Физико-химические свойства крови: вязкость, удельный вес, осмотическое и онкотическое давление. Физико-химические свойства крови и плазмы От чего зависит вязкость крови физиология

Осмотическое давление крови зависит от концентрации в плазме крови молекул растворенных в ней веществ (электролитов и не­электролитов) и представляет собой сумму осмотических давлений содержащихся в ней ингредиентов. При этом свыше 60% осмоти­ческого давления создается хлористым натрием, а всего на долю неорганических электролитов приходится до 96% от общего осмо­тического давления. Осмотическое давление является одной из жест­ких гомеостатических констант и составляет у здорового человека в среднем 7,6 атм с возможным диапазоном колебаний 7,3-8,0 атм.

  • Изо­тонический раствор . Если жидкость внутренней среды или искусственно приготовленный раствор имеет такое же осмотическое давление, как нормальная плазма крови, подобную жидкую среду или раствор называют изо­тоническим.
  • Гипертонический раствор . Жидкость с более высоким осмотичес­ким давлением называется гипертонической,
  • Гипотонический раствор . Жидкость с более низким осмотичес­ким давлением называется гипотонической.

Осмотическое давление обеспечивает переход растворителя через полунепроницаемую мембрану от раствора менее концентрированно­го к раствору более концентрированному, поэтому оно играет важ­ную роль в распределении воды между внутренней средой и клет­ками организма. Так, если тканевая жидкость будет гипертоничес­кой, то вода будет поступать в нее с двух сторон - из крови и из клеток, напротив, при гипотоничности внеклеточной среды вода переходит в клетки и кровь.

Аналогичную реакцию можно наблюдать со стороны эритроцитов крови при изменении осмотического давления плазмы: при гипертоничности плазмы эритроциты, отдавая воду, сморщиваются, а при гипотоничности плазмы набухают и даже лопаются. Последнее, ис­пользуется в практике для определения осмотической стойкости эритроцитов . Так, изотоничным плазме крови является 0,89% рас­твор NaCl. Помещенные в этот раствор эритроциты не изменяют формы. В резко гипотоничных растворах и, особенно, воде эритро­циты набухают и лопаются. Разрушение эритроцитов носит название гемолиз, а в гипотоничных растворах - осмотический гемолиз. Если приготовить ряд растворов NaCl с постепенно уменьшающейся кон­центрацией поваренной соли, т.е. гипотоничные растворы, и поме­шать в них взвесь эритроцитов, то можно найти ту концентрацию гипотоничного раствора, при котором начинается гемолиз и еди­ничные эритроциты разрушаются или гемолизируются. Эта концент­рация NaCl характеризует минимальную осмотическую резистентность эритроцитов (минимальный гемолиз), которая у здорового человека находится в пределах 0,5-0,4 (% раствора NaCl). В более гипотонических растворах все более количество эритроцитов гемолизируется и та концентрация NaCl, при которой все эритроциты будут лизированы, носит название максимальной осмотической резистентности (максимальный гемолиз). У здорового человека она колеблется от 0,34 до 0,30 (% раствора NaCl).
Механизмы регуляции осмотического гомеостазиса изложены в главе 12.

Онкотическое давление

Онкотическим давлением называют осмотическое дав­ление, создаваемое белками в коллоидном растворе, поэтому его еще называют коллоидно-осмотическим. Ввиду того, что белки плазмы кро­ви плохо проходят через стенки капилляров в тканевую микросреду, создаваемое ими онкотическое давление обеспечивает удержание воды в крови. Если осмотическое давление, обусловленное солями и мел­кими органическим молекулами, из-за проницаемости гистогематических барьеров одинаково в плазме и тканевой жидкости, то онкоти­ческое давление в крови существенно выше. Кроме плохой проница­емости барьеров для белков, меньшая их концентрация в тканевой жидкости связана с вымыванием белков из внеклеточной среды током лимфы. Таким образом, между кровью и тканевой жидкостью суще­ствует градиент концентрации белка и, соответственно, градиент онкотического давления. Так, если онкотическое давление плазмы крови составляет в среднем 25-30 мм рт.ст., а в тканевой жидкости - 4-5 мм рт.ст., то градиент давления равен 20-25 мм рт.ст. Поскольку из белков в плазме крови больше всего содержится альбуминов, а молекула альбумина меньше других белков и его моляльная концент­рация поэтому почти в 6 раз выше, то онкотическое давление плазмы создается преимущественно альбуминами. Снижение их содержания в плазме крови ведет к потере воды плазмой и отеку тканей, а увели­чение - к задержке воды в крови.

Коллоидная стабильность

Коллоидная стабильность плазмы крови обусловлена характером гидратации белковых молекул и наличием на их поверхности двой­ного электрического слоя ионов, создающего поверхностный или фи-потенциал. Частью фи-потенциала является электрокинетичес­кий (дзета) потенциал. Дзета-потенциал - это потенциал на гра­нице между коллоидной частицей, способной к движению в элект­рическом поле, и окружающей жидкостью, т.е. потенциал поверх­ности скольжения частицы в коллоидном растворе. Наличие дзета-потенциала на границах скольжения всех дисперсных частиц фор­мирует на них одноименные заряды и электростатические силы от­талкивания, что обеспечивает устойчивость коллоидного раствора и препятствует агрегации. Чем выше абсолютное значение этого по­тенциала, тем больше силы отталкивания белковых частиц друг от друга. Таким образом, дзета-потенциал является мерой устойчивости коллоидного раствора. Величина этого потенциала существенно выше у альбуминов плазмы, чем у других белков. Поскольку альбуминов в плазме значительно больше, коллоидная стабильность плазмы крови преимущественно определяется этими белками, обеспечива­ющими коллоидную устойчивость не только других белков, но и углеводов и липидов.

Суспензи­онные свойства

Суспензи­онные свойства крови связаны с коллоидной стабильностью белков плазмы т.е. поддержание клеточных элементов во взвешенном состоянии. Величина суспензионных свойств крови может быть оценена по скорости оседания эритроцитов (СОЭ) в неподвижном объеме крови.

Таким образом, чем выше содержание альбуминов по сравнению с другими, менее стабильными коллоидными частицами, тем больше и суспензионная способность крови, поскольку альбумины адсорбируются на поверхности эритроцитов. Наоборот, при повышении в крови уровня глобулинов, фибриногена, других крупномолекулярных и нестабильных в коллоидном растворе белков, скорость оседания эритроцитов нарастает, т.е. суспензионные свойства крови падают. В норме СОЭ у мужчин 4-10 мм/ч, а у женщин - 5-12 мм/ч.

Вязкость крови

Вязкость - это способность оказывать сопротивление течению жидкости при перемещениях одних частиц относительно других за счет внутреннего трения. В связи с этим, вязкость крови представ­ляет собой сложный эффект взаимоотношений между водой и мак­ромолекулами коллоидов с одной стороны, плазмой и форменными элементами - с другой. Поэтому вязкость плазмы и вязкость, цель­ной крови существенно отличаются: вязкость плазмы в 1,8 - 2,5 раза выше, чем воды, а вязкость крови выше вязкости воды в 4- 5 раз. Чем больше в плазме крови содержится крупномолекулярных белков, особенно фибриногена, липопротеинов, тем выше вязкость плазмы. При увеличении количества эритроцитов, особенно их со­отношения с плазмой, т.е. гематокрита, вязкость крови резко воз­растает. Повышению вязкости способствует и снижение суспензион­ных свойств крови, когда эритроциты начинают образовывать агре­гаты. При этом отмечается положительная обратная связь - по­вышение вязкости, в свою очередь, усиливает агрегацию эритроци­тов - что может вести к порочному кругу. Поскольку кровь - неоднородная среда и относится к неньютоновским жидкостям, для которых свойственна структурная вязкость, постольку снижение дав­ления потока, например, артериального давления, повышает вяз­кость крови, а при повышении давления из-за разрушения струк­турированности системы - вязкость падает.

