние на развитие теоретической и прикладной геологии. Раздел этой дисциплины учение о геосинклиналях - подвижных поясах на границах литосферных плит, также продолжал развиваться, объясняя многие особенности Земли.

В.А. Обручев, С.С. Шульц, Н.И. Николаев стали основателями геотектоники - дисциплины, изучающей тектонические движения недалекого прошлого и современности.

При помощи геофизических методов была создана модель оболочного строения Земли. В ней выделили ядро, мантию, земную кору. Как мы знаем, эти геосферы выделяются и современными учеными.

В петрографии стало интенсивно развиваться физико-химическое направление исследований и, как следствие, возникла кристаллохимия. Для изучения кристаллов стал применяться рентгеноструктурный анализ.

Продолжала развиваться геология горючих полезных ископаемых. Также появилось мерзлотоведение. К концу «критического» периода были составлены геологические карты разных территорий, были написаны труды, обобщающие геологические материалы для некоторых территорий.

Увеличилась потребность в полезных ископаемых, стали добываться и применяться новые их виды - урановые руды, нефть. Для поиска месторождений разрабатывались новые методы .

Новейший период (1960-1990-е гг.)

В начале новейшего периода произошло техническое перевооружение геологии. Появились электронный микроскоп, электронно-вычислительные машины, масс-cпектрометр (определитель массы химических элементов). Стало возможным глубоководное бурение, изучение Земли из космоса.

Важным стало то, что Землю смогли исследовать, сравнивая ее с другими планетами. Также появилась возможность определения абсолютного возраста горных пород.

Значительных успехов достигла палеонтология - выведены новые группы ископаемых останков, закономерности развития живых организмов, выделены великие вымирания в истории биосферы.

В новейший период ученые стали решать некоторые проблемы геологии, например, вопросы минералогии, в лаборатории с помощью экспериментов.

Были открыты законы метасоматической зональности (особенностей залегания минералов, видоизмененных при взаимодействии с водными растворами) и создана теория различных типов литогенеза (пути превращения горных пород в метаморфические). Также в новейший период были созданы тектонические карты Евразии и палеогеографические карты мира.

В новейший период были приняты и продолжили развитие идеи мобилизма, в т.ч. гипотеза дрейфа континентов.

Палеонтологи выявили самые ранние этапы развития жизни на Земле.

С возникновением экологических проблем связано появление геотехнологии - науки, решающей задачи рационального использования недр нашей планеты. Также появилась экологическая геология.

В новейший период был разработан механизм спрединга. Он включал идею о том, что новая океаническая кора образуется в зонах выхода и застывания магмы. Таким зонам соответствуют срединно-океанические хребты. Затем новая кора продвигается к континентам и на границе континентальной земной коры заходит под нее. В этих местах образуются глубоководные желоба, а на континентах часто происходит образование гор .

Геология новейшего периода мало отличается от современной. Но на этом ее развитие не остановилось, оно продолжается в настоящем и будет продолжаться в будущем.

Как вывод к истории геологии я хочу выделить основные разделы науки, сформировавшиеся к настоящему времени.

.4 Разделы геологии

К настоящему времени в геологии сформировались следующие основные разделы.

1. Динамическая или физическая геология. Этот раздел изучает современные геологические явления, изменяющие Землю на глазах людей (атмосфера, вода, флора и фауна, вулканизм).

. Петрография или наука о горных породах. Этот раздел уже почти достиг размеров самостоятельной науки, ведь изучение свойств горных пород важно для их применения.

. Палеонтология - наука об ископаемых живых организмах, составляет третий раздел геологии. Он изучает развитие, происхождение древних живых существ и даже восстанавливает их среду обитания.

Изучением последовательности и условий залегания различных горных пород, а также следов жизни в них занимается стратиграфия . Она относится к четвертому разделу геологии. Подразделяясь на петрографическую и палеонтологическую, стратиграфия занимает важное место в геологии - она охватывает изучение сразу множества закономерностей на Земле. О стратиграфии подробнее написано в п. 2.1. настоящей работы.

. Историческая геология составляет пятый раздел науки о Земле. Она как бы подводит итоги всем исследованиям нашей планеты: распределяет геологические памятники, процессы и явления во времени.

Это основные разделы геологии. Они в свою очередь подразделяются на множество более мелких направлений, изучающих либо разные стороны вопроса, касающегося основного раздела, либо исследующих его разными методами .

Итак, описана история развития геологических наук. С ее помощью сформировано представление о геологии, выделены основные идеи и положения этой науки.

2. Методы исследования

Сейчас я опишу методы, с помощью которых геология изучает Землю. Понять их очень интересно и важно. Хочу также заметить, что названия многих методов совпадают с названиями различных разделов геологии, которые их применяют.