Еше одной особенностью крови как системы, обладающей наряду с ньютоновской и структурной вязкостью, является, эффект Фареуса-Линдквиста. В однородной ньютоновской жидкости, согласно закону Пуазейля, с уменьшением диаметра трубки повышается вяз­кость. Кровь, которая является неоднородной неньютоновской жид­костью, ведет себя иначе. С уменьшением радиуса капилляров менее 150 мк вязкость крови начинает снижаться. Эффект Фареуса-Линдквиста облегчает движение крови в капиллярах кровеносного русла. Механизм этого эффекта связан с образованием пристеночного слоя плазмы, вязкость которой ниже, чем у цельной крови, и миграцией эритроцитов в осевой ток. С уменьшением диаметра сосудов толщина пристеночного слоя не меняется. Эритроцитов в движущейся по узким сосудам крови становится по отношению к слою плазмы меньше, т.к. часть из них задерживается при вхождении крови в узкие сосуды, а находящиеся в своем токе эритроциты двигаются быстрее и время пребывания их в узком сосуде уменьшается.

Вязкость крови прямо пропорционально сказывается на величине общего периферического сосудистого сопротивления кровотоку, т.е. влияет на функциональное состояние сердечно-сосудистой системы.

Удельный вес крови

Удельный вес крови у здорового человека среднего возраста со­ставляет от 1,052 до 1,064 и зависит от количества эритроцитов, содержания в них гемоглобина, состава плазмы.
У мужчин удельный вес выше, чем у женщин за счет разного содержания эритроцитов. Удельный вес эритроцитов (1,094-1,107) существенно выше, чем у плазмы (1,024-1,030), поэтому во всех случаях повышения гематокрита, например, при сгущении крови из-за потери жидкости при потоотделении в условиях тяжелой физической работы и высокой температуры среды, отмечается увеличение удельного веса крови.

4. Определение осмотической резистентности эритроцитов:

Осмотическая резистентность эритроцитов характеризует их устойчивость относительно деструктивных факторов: химических, температурных, механических. При лабораторных опытах особое внимание уделяется их стойкости к гипотоническим р-рам NaCl, а именно, какая концентрация вызывает гемолиз. Нормально функционирующие клетки сопротивляются осмосу и сохранят прочность. Такая способность характеризует осмотическую устойчивость, или резистентность эритроцитов.
Если они становятся слабыми, то маркируются иммунной системой, после чего удаляются из организма.
Метод исследования: Основной лабораторный метод определения стойкости эритроцитов к разрушению – это реакция гипотонического солевого раствора и крови, смешанного в одинаковых объемах. Анализ позволяет выявить стабильность мембраны клетки. Альтернативный метод определения ОРЭ – фотоколориметрический, при котором измерения производят специальным аппаратом – фотоколориметром. Физраствор представляет собой смесь дистиллированной воды и хлорида натрия. В растворе с концентрацией 0,85% эритроциты не разрушаются, его называют изотоническим. При более высокой концентрации получится гипертонический, а ниже – гипотонический раствор.
В них эритроциты погибают, сжимаясь в гипертоническом, и набухая в гипотоническом р-ре.
Как проводится процедура? Определение ОРЭ проводится добавлением равного количества крови (обычно 0,22 мл) в гипотонический раствор NaCl различных концентраций (0,7-0,22%). После часа выдержки смесь центрифугируют. В зависимости от цвета устанавливают начало распада и полный гемолиз. В начале процесса раствор имеет слегка розовый цвет, а ярко красный свидетельствует о полном распаде эритроцитов. Результат выражается в двух характеристиках резистентности, имеющих процентное выражение – минимальной и максимальной.
При наличии вторичной гемолитической анемии при дефиците глюклзо-6-фосфатдигидрогеназы, анализ может показать нормальную ОРЭ, что обязательно учитывают перед проведением исследования
Показатели нормы Норма резистентности для взрослого человека независимо от пола является следующей (%): Максимальная – 0,34-0,32. Минимальная – 0,48-0,46.
В детском возрасте до 2 лет осмотическая устойчивость несколько выше нормального показателя, а норма ОРЭ у пожилых людей, как правило, ниже от стандартного минимального показателя.

Определение понятия системы крови

Система крови (по Г.Ф. Лангу, 1939) — совокупность собственно крови, органов кроветворения, кроверазрушения (красный костный мозг, тимус, селезенка, лимфатические узлы) и нейрогуморальных механизмов регуляции, благодаря которым сохраняются постоянство состава и функции крови.

В настоящее время систему крови функционально дополняют органами синтеза белков плазмы (печень), доставки в кровоток и выведения воды и электролитов (кишечник, ночки). Важнейшими особенностями крови как функциональной системы являются следующие:

  • она может выполнять свои функции, только находясь в жидком агрегатном состоянии и в постоянном движении (по кровеносным сосудам и полостям сердца);
  • все ее составные части образуются за пределами сосудистого русла;
  • она объединяет работу многих физиологических систем организма.

Состав и количество крови в организме

Кровь — это жидкая соединительная ткань, которая состоит из жидкой части - и взвешенных в ней клеток - : (красных клеток крови), (белых клеток крови), (кровяных пластинок). У взрослого человека форменные элементы крови составляют около 40-48%, а плазма — 52-60%. Это соотношение получило название гематокритного числа (от греч.haima - кровь,kritos - показатель). Состав крови приведен на рис. 1.

Рис. 1. Состав крови

Общее количество крови (сколько крови) в организме взрослого человека в норме составляет 6-8% массы тела, т.е. примерно 5-6 л.

Физико-химические свойства крови и плазмы

Сколько крови в организме человека?

На долю крови у взрослого человека приходится 6-8% массы тела, что соответствует приблизительно 4,5-6,0 л (при средней массе 70 кг). У детей и у спортсменов объем крови в 1,5-2,0 раза больше. У новорожденных он составляет 15% от массы тела, у детей 1-го года жизни — 11%. У человека в условиях физиологического покоя не вся кровь активно циркулирует по сердечно-сосудистой системе. Часть ее находится в кровяных депо — венулах и венах печени, селезенки, легких, кожи, скорость кровотока в которых значительно снижена. Общее количество крови в организме сохраняется на относительно постоянном уровне. Быстрая потеря 30-50% крови может привести организм к гибели. В этих случаях необходимо срочное переливание препаратов крови или кровезамещающих растворов.

Вязкость крови обусловлена наличием в ней форменных элементов, прежде всего эритроцитов, белков и липопротеинов. Если вязкость воды принять за 1, то вязкость цельной крови здорового человека составит около 4,5 (3,5-5,4), а плазмы — около 2,2 (1,9-2,6). Относительная плотность (удельный вес) крови зависит в основном от количества эритроцитов и содержания белков в плазме. У здорового взрослого человека относительная плотность цельной крови составляет 1,050- 1,060 кг/л, эритроцитарной массы — 1,080-1,090 кг/л, плазмы крови — 1,029-1,034 кг/л. У мужчин она несколько больше, чем у женщин. Самая высокая относительная плотность цельной крови (1,060-1,080 кг/л) отмечается у новорожденных. Эти различия объясняются разницей в количестве эритроцитов в крови людей разного пола и возраста.

Показатель гематокрита — часть объема крови, приходящаяся на долю форменных элементов (прежде всего, эритроцитов). В норме показатель гематокрита циркулирующей крови взрослого человека составляет в среднем 40-45% (у муж- чип — 40-49%, у женщин — 36-42%). У новорожденных он приблизительно на 10% выше, а у маленьких детей — примерно на столько же ниже, чем у взрослого человека.