.1 Определение относительного возраста горных пород

Чтобы изучать прошлое планеты и развитие жизни на ней необходимо уметь определять какие горные породы образовались на Земле раньше, какие - позже. Для этого существуют самые различные способы.

Первоначально датчанин Нильс Стено выдвинул принцип: «Слой, лежащий выше, образовался позже слоя, лежащего ниже». Отраслью геологии, изучающей последовательность образования и закономерности размещения горных пород, используя этот и другие принципы, стала стратиграфия. Это одна из основных отраслей геологии.

Однако у принципа Стено имеются и свои недостатки. Например, невозможно сопоставить возраст пород, лежащих в разных местах. Позже и эта проблема была решена. Ученые заметили, что живые организмы устроены тем сложнее, чем они моложе. Так, сопоставляя особенности строения их останков в горных породах, определяют какие организмы, а следовательно и породы, более молодые. Теперь даже при перемешивании пластов горных пород можно определить первоначальную последовательность их залегания (см. рис. 2).

В настоящее время ученые выбрали для каждого периода в истории Земли наиболее характерные формы жизни. Их останки называют руководящими ископаемыми. По ним точно определяют последовательность накопления горных пород.

Благодаря этим открытиям была составлена геохронологическая шкала, в которой история Земли разделена на эоны, эры, периоды и эпохи. Шкала общепринята, используется повсеместно и важна для многих отраслей науки. Однако в ней первоначально указана лишь последовательность периодов. Их длительность, даты начали и конца были установлены при помощи изотопного метода определения абсолютного возраста горных пород .

.2 Определение абсолютного возраста горных пород

Как определить возраст одних горных пород относительно других, геологи уже поняли. Но еще одна задача была не решена - определить, сколько лет существуют те или иные горные породы. С развитием ядерной физики люди научились при помощи новейших приборов определять абсолютный возраст горных пород.

Суть изотопного метода (так называется способ определения абсолютного возраста горных пород) заключается в следующем. Установлено, что нестабильные изотопы химических элементов распадаются и превращаются в более легкие стабильные атомы. Причем скорость этого распада почти не зависит от внешних условий. Так по количеству нестабильного элемента и по количеству продуктов его распада определяют, насколько сильно распался элемент. В некоторых случаях определяют не количество продуктов распада, а количество треков - областей, выжженных в породе осколками ядер нестабильного изотопа. Это позволяет узнать число делений ядер. Зная всегда постоянную скорость распада, определяют, когда он начался, а значит и как давно образовалась порода.

Самым точным является радиоуглеродный метод, при котором используется распад нестабильного изотопа углерода с атомной массой 14. Период его полураспада - достаточно короткий промежуток времени - 5768 лет. Но поскольку за время равное десяти периодам полураспада эффективность течения реакции снижается в 1024 раза, то становится затруднительно зарегистрировать такие малые изменения вещества. Поэтому время, измеряемое этим методом, не превышает 60 000 лет. В этом промежутке возраст определяется наиболее точно.

При помощи радиоуглеродного метода определяют возраст органических останков, поскольку живые организмы при жизни поглощают углерод из атмосферы. В ней содержание изотопов углерода постоянно, т.к. поддерживается образованием C14 при помощи космической радиации. А после смерти организма нестабильный углерод начинает распадаться .

Для определения количества изотопов углерода часто применяют метод масс-спектрометрии (см. рис. 3). В этом случае содержащийся в образце углерод окисляют, превращая его в углекислый газ. Затем молекулы газа превращают в ионы и пропускают через магнитную камеру. В ней CO2 с легким углеродом откланяется сильнее, чем газ с тяжелым изотопом. Регистрируя отклонения от прямолинейной траектории, определяют, сколько в веществе осталось нестабильных тяжелых изотопов. Чем меньше осталось нестабильных атомов, тем древнее образец, возраст которого определяют. В годах это рассчитывают при помощи специальных формул.

Период полураспада урана с атомной массой 238 - 4,51 млрд. лет. Поэтому ураново-свинцовый метод (свинец - продукт распада урана) позволяет датировать древнейшие события, хотя при этом и снижается точность измерений. Технология метода заключается в следующем. Среди пород, возраст которых необходимо определить, отбираются те, которые содержат циркон - ураносодержащий минерал. Затем породу измельчают до кристаллов и их просеивают через специальные сетки, что бы отделить кристаллы одного размера. При погружении этих кристаллов в растворы высокой плотности, самый тяжелый из кристаллов - циркон оседает на дно. Его выбирают и слоем в один кристалл наклеивают на специальную пластинку. Затем кристаллы на пластинке шлифуют и опускают в раствор кислоты. При этом вещество внутри треков растворяется, и они становятся видными через микроскоп. Затем количество треков в единице площади подсчитывают. В годах возраст определяют по специальным математическим формулам. При этом учитывают и уменьшение скорости распада со временем.

Изотопный метод в настоящее время является наиболее точным, но существуют и другие способы определения абсолютного возраста горных пород. Например, определив скорость накопления осадочных горных пород и зная толщину их слоя, приблизительно оценивают и время образования этих пород. Но ведь скорость накопления пород может меняться, а слой их способен сжиматься и, потому подобные методики недостаточно точны.

2.3 Спектральный анализ

Люди давно заметили, что разные химические элементы, помещенные в пламя, окрашивают его в разные цвета (см. рис. 4). Например, медный купорос - в зеленый, поваренная соль - в ярко-желтый. Однако точно определить химические элементы по цвету огня невозможно, т.к. некоторые из них дают одинаковый цвет.

В 1859 г. немецкие ученые химик Роберт Бунзен и физик Гистаф Кирхгоф нашли способ различать оттенки цветов пламени. Они воспользовались своим изобретением - спектроскопом. Он представляет собой стеклянную призму, помещенную перед белым экраном. Призма раскладывает луч света на монохроматические лучи, благодаря чему видны различия между спектрами элементов, которые визуально одинаково окрашивают пламя.

Вообще, спектральный анализ оказался важен как для геологов, так и для представителей новой науки, им же и порожденной - космохимии .

2.4 Гравиразведка

Вес - это та сила, с которой тело, притягиваясь к Земле, давит на опору или оттягивает подвес. Оказывается, даже притяжение тел к Земле используют в геологии.

Любое тело, обладающее массой, обладает притяжением. Мы очень хорошо наблюдаем это, ведь земная гравитация и есть сила притяжения Земли. Но, если все тела притягиваются друг к другу, тогда почему мы не замечаем, например, притяжения между двумя людьми? Дело в том, что эти силы очень малы, но все-таки они существуют. Экспериментальным путем доказано, что отвес отклоняется от вертикального положения вблизи большой горы. Так же установлено, что два больших свинцовых шара на близком расстоянии катятся друг к другу .

В соответствии с эти можно сделать вывод, что в зависимости от плотности пород, залегающих под землей, будет меняться и величина силы тяжести (в физике - ускорение свободного падения). Но проблема в том, что эти изменения очень малы, и человек их не замечает. Только при помощи точных приборов можно установить изменения притяжения.

Первоначально силу тяжести определяли по периоду качания маятника и его длине. Однако, в связи с неудобством применения маятника, его заменили более удобным прибором - гравиметром. Его принцип действия прост: на пружинку подвешен массивный груз и по степени ее закрученности определяют силу тяжести.

Сейчас метод гравиразведки применяется повсеместно для поиска месторождений нефти (над пустотой в земле притяжение меньше) и месторождений очень плотных минералов, например, руд железа. Метод чрезвычайно прост и недорог, а для исключения ошибок его часто применяют вместе с другими методами. Составлены карты гравитационного поля Земли.

При помощи измерения силы тяжести ученые изучают вопросы, связанные с формой Земли и строением ее недр .

2.5 Применение окаменелостей

Находки палеонтологов, следы прежних форм жизни, могут рассказать не только о развитии живых организмов, их строении, но и еще о многих закономерностях их формирования, об окружающей их среде и ее свойствах.

Например, зная, что растительность различных климатических поясов неодинакова, ученые, изучая останки древних растений, делают выводы о климате той или иной местности в прошлом. А зная условия жизни современных сообществ живых организмов (температура, количество потребляемой пищи, грунт) можно определить условия среды обитания подобных им сообществ в прошлом. Так же, изучая ритмичность роста некоторых организмов (кораллов, двухстворчатых и головоногих моллюсков, усоногих раков и др.) определяют скорость вращения Земли, периодичность приливов, наклон земной оси, частоту штормов и многое другое. К примеру, установлено, что 370-390 млн. лет назад в году было примерно 385-410 дней, значит, Земля вращалась вокруг своей оси быстрее, чем сейчас.

На практике для поиска месторождений нефти применяют зависимость цвета останков конодонтов (живых организмов) от температуры недр, где они залегали. Если температура была до 250°С, то из органических веществ не могла образоваться нефть. Если же температура была больше 800°С, то нефть которая могла там существовать разрушилась. Но если температура была между этими пределами, то поиск нефти можно продолжить.

По особенностям состава останков морских организмов можно определить температуру и состав воды в определенное время. А исходя из всех этих данных, можно дальше выводить закономерности, существующие в мире, и применять их во всех областях науки .