Плазма крови: состав и свойства

Осмотическое давление крови, лимфы и тканевой жидкости определяет обмен воды между кровью и тканями. Изменение осмотического давления жидкости, окружающей клетки, ведет к нарушению в них водного обмена. Это видно на примере эритроцитов, которые в гипертоническом растворе NaCl (много соли) теряют воду и сморщиваются. В гипотоническом растворе NaCl (мало соли) эритроциты, наоборот, набухают, увеличиваются в объеме и могут лопнуть.

Осмотическое давление крови зависит от растворенных в ней солей. Около 60% этого давления создается NaCl. Осмотическое давление крови, лимфы и тканевой жидкости приблизительно одинаково (примерно 290-300 мосм/л, или 7,6 атм) и отличается постоянством. Даже в случаях, когда в кровь поступает значительное количество воды или соли, осмотическое давление не претерпевает значительных изменений. При избыточном поступлении в кровь вода быстро выводится почками и переходит в ткани, что восстанавливает исходную величину осмотического давления. Если же в крови повышается концентрация солей, то в сосудистое русло переходит вода из тканевой жидкости, а почки начинают усиленно выводить соль. Продукты переваривания белков, жиров и углеводов, всасывающиеся в кровь и лимфу, а также низкомолекулярные продукты клеточного метаболизма могут изменять осмотическое давление в небольших пределах.

Поддержание постоянства осмотического давления играет очень важную роль в жизнедеятельности клеток.

Концентрация водородных ионов и регуляция рН крови

Кровь имеет слабощелочную среду: рН артериальной крови равен 7,4; рН венозной крови вследствие большого содержания в ней углекислоты составляет 7,35. Внутри клеток рН несколько ниже (7,0-7,2), что обусловлено образованием в них при метаболизме кислых продуктов. Крайними пределами изменений рН, совместимыми с жизнью, являются величины от 7,2 до 7,6. Смещение рН за эти пределы вызывает тяжелые нарушения и может привести к смерти. У здоровых людей колеблется в пределах 7,35-7,40. Длительное смещение рН у человека даже на 0,1 -0,2 может оказаться гибельным.

Так, при рН 6,95 наступает потеря сознания, и если эти сдвиги в кратчайший срок не ликвидируются, то неминуем летальный исход. Если рН становится равен 7,7, то наступают тяжелейшие судороги (тетания), что также может привести к смерти.

В процессе обмена веществ ткани выделяют в тканевую жидкость, а следовательно, и в кровь «кислые» продукты обмена, что должно приводить к сдвигу рН в кислую сторону. Так, в результате интенсивной мышечной деятельности в кровь человека может поступать в течение нескольких минут до 90 г молочной кислоты. Если это количество молочной кислоты прибавить к объему дистиллированной воды, равному объему циркулирующей крови, то концентрация ионов возрастет в ней в 40 000 раз. Реакция же крови при этих условиях практически не изменяется, что объясняется наличием буферных систем крови. Кроме того, в организме рН сохраняется за счет работы почек и легких, удаляющих из крови углекислый газ, избыток солей, кислот и щелочей.

Постоянство рН крови поддерживается буферными системами: гемоглобиновой, карбонатной, фосфатной и белками плазмы.

Буферная система гемоглобина самая мощная. На ее долю приходится 75% буферной емкости крови. Эта система состоит из восстановленного гемоглобина (ННb) и его калиевой соли (КНb). Буферные свойства ее обусловлены тем, что при избытке Н + КНb отдает ионы К+, а сам присоединяет Н+ и становится очень слабо диссоциирующей кислотой. В тканях система гемоглобина крови выполняет функцию щелочи, предотвращая закисление крови вследствие поступления в нее углекислого газа и Н+ -ионов. В легких гемоглобин ведет себя как кислота, предотвращая защелачивание крови после выделения из нее углекислоты.

Карбонатная буферная система (Н 2 СО 3 и NaHC0 3) по своей мощности занимает второе место после системы гемоглобина. Она функционирует следующим образом: NaHCO 3 диссоциирует на ионы Na + и НС0 3 - . При поступлении в кровь более сильной кислоты, чем угольная, происходит реакция обмена ионами Na+ с образованием слабо диссоциирующей и легко растворимой Н 2 СО 3 Таким образом, предотвращается повышение концентрации Н + -ионов в крови. Увеличение в крови содержания угольной кислоты приводит к ее распаду (под влиянием особого фермента, находящегося в эритроцитах, — карбоангидразы) на воду и углекислый газ. Последний поступает в легкие и выделяется в окружающую среду. В результате этих процессов поступление кислоты в кровь приводит лишь к небольшому временному повышению содержания нейтральной соли без сдвига рН. В случае поступления в кровь щелочи, она реагирует с угольной кислотой, образуя гидрокарбонат (NaHC0 3) и воду. Возникающий при этом дефицит угольной кислоты немедленно компенсируется уменьшением выделения углекислого газа легкими.

Фосфатная буферная система образована дигидрофосфатом (NaH 2 P0 4) и гидрофосфатом (Na 2 HP0 4) натрия. Первое соединение слабо диссоциирует и ведет себя как слабая кислота. Второе соединение обладает щелочными свойствами. При введении в кровь более сильной кислоты она реагируете Na,HP0 4 , образуя нейтральную соль и увеличивая количество мало диссоциирующего дигидрофосфата натрия. В случае введения в кровь сильной щелочи она взаимодействует с ди гидрофосфатом натрия, образуя слабощелочной гидрофосфат натрия; рН крови при этом изменяется незначительно. В обоих случаях избыток ди гидрофосфата и гидрофосфата натрия выделяется с мочой.

Белки плазмы играют роль буферной системы благодаря своим амфотерным свойствам. В кислой среде они ведут себя как щелочи, связывая кислоты. В щелочной среде белки реагируют как кислоты, связывающие щелочи.

Важная роль в поддержании рН крови отводится нервной регуляции. При этом преимущественно раздражаются хеморецепторы сосудистых рефлексогенных зон, импульсы от которых поступают в продолговатый мозг и другие отделы ЦНС, что рефлекторно включает в реакцию периферические органы — почки, легкие, потовые железы, желудочно-кишечный тракт, деятельность которых направлена на восстановление исходных величин рН. Так, при сдвиге рН в кислую сторону почки усиленно выделяют с мочой анион Н 2 Р0 4 -. При сдиге рН в щелочную сторону увеличивается выделение почками анионов НР0 4 -2 и НС0 3 -. Потовые железы человека способны выводить избыток молочной кислоты, а легкие — СО2.

При различных патологических состояниях может наблюдаться сдвиг рН как в кислую, так и в щелочную среду. Первый из них носит название ацидоз, второй - алкалоз.

Стройной теории деформационного механизма эритроцитов нет. Видимо, этот механизм основан на общих принципах перехода золя в гель. Предполагают, что деформация эритроцитов - энергетически зависимый процесс. Возможно, гемоглобин А принимает в нем активное участие. Известно, что содержание гемоглобина А в эритроците снижается при некоторых наследственных болезнях крови (серповидно-клеточной анемии), после операций в условиях искусственного кровообращения. При этом меняются форма эритроцитов и их пластичность. Наблюдают повышенную вязкость крови, которая не соответствует низкому Ht.

Вязкость плазмы. Плазма в целом может быть отнесена к разряду «ньютоновских» жидкостей. Ее вязкость относительно стабильна в различных отделах кровеносной системы и в основном определяется концентрацией глобулинов. Среди последних основное значение имеет фибриноген. Известно, что удаление фибриногена снижает вязкость плазмы на 20 %, поэтому вязкость образующейся сыворотки приближается к вязкости воды.