2.6 Биогеохимический метод

Биогеохимический метод основан на изучении особенностей растений, обусловленных присутствием определенных минералов в земной коре.

Люди еще до открытия современных методов поиска полезных ископаемых пользовались тем, что у растений, растущих над разными рудами, появляются свои особенности. Например, определенные виды мхов, мяты и гвоздичных, растущие в большем, чем обычно количестве, указывают на наличие в недрах земли меди. А месторождения алюминия, вызывающие повышенное содержание этого металла в почве, приводят к укорачиванию корней и пятнистости листьев. Никель приводит к появлению белых мертвых пятен на листьях. Так, люди, визуально наблюдая растения, успешно открывали месторождения необходимых им горных пород.

В XX веке биогеохимический метод стал применяться еще более успешно: появилась возможность выявлять аномалии растительного мира с помощью аэрофотосъемки, начали применять спектроскопию для определения повышенного содержания минералов в растениях, свидетельствующего об их избытке в почве. Преимуществом метода является возможность нахождения руд, залегающих на значительных глубинах.

В настоящее время для упрощения биогеохимического метода созданы списки растений индикаторов с известной реакцией на определенные минералы. Более 60 растений из списка проверены и с их помощью можно искать почти все виды ископаемых металлов. Многие месторождения уже открыты с применением данного метода .

2.7 Сейсмометрия

В начале ХХ века один из основоположников сейсмологии Борис Борисович Голицын писал: «Можно уподобить всякое землетрясение фонарю, который зажигается на короткое время и освещает внутренность Земли». Действительно, скрытые от нас многокилометровыми толщами горных пород земные недра, поддаются исследованию в основном во время землетрясений. Ведь даже при помощи бурения в земную кору не проникают дальше 12 км.

Для изучения недр используют возникающие при землетрясении сейсмические волны. Применяется особенность распространения волн с разной скоростью в веществах с разными свойствами (либо через разные агрегатные состояния одного вещества), а на границе разных веществ волны либо отражаются, либо искажаются. Если источник сейсмических волн расположен вблизи поверхности Земли, то многие волны, отражаясь от нижележащих слоев возвращаются к поверхности, где их фиксируют сейсмоприемниками. Эти приборы во много раз усиливают ничтожно маленькие колебания почвы. Зная время распространения волн и учитывая их свойства делают вывод о расположении отражающих поверхностей, узнают глубину их залегания, угол наклона и структуру. Причем источником сейсмических волн часто используют искусственный взрыв, т.к. тогда точно известно время начала движения волн.

В сейсморазведке регистрируют преломленные и отраженные волны. Первые из них более сильные. При этом и методы их исследования различны.

Отраженные волны сразу дают подробный разрез изучаемого участка. Впервые при помощи отраженных волн удалось обнаружить нефтяные месторождения в 30-х годах ХХ века. После этого сейсморазведка стала ведущим методом в геофизике. Чтобы составить полное представление о строении недр Земли колебания регистрируют одновременно во многих местах.

Метод преломленных волн также успешно совершенствовался. С их помощью стало возможным проводить исследования на больших глубинах. Геологи смогли изучать строение земной коры, особенности формирования материков и океанов, причины тектонических движений.

С появлением цифровой обработки сигнала в 60-х годах анализ сейсмологической информации стал более полным и быстрым. Также ученые заменили источник сейсмических волн с взрывчатки на экологически безопасные и позволяющие выбирать частоту колебаний вибраторы.

Сейсморазведка имеет огромное значение в геологии. В основном с ее помощь определены геосферы Земли, их толщина, состояние вещества в них.

.8 Магниторазведка

Земля, подобно гигантскому магниту окружена магнитным полем. Оно простирается в пространстве на 20-25 земных радиусов. О происхождении магнитного поля Земли до сих пор идут споры. Т.к. оно может возникнуть либо под действием электричества, либо намагниченного тела, выдвигают гипотезу, согласно которой поле земли возникает из-за электрических токов, появляющихся в земном ядре при вращении планеты.

Но, независимо от происхождения, поле оказывает огромное влияние на обитателей Земли - оно защищает от космической радиации. Также именно благодаря полю стрелка компаса ориентируется на север. Замечено, что северный конец стрелки компаса склоняется вниз по отношению к горизонтальному положению. Это наводит на мысль, что источник магнетизма находится в земных недрах.

Изучение явлений, связанных с магнитным полем помогает понять строение нашей планеты, частично узнать ее историю, выяснить связь Земли с космосом.

Замечено, что намагниченные горные породы также влияют на ориентацию стрелки компаса. Благодаря этому магнитные аномалии (отклонения от нормального поля Земли) используют при поиске полезных ископаемых, имеющих большую намагниченность (железосодержащие минералы). Уже в XVII веке в России и Швеции для поиска железных руд использовали компас. Позднее был создан более точный прибор, определяющий изменения магнитного поля Земли и его силу - магнитометр (см. рис. 6).

Изучая остаточную намагниченность горных пород, которая была ими приобретена под действием магнитного поля Земли в прошлом, ученые определяют положение магнитных полюсов и силу магнитного поля Земли в древнейшие геологические периоды. Например, установлено, что раньше на месте современного северного полюса был южный и наоборот. Предполагают, что во время их смены магнитное поле ослабевает, космическая радиация проникает на Землю, что отрицательно влияет на ее обитателей.

Магниторазведка важна для людей не только поиском полезных ископаемых. С ее помощью составляют специальные карты магнитного склонения (отклонение стрелки компаса от северного направления в градусах). Это важно для точного ориентирования на местности .

2.9 Электроразведка

Электроразведка - это раздел геофизики, определяющий состав и строение земной коры с применением естественных или созданных искусственно электрических токов. Этот способ разведки насчитывает, пожалуй, наибольшее число разнообразных методов и их разновидностей - более 50.

Вот основные из них:

. Метод сопротивлений - основан на пропускании через землю постоянного тока при помощи двух электродов. Затем измеряют напряжение, вызванное этим током, другими электродами. Зная силу тока и напряжение рассчитывают сопротивление. По сопротивлению узнают какие породы его вызывают (разные породы имеют различное сопротивление). А учитывая расположение электродов, узнают в каком месте находятся породы, обладающие высоким сопротивлением.

При помощи метода сопротивлений рассматривают слои, составляющие исследуемый участок, их распределение. В частности возможен поиск месторождений нефти и газа.

Для индукционного метода используют искусственно созданное переменное электрическое или магнитное поле. Под его воздействием в земле возникает электромагнитное поле. Зная параметры созданного поля и фиксируя свойство поля, возникшего в земле, определяют какой по свойствам средой оно испускается и где она расположена. Источник искусственного поля можно перемещать и тогда картина недр становится более подробной. Способы обработки данных, полученных индукционным методом, очень сложны.

Отдельно выделяют электроразведку скважин . Для нее применимы как названные выше методы, так и многие другие. Это и радиоволновое просвечивание, и изучение естественного электрического поля, и метод погружных электродов. Электроразведка скважин позволяет определить форму, размер и состав горных пород в пространстве около скважин и в них самих .

2.10 Определение месторождений по космическим снимкам

С появлением возможности получения фотографий обширных участков земной поверхности из космоса, геологи смогли выявить связь между внешним видом, формой различных интрузий и их составом.

К примеру, замечено, что горные породы, содержащие апатит, часто выходят на поверхность в форме «колец» и «бус». Эту закономерность можно наблюдать в форме наших Хибинских гор - они представляют собой полукольцо, в котором находятся богатейшие залежи апатит-нефелиновых руд. Меднопорфировые месторождения также связаны со специфичными видами массивов, которым даны специальные названия: «дракон», «пень» и «корень».

Изучение космических снимков древних и современных вулканов также позволяет находить месторождения полезных ископаемых.

Таким образом, с появлением нового метода исследования существенно расширились возможности геологии. Теперь геологи могут судить о распространенности месторождений в масштабах планеты. А также экономятся время и силы ученых: сначала выясняется местоположение возможного месторождения, затем туда снаряжается экспедиция, в то время как раньше приходилось сложными методами непосредственно изучать всю поверхность земли. Увеличилась и вероятность нахождения месторождений.

2.11 Что можно узнать, изучая гальку

Изучая обычную речную гальку, можно выявить много интересного. Ученые могут определить откуда галька начала свой путь. Если в гальке содержатся полезные ископаемые, она может привести к их месторождениям. При сохранении у гальки первоначального контура можно определить условия ее формирования. Рассчитывая скорость движения гальки, скорость уменьшения ее веса, степень окатанности, определяют и расстояние, пройденное ей. Для этого выведены специальные формулы. По тому, как ориентирована галька, находят направление движения несуществующего ныне водного потока, а по углу наклона гальки определяют скорость его движения .

3. Место, занимаемое геологией в современном мире

.1 Связь геологии с другими науками

Сейчас, когда методы исследования, применяемые в геологии, описаны, я бы хотел уделить внимание связи геологии с другими науками.

Связь между различными науками очень важна. Совместными усилиями ученые лучше познают мир. Взаимосвязь проявляется в двух видах. 1.) Готовые данные, полученные одной наукой, принимаются и используются другой наукой. Например, таблица Менделеева используется почти всеми естественными науками как аксиома. 2.) Постоянное применение методов исследования одной науки в другой. Например, использование методов физики в геологии, когда среда или явление не поддается непосредственному наблюдению.