В норме вязкость плазмы составляет около 2 отн. ед. Это приблизительно 1 / 15 часть того внутреннего сопротивления, которое развивается цельной кровью в венозном отделе микроциркуляции. Тем не менее плаз­ма оказывает весьма существенное влияние на периферический кровоток. В капиллярах вязкость крови снижается вдвое по сравнению с проксимальными и дистальными сосудами большего диаметра (феномен §). Такой «пролапс» вязкости связан с осевой ориентацией эритроцитов в узком ка­пилляре. Плазма при этом оттесняется на периферию, к стенке сосуда. Она служит «смазкой», которая обеспечивает скольжение цепочки фор­менных элементов крови с минимальным трением.

Этот механизм функционирует только при нормальном белковом составе плазмы. Повышение уровня фибриногена или любого другого глобулина приводит к затруднению капиллярного кровотока, порой критичес­кого характера. Так, миеломная болезнь, макроглобулинемия Вальденстрема и некоторые коллагенозы сопровождаются избыточной продукцией иммуноглобулинов. Вязкость плазмы при этом повышается относительно нормального уровня в 2-3 раза. В клинической картине начинают преоб­ладать симптомы тяжелых расстройств микроциркуляции: снижение зре­ния и слуха, сонливость, адинамия, головная боль, парестезии, кровоточи­вость слизистых оболочек.

Патогенез гемореологических расстройств. В практике интенсивной терапии гемореологические расстройства возни­кают под влиянием комплекса факторов. Действие последних в критичес­кой ситуации носит универсальный характер.

Биохимический фактор. В первые сутки после операции или травмы уровень фибриногена увеличивается, как правило, вдвое. Пик этого повышения приходится на 3-5-е сутки, а нормализация содержания фибриногена наступает лишь к концу 2-й послеоперационной недели. Кроме того, в кровотоке в избыточном количестве появляются продукты деграда­ции фибриногена, активированные тромбоцитарные прокоагулянты, катехоламины, простагландины, продукты ПОЛ. Все они действуют как индукторы агрегации красных клеток крови. Формируется своеобразная биохи­мическая ситуация - «реотоксемия».

Гематологический фактор. Хирургическое вмешательство или травма сопровождаются также определенными изменениями клеточного состава крови, которые получили название гематологического стресс-синдрома. В кровоток поступают юные гранулоциты, моноциты и тромбоциты повы­шенной активности.

Гемодинамический фактор. Возросшая агрегационная наклонность клеток крови при стрессе накладывается на локальные гемодинамические нарушения. Показано, что при неосложненных брюшно-полостных вмешательствах объемная скорость кровотока через подколенные и подвздош­ные вены падает на 50 %. Это связано с тем, что иммобилизация больного и миорелаксанты блокируют во время операции физиологический механизм «мышечной помпы». Кроме того, под влиянием ИВЛ, анестетиков или кровопотери снижается системное давление. В подобной ситуации кинетической энергии систолы может оказаться недостаточно, чтобы преодолеть сцепление форменных элементов крови друг с другом и с эндотелием сосудов. Нарушается естественный механизм гидродинамической дезагрегации клеток крови, возникает микроциркуляторный стаз.

Гемореологические нарушения и венозные тромбозы. Замедление ско­рости движения в венозном отделе кровообращения провоцирует агрегацию эритроцитов. Однако инерция движения может оказаться достаточно большой и форменные элементы крови будут испытывать повышенную де­формационную нагрузку. Под ее влиянием из эритроцитов высвобождает­ся АТФ - мощный индуктор тромбоцитарной агрегации. Низкая скорость сдвига стимулирует также адгезию молодых гранулоцитов к стенке венул (феномен Farheus-Vejiens). Образуются необратимые агрегаты, которые могут составить клеточное ядро венозного тромба.

Дальнейшее развитие ситуации будет зависеть от активности фибринолиза. Как правило, между процессами образования и рассасывания тромба возникает неустойчивое равновесие. По этой причине большинство случа­ев тромбоза глубоких вен нижних конечностей в госпитальной практике протекает скрыто и разрешается спонтанно, без последствий. Применение дезагрегантов и антикоагулянтов оказывается высокоэффективным спосо­бом профилактики венозных тромбозов.

Методы изучения реологических свойств крови. «Неньютоновский» ха­рактер крови и связанный с ним фактор скорости сдвига обязательно должны учитываться при измерении вязкости в клинической лаборатор­ной практике. Капиллярная вискозиметрия основана на токе крови через градуированный сосуд под действием силы тяжести, поэтому физиологически некорректна. Реальные же условия кровотока моделируются на рота­ционном вискозиметре.

К принципиальным элементам такого прибора относят статор и конгруентный ему ротор. Зазор между ними служит рабочей камерой и запол­няется пробой крови. Движение жидкости инициируется вращением рото­ра. Оно в свою очередь произвольно задается в виде некоей скорости сдви­га. Измеряемой величиной оказывается напряжение сдвига, возникающего как механический или электрический момент, необходимый для поддер­жания выбранной скорости. Вязкость крови затем рассчитывают по фор­муле Ньютона. Единицей измерения вязкости крови в системе СГС явля­ется Пуаз (1 Пуаз = 10 дин x с/см 2 = 0,1 Па x с = 100 отн. ед.).

Обязательным считают измерение вязкости крови в диапазоне низких (100 с -1) скоростей сдвига. Низкий диапазон скорос­тей сдвига воспроизводит условия кровотока в венозном отделе микроциркуляции. Определяемая вязкость носит название структурной. Она в ос­новном отражает наклонность эритроцитов к агрегации. Высокие же скорости сдвига (200-400 с -1) достигаются in vivo в аорте, магистральных со­судах и капиллярах. При этом, как показывают реоскопические наблюдения, эритроциты занимают преимущественно осевое положение. Они вы­тягиваются в направлении движения, их мембрана начинает вращаться от­носительно клеточного содержимого. За счет гидродинамических сил до­стигается почти полная дезагрегация клеток крови. Вязкость, определен­ная при высоких скоростях сдвига, зависит преимущественно от пластич­ности эритроцитов и формы клеток. Ее называют динамической.

В качестве стандарта исследования на ротационном вискозиметре и соответствующей нормы можно использовать показатели по методике Н.П. Александровой и др. (1986) (табл. 23.2).

Таблица 23.2.

Норма вязкости крови при ротационной вискозиметрии

Скорость сдвига, с -1

Вязкость крови, сПуаз

Для более детального представления реологических свойств крови проводят еще несколько специфических тестов. Деформационную способность эритроцитов оценивают по скорости пассажа разведенной крови через микропористую полимерную мембрану (d=2-8 мкм). Агрегационную активность красных клеток крови изучают с помощью нефелометрии по изменению оптической плотности среды после добавления в нее индукторов агрегации (АДФ, серотонина, тромбина или адреналина).

Диагностика гемореологических нарушений . Расстройства в системе гемореологии, как правило, протекают латентно. Их клинические проявления неспецифичны и малозаметны. Поэтому оп­ределяют диагноз по большей части лабораторные данные. Ведущим его критерием выступает величина вязкости крови.

Основное направление сдвигов в системе гемореологии у больных, находящихся в критическом состоянии, - переход от повышенной вязкости крови к пониженной. Этой динамике, однако, сопутству­ет парадоксальное ухудшение текучести крови.