Связь между науками часто двухсторонняя. Примеров успешного взаимодействия различных наук с геологией существует множество. Некоторые из них я приведу.

Для изучения эволюции живого, биология обращается к находкам палеонтологии - ископаемым остаткам. Это разумно, т.к. необходимо знать строение организмов на разных этапах эволюции, что бы понять как они все лучше приспосабливались к окружающей среде, как природа выбирала и сохраняла наилучшие формы жизни. Вопрос о происхождении человека биологи тоже решают совместно с палеонтологами, анализируя останки предков людей.

С другой стороны, переработка полезных ископаемых может производится с помощью биологических методов. Известно, что золото часто включено в кристаллическую решетку минералов в очень малых количествах и его сложно извлечь. Тогда на помощь приходят бактерии. Они разрушают кристалл минерала и таким образом золото извлекается.

Для поиска полезных ископаемых с помощью биогеохимического метода используют особенности растений, изученные ботаниками .

Часто бывает, что гипотеза, выдвинутая специалистами одной научной области, находит подтверждение в других областях. Взаимодействие наук также важно для подтверждения и сопоставления результатов исследований, так как разностороннее изучение какого-либо вопроса более эффективно.

Поэтому для получения ответов на важные вопросы должны чаще проводиться совместные исследования представителей разных наук, тогда точнее и полнее будут результаты исследований.

.2 Значение геологии в современном мире

Как вывод ко всему сказанному, я бы хотел добавить о значении геологии в современном мире.

Геология - одна из немногих наук, рассматривающая последовательность, длительность событий. Таким образом, она оказывает влияние на (духовное) представление о мире у людей: об обитателях Земли, облике нашей планеты в прошлом. Геология помогает человеку понять, как Природа создала современные сообщества организмов, как в прошлом накапливались используемые сейчас полезные ископаемые и каково место человека среди современной биоты. Обладая такими знаниями, человек делает вывод как важно уберечь Землю и жизнь на ней от загрязнений, сохранить и рационально использовать полезные ископаемые.

Итак, значение геологии велико для духовного развития человека.

Велика ее роль для обычного человека и просто в быту. Ведь полезные ископаемые добывают при помощи геологических методов. А уж роль полезных ископаемых в жизни человека сложно переоценить: с помощью угля и продуктов переработки нефти производится отопление домов в городах, на бензине ездят автомобили, природный газ используется для приготовления пищи, при помощи урана, нефти или угля вырабатываются всем необходимое электричество. Также почти все, созданное человеком, - дома, машины, дороги, ювелирные украшения, стекло - сделаны из природных материалов, добываемых в земле.

Геологическими достижениями пользуются люди самых различных профессий. Геокриология - раздел геологии, изучающий многолетнюю мерзлоту. Строители используют полученные ей данные для разработки норм и правил строительства в районах распространения мерзлоты.

Для правильного ориентирования на местности необходимо знать отклонение стрелки компаса от северного направления, что происходит из-за несовпадения географического и магнитного полюсов. Такие особенности магнетизма выявлены при помощи магниторазведки. Этот раздел геологии изучает не только поиск полезных ископаемых по магнитным аномалиям, но и магнитное поле планеты в целом.

По карте литосферных плит каждый человек может определить в каких областях часты землетрясения и извержения вулканов (таким областям соответствуют границы литосферных плит) и, например, при переезде, выбрать наилучшее место жительства или заранее подготовится к тектонической активности.

Таким образом, геология очень важна для всего человечества. От ее достижений напрямую зависит и развитие человеческого общества в техническом отношении.

4. Будущее геологии

В заключение к данной работе я хочу написать о будущем геологии.

Представить будущее любой науки достаточно сложно. Ведь необходимо сохранить объективность и не углубляться в область фантастики.

В настоящее время некоторые люди выдвигают мнение о том, что геология в будущем не нужна, т.к. содержание полезных ископаемых в земной коре уменьшается и вскоре они могут закончиться. Для удовлетворения человечества в минеральном сырье, считают они, будет применяться метод извлечения из огромных объемов горных пород ничтожных долей искомого вещества.

Однако предлагаемый метод комплексного извлечения минералов из горных пород имеет многочисленные недостатки.

Во-первых, сейчас ученые не располагают необходимыми технологиями (кроме примера с золотом и др.). Во-вторых, если бы данный метод применялся, то он был бы дорог и технически сложен. В-третьих, пришлось бы перерабатывать огромное количество материала с больших площадей планеты, что может привести к экологическим проблемам. В-четвертых, возникла бы проблема утилизации переработанных пустых пород.

Итак, такой способ на данный момент не возможен и вряд ли будет возможен в будущем для добычи всех необходимых людям полезных ископаемых. Однако его применение для добычи отдельных минералов возможно. Также можно разработать способы извлечения таким способом новых минералов. Но применять метод необходимо с осторожностью, чтобы не нарушить экологию.

Существует и другой взгляд на будущее геологии: следует совершенствовать способы поиска месторождений, методы добычи полезных ископаемых, разумно (экономично) расходовать ресурсы планеты, тогда минерального сырья должно будет хватать для человеческих нужд.

На мой взгляд, в будущем должен применяться и способ комплексного извлечения минералов из горных пород, и должны быть усовершенствованы имеющиеся методы поиска и добычи полезных ископаемых.

Также я считаю важным сохранение экологически благоприятной обстановки на планете, поэтому методы ведения исследований и непосредственно добыча полезных ископаемых в будущем должны наносить меньше вреда окружающей среде.

По-прежнему стоит проблема рационального использования земных богатств. Это необходимо учитывать при разработке методов добычи полезных ископаемых, при которых у природы не будет браться ничего лишнего.

Больше внимания необходимо уделить совместной работе геологии с другими науками, ведь часто использование косвенных методов физики, химии, математики помогает решать геологические задачи. Важно и увеличение точности геофизических методов, т.к. многие из них пока молоды и дают лишь приблизительные результаты.

Также общество ставит перед геологией такие задачи, как предсказание и предотвращение стихийных бедствий. Этому надо уделить особое внимание, т.к. решение этих задач приведет к спасению множества человеческих жизней .

В геологии имеется еще много проблем. Их решением непосредственно занимаются геологи. Например, невыяснено происхождение магнитного поля Земли, не установлено происхождение жизни, расположение и свойства геосфер Земли. Решение этих вопросов поможет человечеству более успешно использовать богатства нашей планеты.

Заключение

Я бы хотел, чтобы моя работа помогла юным геологам и просто людям, интересующимся геологией, сформировать представление об этой науке. В кратком и простом изложении материала мной выделены особенности геологии, ее достижения.

Хотелось бы добавить, что геология очень интересна, а сведения о ней и предмете ее изучения - Земле полезны каждому человеку.

Таким образом, цели и задачи настоящей работы выполнены: геология описана как наука, выделены основные задачи, изучаемые ей, описана история, методы исследования, разъяснено практическое значение науки, показана важность связи геологии с другими науками, рассказано о будущих перспективах развития геологии.

Литература

1. Большая российская энциклопедия

2. Ваганов П.А. Физики дописывают историю. - Ленинград: Изд-во Ленинградского университета, 1984. - С. 28 -32.

3. История геологии. - Москва, 1973. - С. 12-27.

Курс общей геологии. - Ленинград «Недра» Ленинградское отделение, 1976.

5. Перельман Я.И. Занимательная физика, книга 1. - Москва «Наука» Главная редакция физико-математической литературы, 1986.

6. Энциклопедия для детей. Т. 4. Геология. - 2-е изд. перераб. и доп. / Глав. ред. М.Д. Аксенова. - М.: Аванта+, 2002.

Журнал «Техника-молодежи», 1954, №4, с. 28-27

Уже много лет представители самых разных профессий ведут непрекращающийся спор о том, какую же профессию можно считать самой древней. Выдвигается множество убедительных версий и предположений: от оружейника и охотника до политика (вождя) и лекаря. Мы не станем ввязываться в этот спор, и всего лишь выдвинем свое предположение: самой древней профессий является геолог.

Уже много лет представители самых разных профессий ведут непрекращающийся спор о том, какую же профессию можно считать самой древней. Выдвигается множество убедительных версий и предположений: от оружейника и охотника до политика (вождя) и лекаря. Мы не станем ввязываться в этот спор, и всего лишь выдвинем свое предположение: самой древней профессий является геолог .

Посудите сами, для того, чтобы сделать каменный топор, первобытному человеку нужно было найти подходящий камень среди огромного разнообразия минералов и обломков горных пород (часть из которых, из-за своей рыхлой структуры, совершенно не подходила для этого). То есть, налицо применение основ геологии и неорганизованная добыча полезных ископаемых еще на заре становления первобытного общества.

Мало того, мы беремся утверждать, что геолог - это не только самая древняя, но и одна из самых важных профессий современности. Почему? Все просто. Что является основой экономики любого государства? Энергетические и минеральные ресурсы страны. А кто занимается поиском и исследованием полезных ископаемых? Геолог!

Ну а теперь давай более подробно поговорим об этой древнейшей и важнейшей профессии, и узнаем, в чем заключаются особенности работы геолога, где получить профессию геолога и какие преимущества она имеет.