Синдром повышенной вязкости крови. Он носит неспецифический характер и широко распространен в клинике внутренних болезней: при атеросклерозе, стенокардии, хроническом обструктивном бронхите, язвенной болезни желудка, ожирении, сахарном диабете, облитерирующем эндартериите и др. При этом отмечают умеренное повышение вязкости крови до 35 сПуаз при у=0,6 с -1 и 4,5 сПуаз при у==150 с -1 . Микроциркуляторные на­рушения, как правило, маловыражены. Они прогрессируют только по мере развития основного заболевания. Синдром повышенной вязкости крови у больных, поступающих в отделение интенсивной терапии, следует рассматривать в качестве фонового состояния.

Синдром низкой вязкости крови. По мере развертывания критического состояния вязкость крови вследствие гемодилюции снижается. Показатели вискозиметрии составляют 20-25 сПуаз при у=0,6 с -1 и 3-3,5 сПуаз при y=150 с -1 . Подобные величины можно прогнозировать по Ht, который обычно не превышает 30-35 %. В терминальном состоянии снижение вяз­кости крови доходит до стадии «очень низких» значений. Развивается вы­раженная гемодилюция. Ht снижается до 22-25 %, динамическая вязкость крови - до 2,5-2,8 сПуаз и структурная вязкость крови - до 15-18 с Пуаз.

Низкая величина вязкости крови у больного в критическом состоянии создает обманчивое впечатление гемореологического благополучия. Несмотря на гемодилюцию, при синдроме низкой вязкости крови микроциркуляция существенно ухуд­шается. В 2-3 раза повышается агрегационная активность красных клеток крови, в 2-3 раза замедляется прохождение эритроцитарной суспензии через нуклеопорные фильтры. После восстановления Ht путем гемоконцентрации in vitro в таких случаях обнаруживают гипервязкость крови.

На фоне низкой или очень низкой вязкости крови может развиться массивная агрегация эритроцитов, которая полностью блокирует микроциркуляторное русло. Это явление, описанное М.Н. Knisely в 1947 г. как «sludge»-феномен, свидетельствует о развитии терминальной и, видимо, необратимой фазы критического состояния.

Клиническую картину синдрома низкой вязкости крови составляют тяжелые микроциркуляторные нарушения. Заметим, что их проявления неспецифичны. Они могут быть обусловлены другими, не реологическими механизмами.

Клинические проявления синдрома низкой вяз­кости крови:

Тканевая гипоксия (в отсутствие гипоксемии);

Повышенное ОПСС;

Тромбозы глубоких вен конечностей, рецидивирующая легочная тромбоэмболия;

Адинамия,сопор;

Депонирование крови в печени, селезенке, подкожных сосудах.

Профилактика и лечение. Больные, поступающие в опера­ционную или отделение интенсивной терапии, нуждаются в оптимизации реологических свойств крови. Это предотвращает образование венозных тромбов, снижает вероятность ишемических и инфекционных осложне­ний, облегчает течение основного заболевания. Наиболее эффективные приемы реологической терапии - это разведение крови и подавление агрегационной активности ее форменных элементов.

Гемодилюция. Эритроцит - основной носитель структурного и динамического сопротивления кровотоку. Поэтому гемодилюция оказывается наиболее действенным реологическим средством. Благотворный ее эффект известен давно. На протяжении многих веков кровопускание было едва ли не самым распространенным методом лечения болезней. Появление низ­комолекулярных декстранов стало следующим этапом в развитии метода .

Гемодилюция увеличивает периферический кровоток, но в то же время снижает кислородную емкость крови. Под влиянием двух разнонаправленных факторов складывается, в конечном итоге, DО 2 к тканям. Она может повыситься вследствие разведения крови или, напротив, существенно со­кратиться под влиянием анемии.

Максимально низкий Ht, которому соответствует безопасный уровень DО 2 , называют оптимальным. Точная его величина до сих пор остается предметом дискуссий. Количественные соотношения Ht и DО 2 хорошо известны. Однако не представляется возможным оценить вклад индивидуальных факторов: переносимости малокровия, напряженности тканевого метаболизма, гемодинамического резерва и др. По общему мнению цель лечебной гемодилюции - Ht 30-35 % . Однако опыт лечения массивных кровопотерь без гемотрансфузии показывает, что еще большее снижение Ht до 25 и даже 20 % с точки зрения кислородного обеспечения тканей вполне безопасно.

В настоящее время для достижения гемодилюции используют в основном три приема.

Гемодилюция в режиме гиперволемии подразумевает такое переливание жидкости, которое приводит к существенному увеличению ОЦК. В одних случаях кратковременная инфузия 1-1,5 л плазмозаменителей предваряет вводный наркоз и хирургическое вмешательство, в других случаях, требую­щих более длительной гемодилюции, снижения Ht добиваются постоян­ной нагрузкой жидкостью из расчета 50-60 мл/кг массы тела больного в сутки. Снижение вязкости цельной крови - основное следствие гиперво­лемии. Вязкость плазмы, пластичность эритроцитов и их наклонность к агрегации при этом не меняются. К недостаткам метода следует отнести риск объемной перегрузки сердца.

Гемодилюция в режиме нормоволемии была предложена первоначально как альтернатива гетерологическим трансфузиям в хирургии. Суть метода заключается в дооперационном заборе 400-800 мл крови в стандартные контейнеры со стабилизирующим раствором. Контролируемую кровопотерю, как правило, восполняют одномоментно с помощью плазмозамените­лей из расчета 1:2. При некоторой модификации метода возможна заготов­ка 2-3 л аутокрови без каких-либо побочных гемодинамических и гемато­логических последствий. Собранную кровь затем возвращают во время операции или после нее.

Нормоволемическая гемодилюция не только безопасный, но малозатратный метод аутодонорства, обладающий выраженным реологическим эф­фектом. Наряду со снижением Ht и вязкости цельной крови после эксфузии отмечается стойкое уменьшение вязкости плазмы и агрегационной способ­ности эритроцитов. Активизируется поток жидкости между интерстициальным и внутрисосудистым пространством, вместе с ним усиливаются обмен лимфоцитов и поступление иммуноглобулинов из тканей. Все это в конеч­ном итоге ведет к сокращению послеоперационных осложнений. Этот метод можно широко применять при плановых хирургических вмешательствах.

Эндогенная гемодилюция развивается при фармакологической вазоплегии. Снижение Ht в этих случаях обусловлено тем, что из окружающих тканей в сосудистое русло поступает обедненная белками и менее вязкая жидкость. Подобным эффектом обладают эпидуральная блокада, галогенсодержащие анестетики, ганглиоблокаторы и нитраты. Реологический эф­фект сопутствует основному терапевтическому действию этих средств. Степень снижения вязкости крови не прогнозируется. Она определяется текущим состоянием волемии и гидратации.

Антикоагулянты. Гепарин получают путем экстракции из биологичес­ких тканей (легких крупного рогатого скота). Конечный продукт представ­ляет собой смесь полисахаридных фрагментов с разной молекулярной мас­сой, но со сходной биологической активностью.

Наиболее крупные фрагменты гепарина в комплексе с антитромбином III инактивируют тромбин, в то время как фрагменты гепарина с мол.м-7000 воздействуют преимущественно на активированный фактор X.

Введение в раннем послеоперационном периоде высокомо­лекулярного гепарина в дозе 2500-5000 ЕД под кожу 4-6 раз в сутки стало широко распространенной практикой. По­добное назначение в 1,5-2 раза снижает риск тромбозов и тромбоэмболий. Малые дозы гепарина не удлиняют активи­рованного частичного тромбопластинового времени (АЧТВ) и, как правило, не вызывают геморрагических осложнений. Гепаринотерапия наряду с гемодилюцией (намеренной или побочной) - это основные и наиболее эффективные мето­ды профилактики гемореологических расстройств у хирур­гических больных.

Низкомолекулярные фракции гепарина обладают меньшим сродством к тромбоцитарному фактору Виллебранда. В силу этого они по сравнению с высокомолекулярным гепарином, еще реже вызывают тромбоцитопению и кровотечение. Первый опыт применения низкомолекулярного гепарина (клексан, фраксипарин) в клинической практике дал обнадеживающие результаты. Препараты гепарина оказались эквипотенциальны традицион­ной гепаринотерапии, а по некоторым данным даже превышали ее профилактический и лечебный эффект. Помимо безопасности, низкомолекуляр­ные фракции гепарина отличаются также экономным введением (1 раз в сутки) и отсутствием необходимости в мониторинге АЧТВ. Выбор дозы, как правило, проводится без учета массы тела.

Плазмаферез. Традиционное реологическое показание к плазмаферезу - синдром первичной гипервязкости, который обусловлен избыточ­ной продукцией аномальных белков (парапротеинов). Их удаление при­водит к быстрому обратному развитию болезни. Эффект, однако, непродолжительный. Процедура носит симптоматический характер.

В настоящее время плазмаферез активно применяют для предоперационной подготовки больных с облитерирующими заболеваниями нижних конечностей, тиреотоксикозом, язвенной болезнью желудка, при гнойно-септических осложнениях в урологии. Это приводит к улучшению реоло­гических свойств крови, активизации микроциркуляции, значительному сокращению числа послеоперационных осложнений. Производят замену до 1 / 2 объема ОЦП.

Снижение уровня глобулинов и вязкости плазмы после одной процедуры плазмафереза может быть существенным, но кратковременным. Ос­новным же благотворным эффектом процедуры, который распространяется на весь послеоперационный период, является так называемый феномен ресуспендирования. Отмывание эритроцитов в среде, свободной от белков, сопровождается стабильным улучшением пластичности эритроцитов и снижением их агрегационной наклонности.

Фотомодификация крови и кровезаменителей. При 2-3 процедурах внутривенного облучения крови гелий-неоновым лазером (длина волны 623 нм) малой мощности (2,5 мВт) наблюдается отчетливый и продолжи­тельный реологический эффект. По данным прецизионной нефеломет­рии под влиянием лазеротерапии снижается число гиперергических ре­акций тромбоцитов, нормализуется кинетика их агрегации in vitro. Вяз­кость крови остается неизменной. Аналогичным эффектом обладают также УФ-лучи (с длиной волны 254-280 нм) в экстракорпоральном контуре.

Механизм дезагрегационного действия лазерного и ультрафиолетового излучения не совсем ясен. Предполагают, что фотомодификация крови вызывает сначала образование свободных радикалов. В ответ возбуждают­ся механизмы антиоксидантной защиты, которые блокируют синтез естественных индукторов тромбоцитарной агрегации (в первую очередь простагландинов).

Документ

... образования для инвалидов системы ... Издательство детской литературы "ДЕТГИЗ" ... образования "Санкт-Петербургская медицинская академия последипломного образования ... оборудованием отделения реанимации и интенсивной терапии новорожденных межтерриториальных...

  • Список научных трудов казнму за период 2008 - 1 06 2013 г (1)

    Документ

    Эндокринной системы интенсивная терапия последипломном образовании

  • Список научных трудов казнму за период 2008 - 1 06 2013 г (2)

    Документ

    Эндокринной системы у новорожденных детей V Российский конгресс «Педиатрическая анестезиология и интенсивная терапия ». Москва... в Казахстане. Стратегии ультразвуковой диагностики в последипломном образовании . Здоровье и болезнь №3 (105). Спецвыпуск...

  • Учебный план среднесрочной дополнительной образовательной программы повышения квалификации

    Документ

    Программа предназначена для всех видов последипломного обучения врачей... отделений реанимации и интенсивной терапии , токсикологии, наркологии, врачей скорой и неотложной помощи . ... Категория слушателей : специалисты с высшим медицинским образованием по...

  • Кровь представляет собой суспензию, в которой жидкая фаза - плазма, а частицы - форменные элементы. Как и все другие клетки организма, мембраны эритроцитов, лейкоцитов и тромбоцитов по­ляризованы, причем наружная поверхность мембран заряжена поло­жительно по отношению к внутренней. Вокруг клеток крови, как и эндотелиальных клеток, формируется облако отрицательных заря­дов. Благодаря одноименным зарядам клетки крови отталкиваются друг от друга и от стенок кровеносных сосудов. При потере зарядов форменные элементы крови могут склеиваться и слипаться.

    Кровь обладает следующими физико-химическими свойства­ми: плотностью, вязкостью, поверхностным натяжением, кис­лотно-щелочным равновесием (рН), коллоидно-осмотическим дав­лением и свертыванием.

    Плотность и вязкость крови. Плотность (удельная масса) крови - это масса единицы объема. Плотность цельной крови равна 1,045...1,055. Это означает, что 1 мл крови имеет массу 1,045...1,055 г, а 1 л крови - 1,045.„1,055 кг. Поэтому концентра­цию веществ в крови выражают в граммах, в миллиграммах или молях, содержащихся в 1 л крови. Например, выражение 8 г/л означает, что в 1 л крови содержится 8 г какого-то вещества. До­пускается также расчет концентрации не на 1 л, а на 100 мл кро­ви (г/100 мл или г/%).

    Плотность плазмы крови равна 1,025... 1,034, а эритроцитов - 1,090. Большая плотность эритроцитов по сравнению с плазмой объясняется наличием в них железа. Благодаря разной плотности эритроциты и плазму можно разделить при центрифугировании или отстаивании.

    Плотность крови зависит от количества в ней эритроцитов, ге­моглобина, белков и солей в плазме. Большое количество липидов в плазме крови снижает ее плотность.


    Вязкость крови - это сила внутреннего трения, или сцеп­ления, частиц жидкости. Она в 4...5 раз больше вязкости дистилли­рованной воды, это величина относительной вязкости крови. Чем больше эритроцитов в крови, тем больше вязкость крови. Увели­чивают вязкость крови глобулярные белки, особенно фибриноген. Альбумины в меньшей степени влияют на вязкость.

    Интересно, что вязкость крови, движущейся по кровеносным сосудам (in vivo), отличается от вязкости крови, взятой для иссле­дования (in vitro). In vivo вязкость крови зависит от длины и диа­метра сосуда, от скорости кровотока. Например, в крупных сосу­дах, где большая скорость движения крови, форменные элементы перемещаются ближе к оси сосуда, а вблизи стенок течет плазма с меньшей вязкостью. В капиллярах вязкость крови уменьшается, так как форменные элементы могут проходить только по одному, а между ними располагается столбик плазмы. При резком замед­лении тока крови эритроциты могут слипаться и образовывать большие скопления - конгломераты. В этом случае вязкость кро­ви увеличивается.



    Чем больше вязкость, тем больше сердцу приходится рабо­тать, чтобы проталкивать кровь по сосудам. Поэтому вязкость крови значительно влияет на гемодинамику и формирование кровяного давления.

    Поверхностное натяжение крови. Поверхностное натяжение крови - это сила сцепления или взаимодействия молекул поверх­ностного слоя жидкости, направленная от поверхности внутрь. Поверхностное натяжение крови ниже, чем у воды, за счет при­сутствия в ней поверхностно-активных веществ (ПАВ): низко­молекулярных жирных кислот, желчных кислот, различных аро­матических веществ.

    При увеличении в крови ПАВ поверхностное натяжение вна­чале уменьшается, но затем быстро - в течение нескольких ми­нут - восстанавливается до первоначального уровня. Считают, что в этих реакциях участвуют катионы кальция, которые осажда­ют различные органические кислоты, влияющие на поверхност­ное натяжение.