Кто такой геолог?


Геолог - специалист, занимающийся изучением состава и строения минералов и горных пород, а также поиском и исследованием новых месторождений полезных ископаемых. Параллельно с этим геологи изучают природные объекты, закономерности, и возможности их практического применения.

Название профессии произошло от древнегреческого γῆ (Земля) и λόγος (учение). Другими словами, геологи - это люди, которые занимают изучением Земли. Первые научные высказывания о геологических наблюдениях (информация о землетрясениях, размывании гор, извержениях вулканов и перемещении береговых линий) встречаются в работах Пифагора (570 год до н.э.). А уже в 372-287 году до н.э. Теофраст написал работу "О камнях". Отсюда следует, что официальным период становления данной профессии можно считать 500-300 гг. до нашей эры.

Современные геологи не только наблюдают и исследуют явные геологические процессы и месторождения, но и выявляют наиболее перспективные площади для разведки и оценки, исследуют их и обобщают полученный результат. Отметим, что сегодня геологов можно разделить на три категории, в зависимости от того, какой раздел геологии они выбрали в качестве основной специализации:

  • описательная геология - специализируется на изучении размещения и состава геологических образований, а также описании горных пород и минералов;
  • динамическая геология - изучает эволюцию геологических процессов (движения земной коры, землетрясений, извержения вулканов и т.д.);
  • историческая геология - занимается изучением последовательности геологических процессов в прошлом.

Бытует распространенное мнение, что геологи только то и делают, что постоянно разъезжают в составе геологических экспедиций. Действительно, геологи часто выезжают в экспедиции, однако помимо этого они разрабатывают программы научно-исследовательских работ, изучают полученные в ходе экспедиций данные и оформляют их документационной форме, а также составляют информационные отчеты о проделанной работе.

Каким личностными качествами должен обладать геолог?


Так уж получилось, что благодаря фильмам в сознании простых обывателей геолог представляется в образе этакого бородатого романтика, который ничего не замечает вокруг и говорит только о своей работе. И мало кто догадывается, что работа геолога это не только романтика, но и достаточно тяжелый труд, который требует наличия таких личностных качеств, как:

  • упорство;
  • ответственность;
  • наблюдательность;
  • аналитический склад мышления;
  • эмоционально-волевая устойчивость;
  • развитая память;
  • склонность к экстриму;
  • коммуникабельность;
  • терпеливость;
  • целеустремленность.

Кроме того, геолог должен обладать отменным здоровьем, быть выносливым, уметь работать в команде, быстро ориентироваться и приспосабливаться к изменениям в окружающей обстановке.

Преимущества профессии геолога

Основное преимущество профессии геолога заключается, конечно же, в возможности много и долго путешествовать по самым отдаленным и малоизученным регионам России. Мало того, за такие путешествия еще и достаточно прилично платят (средний заработок геолога, работающего вахтовым методом, составляет около 30-40 тысяч рублей). К преимуществам этой профессии также можно отнести:

  • значимость работы - приятно осознавать, что результаты твоей работы положительно влияют на экономическое благосостояние всей страны;
  • возможность самореализации - поскольку в природе не бывает двух одинаковых месторождений, геологи часто проводят новые научные исследования, а значит имеют большие шансы вписать свое имя в анналы истории.

Недостатки профессии геолога


Если Вы думаете, что во время экспедиций геологи живут если не в роскошных, то хотя бы комфортабельных гостиничных номерах, то глубокого заблуждаетесь. Все путешествия геологов проходят в походных условиях (ночевки в палатках, работа под открытым небом, длительные пешие походы по малопроходимым местам с тяжелым рюкзаком за плечами и т.д.). И это можно считать главным недостатком профессии геолога . Сюда же можно добавить:

  • ненормированный рабочий график - время и продолжительность работы во многом определяют погодные условия;
  • рутинность - после экспедиций, наполненных романтикой и приключениями, всегда следует период камеральной обработки полевых материалов;
  • ограниченный круг общения - этот недостаток относится преимущественно к геологам, работающих вахтовым методом.

Где можно получить профессию геолога?

Получить профессию геолога можно как в техникуме или колледже, так и в ВУЗе. В первом случае, полученный диплом всего лишь слегка приоткроет двери в увлекательный мир геологии, и позволит принимать участие в экспедициях на правах помощника. Стать полноправным квалифицированным геологом может только обладатель диплома ВУЗа, который прошел не только теоретическую, но и практическую подготовку. Кстати, без высшего образования даже самый талантливый геолог не сможет добиться успехов в карьере. Поэтому, если Вас уже сейчас манит романтика этой профессии, лучше всего сразу поступать в один из профильных ВУЗов.