    Поддержание постоянства поверхностного натяжения крови важно для нормальной транспортировки веществ между кровью и тканями и для движения крови по сосудам.

    Кислотно-щелочное равновесие (КЩР) крови. В крови имеются кислотные и щелочные ионы. Суммарный заряд щелочных ионов больше, чем кислотных, и их соотношение называется кислотно-щелочным равновесием крови. Поэтому реакция крови слабоще-почная и рН составляет 7,35. Показатель концентрации водород­ных ионов (рН) является одним из самых жестких констант орга­низма. Это связано с тем, что любая химическая реакция протека­ет при" оптимальном для нее уровне рН. Всякое изменение рН крови ведет к нарушению сердечной деятельности, дыхания, рабо-

    ты мозга, печени и других органов. Сдвиг рН крови на несколько десятых, особенно в кислую сторону, несовместим с жизнью.

    Между тем в кровь постоянно поступают различные вещества, способные нарушить рН крови. Они всасываются из пищевари­тельного тракта, реабсорбируются из канальцев почек, образуются в тканях. Среди метаболитов преобладают кислые вещества - уголь­ная и молочная кислоты, кислые фосфаты и сульфаты, желчные кислоты и др. Но, несмотря на непрерывное изменение состава крови, ее рН остается на постоянном уровне. Как это происходит? Регуляция кислотно-щелочного равновесия осуществляется как химическими, так и физиологическими механизмами.

    Химические механизмы регуляции протека­ют на молекулярном уровне. К ним относятся буферные системы крови и щелочной резерв. Физиологическая регуля­ция включает сложные нейрогуморальные механизмы, затраги­вающие функции различных систем органов.

    Буферные системы крови - это вещества, которые могут взаимо­действовать либо с кислотными, либо с щелочными ионами, по­ступающими в кровь, и нейтрализовывать их. В результате хими­ческих реакций рН крови не изменяется, а уменьшается буферная емкость крови. При этом сами компоненты буферных систем не влияют на активную реакцию крови. Три буферные системы - би-карбонатная, фосфатная и белковая - находятся в плазме крови и одна - гемоглобиновая - в эритроцитах.

    Бикарбонатная буферная система состоит из угольной кислоты (Na 2 C0 3) и бикарбонатов натрия и калия (NaHC0 3 и КНС0 3). При попадании в кровь какой-либо кислоты, более сильной, чем угольная, она взаимодействует с бикарбонатами. В результате об­разуются нейтральная соль и угольная кислота. Угольная кислота нестойкая, она разлагается на воду и диоксид углерода; последний выводится через легкие. При появлении в крови избытка щелоч­ных ионов они взаимодействуют с угольной кислотой и реакция крови не изменяется.

    Фосфатная буферная система образована первичным (NaHjPO^ и вторичным (Na 2 HP04) фосфатом натрия. Первичный фосфат об­ладает свойствами слабой кислоты, вторичный - слабой щелочи. Емкость этой системы небольшая, но она имеет важное значение в регуляции выделения фосфорных солей почками.

    Белковая буферная система плазмы крови выполняет свою функ­цию благодаря тому, что белки являются амфотерными соединени­ями и могут нейтрализовывать как кислоты, так и щелочи.

    Гемоглобиновая буферная система находится в эритроцитах. Если буферные свойства крови принять за 100 %, то 75 % при­ходится на гемоглобиновую. Она состоит из оксигемоглобина, т. е. соединения гемоглобина с кислородом, и восстановленного гемоглобина, т. е. освободившегося от кислорода. Механизм рабо­ты гемоглобиновой буферной системы заключается в следующем.


    В тканевых капиллярах оксигемоглобин, отдавая кислород, пре­вращается в восстановленный гемоглобин. Это вещество является очень слабой кислотой и существенно не влияет на рН крови. В ле­гочных капиллярах диоксид углерода выводится из крови, и реак­ция крови могла бы измениться в щелочную сторону. Однако этого не происходит, так как образующийся оксигемоглобин обладает кислотными свойствами и предотвращает защелачивание крови.

    Таким образом, значение буферных систем заключается в том, что рН крови может довольно долго оставаться на уровне 7,35, несмотря на поступление в кровь кислотных или щелоч­ных компонентов.

    Щелочной резерв крови - это сумма всех щелочных веществ кро­ви, главным образом бикарбонатов натрия и калия. Величину ще­лочного резерва крови определяют по количеству диоксида угле­рода, которое может выделиться из бикарбонатов при взаимодей­ствии с кислотой. В среднем щелочной резерв крови составляет 55...60 см 3 . Чем больше щелочной резерв крови, тем лучше она за­щищена от кислых метаболитов. Поэтому у высокопродуктивных молочных коров, у спортивных лошадей с более интенсивным об­меном веществ щелочной резерв крови находится на верхней гра­нице нормы. Для повышения щелочного резерва в некоторых слу­чаях в качестве подкормки жвачным животным дают питьевую соду - бикарбонат натрия, особенно это эффективно при скарм­ливании кислого силоса.

    Наряду с щелочным резервом в крови имеется и кислотный ре­зерв, или кислотная емкость крови. Кислотная емкость крови име­ет меньшее физиологические значение, но она необходима для нейтрализации избытка щелочных ионов.

    Таким образом, при увеличении содержания в крови кислот­ных или щелочных компонентов прежде всего КЩР крови восста­навливается на молекулярном уровне за счет буферных систем или щелочного резерва, что не требует активного участия нейрогумо-ральных механизмов.

    Если же молекулярные механизмы не способны сохранить КЩР, то наступают активные изменения в работе выделительных систем организма - почек, потовых желез, легких и пищевари­тельного тракта.

    Почки нейтрализуют или удаляют из крови избыток либо кис­лотных, либо щелочных солей. Поэтому реакция мочи может ко­лебаться в широких пределах - от 5,7 до 8,7. Потовые железы вы­полняют ту же функцию, удаляя из организма главным образом кислые ионы. Через легкие выводится из крови диоксид углерода, поэтому при повышенной концентрации углекислоты в крови на­ступает одышка, имеющая компенсаторное значение.

    Большое значение в регуляции рН крови имеют железы пище-нарительного тракта. В печени происходит нейтрализация серно­кислых соединений, аммиака. Со слюной, поджелудочным и ки-

    Шечным соками выделяется много бикарбонатов. Например, со слюной у крупного рогатого скота за сутки удаляется до 300 г би­карбонатов. Энергичным способом удаления из крови водородных ионов является перевод их в состав желудочного сока. Обкладоч-ные железы желудка синтезируют из поступающих с кровью водо­родных ионов и ионов хлора соляную кислоту, а также переводят в желудочный сок органические кислоты. Этим, кстати, объясня­ется хорошо известный факт: после напряженной мышечной ра­боты усталость проходит после еды. И дело не в восстановлении затраченных калорий, ибо из пищи питательные вещества так быстро не всасываются, а в выделении из крови в желудок молоч­ной кислоты и других метаболитов, накопившихся в результате мышечной деятельности.

    Физиологические механизмы, участвующие в регуляции КЩР и рН крови, включают в себя рецепторы, улавливающие концен­трацию водородных ионов, афферентные нервные пути, нервные центры, эфферентные нервы и органы-эффекторы.

    Итак, рН крови имеет постоянную величину, что достигается как молекулярными, так и физиологическими регуляторными ме­ханизмами. Тем не менее кислотно-щелочной баланс может изме­няться. При некоторых физиологических и патологических реак­циях возможно увеличение в крови кислых или щелочных продук­тов. Сдвиг КЩР в кислую сторону называется ацидозом, а в ще­лочную - алкалозом.

    По величине сдвига КЩР ацидозы и алкалозы бывают компен­сированными и некомпенсированными. Вначале при поступле­нии в кровь избытка кислот или щелочей рН крови не изменяется, но уменьшается запас буферной емкости. Такой ацидоз или алка­лоз - без сдвига рН - называется компенсированным, так как он компенсирован за счет запаса имевшегося в крови щелочного или кислотного резерва. Компенсированные ацидозы и алкалозы на­блюдаются часто у здоровых животных и отличаются кратковре­менностью.

    Когда буферная емкость крови окажется исчерпанной, тогда ре­акция крови, естественно, изменяется. Такой ацидоз или алкалоз, когда изменяется рН крови, называется некомпенсированным.

    По механизмам возникновения ацидозы и алкалозы могут быть газовыми и негазовыми. Газовый ацидоз наблюдается при затруд­нении дыхания, при содержании животных в душных, плохо вен­тилируемых помещениях. В крови тогда накапливается диоксид углерода, превращающийся в угольную кислоту. Негазовый, или метаболический, ацидоз возникает при накоплении в крови не угольной кислоты, а других кислот - молочной, фосфорной и др. Это возможно, например, при тяжелой мышечной работе или при скармливании большого количества кислого силоса.

    Алкалозы встречаются реже, чем ацидозы. Газовый алкалоз воз­можен при усиленной вентиляции легких, когда кровь содержит


    меньше диоксида углерода и защелачивается. Негазовый алкалоз обычно связан с поступлением в организм большого количества щелочных солей, в этом случае увеличивается резервная щелоч­ность крови.

    Коллоидно-осмотическое давление крови. Осмотическое давле­ние - это сила, которая вызывает перемещение воды или раство­ренных в ней веществ через полупроницаемые мембраны. В орга­низме все мембраны - сосудистые стенки, оболочки клеток или поверхности внутриклеточных образований - полупроницаемые. Они хорошо пропускают воду, но избирательно - растворенные вещества. Перемещение веществ между клетками, тканевой жид­костью и кровью зависит от их концентрации. Чем больше кон­центрация растворенных веществ, тем больше осмотическое дав­ление данной жидкости.

    В основном осмотическое давление крови определяется концен­трацией минеральных солей. Их суммарное количество в плазме крови составляет около 0,9 г в 100 мл, это соответствует осмотическо­му давлению в 7,6 ати, или 5776 мм рт. ст. Органические вещества (например, глюкоза) мало влияют на величину осмотического давле­ния. Объясняется это тем, что молекулы органических веществ на­много крупнее неорганических ионов, поэтому в единице объема ко­личество их частиц (молекул) меньше; осмотическое же давление за­висит именно от числа молекул растворенного вещества.

    Вещества, растворенные в плазме крови, переходят через мемб­раны из более концентрированного раствора в менее концентри­рованный, а вода, наоборот, из среды с меньшей концентрацией в большую. Постоянство осмотического давления крови имеет зна­чение для обмена веществами между кровью, тканевой жидкостью и клетками и является столь же необходимым условием для жиз­ни, как и другие показатели гомеостаза - рН, температура.

    Рассмотрим на примере эритроцитов, как изменяются свойства клеток в растворах с разным осмотическим давлением. Внутри эритроцитов (в цитоплазме) такая же концентрация солей, как и в плазме крови, т. е. внутренняя среда эритроцитов изотонична плаз­ме крови. Если эритроциты отделить от плазмы крови и поместить их в раствор соли с более высокой концентрацией (гипертоничес­кий), чем внутри эритроцитов, то вода будет переходить из эритро­цитов в раствор до выравнивания осмотического давления по обе стороны мембраны. Эритроциты будут обезвоживаться, сморщи­ваться, уменьшаться в размере. Вначале этот процесс обратимый, и если эритроциты вернуть в изотонический раствор, то они восста­новят и свою форму, и функции. В условиях, когда градиент кон­центрации солей по обе стороны мембраны большой, а эритроциты длительное время находятся в них, они погибают.

    В растворах с более низкой концентрацией солей (гипотони­ческий), чем внутри эритроцитов, вода под действием осмоти­ческого давления переходит в эритроциты. Эритроциты вби-


    Рают в себя воду, из двояковогнутых становятся сферическими (шарообразными), увеличиваются в объеме и разрываются. Такое явление - разрушение эритроцитов и выход из них гемоглоби­на - называется гемолизом (буквально - растворение крови). Ге­молиз, произошедший в гипотоническом растворе, называется осмотическим.

    Исходя из изложенного, следует помнить, что внутривенно можно вводить лишь те растворы, которые изотоничны крови, т. е. имеют такое же осмотическое давление, как и плазма крови. Такие растворы называются физиологическими. Самый элементар­ный физиологический раствор - это раствор хлорида натрия кон­центрацией 0,85 % для млекопитающих и птицы и 0,65 % - для холоднокровных животных.

    Поскольку плазма крови содержит коллоиды (белки), то кровь обладает также и коллоидным давлением. Коллоидное давление называется также онкотическим (греч. onkos - припухание, взду­тость). Оно составляет 15...35 мм рт. ст., т. е. менее 1 % от осмо­тического. Однако значение онкотического давления велико: это та сила, которая удерживает воду внутри сосудов и способствует переходу ее из тканевой жидкости в кровь. Это связано с гидро­фильными свойствами белков плазмы крови. Онкотическим это давление называется потому, что при уменьшении его (напри­мер, при голодании, когда снижается содержание белков в кро­ви) вода не удерживается в кровеносных сосудах и переходит в ткани, появляются «голодные» отеки. Внешний вид создается та­кой, будто ткани опухают.

    Коллоидно-осмотическое давление складывается из осмоти­ческого и онкотического. При необходимости введения в кровь большого количества жидкостей или для перфузии органов и ис­кусственного кровообращения, а также для выращивания культу­ры тканей следует учитывать не только осмотическое и онкоти-ческое давление, но и оптимальный набор минеральных веществ. Поэтому физиологические растворы могут содержать кроме хло­рида натрия и другие вещества. Так, в растворе Рингера содержат­ся хлориды натрия, калия, кальция и бикарбонат натрия. В раст­вор Локка кроме перечисленных компонентов входит глюкоза, а в раствор Тироде - хлорид магния и однозамещенный фосфат натрия. Более сложные растворы в своем составе имеют белки (альбумины) и поэтому называются плазмозамещающими раст­ворами. Такие растворы в большей степени соответствуют плазме крови, так как имеют оптимальное коллоидно-осмотическое дав­ление, реакцию, соответствующую крови, и соотношение различ­ных компонентов.

    В бывш. СССР была разработана искусственная кровь, содер­жащая помимо определенных катионов и анионов и других свой­ственных плазме крови компонентов фторуглеродные соедине­ния, способные связывать и переносить кислород. Эту жидкость, а ее


    назвали «голубой кровью», можно использовать для замещения крови вместо донорской.

    Регуляция коллоидно-осмотического давле­ния. Коллоидное давление крови зависит от содержания белков и, следовательно, обусловлено регуляцией белкового обмена. Осмо­тическое давление крови подвержено более частым колебаниям, обычно не выходящим из физиологических границ благодаря слож­ным регуляторным взаимодействиям между кровью и органами.

    Рассмотрим следующий опыт: лошади ввели в вену 7 л 5%-ного раствора сульфата натрия. По расчету это должно повысить осмо­тическое давление крови в два раза, однако уже через 10 мин оно восстановилось. Каким образом происходит восстановление осмо­тического давления?

    Процесс начинается с перераспределения воды между кровью и тканевой жидкостью. Если этого недостаточно и осмотическое давление не восстанавливается, то вступают в действие более слож­ные регуляторные механизмы.

    В стенках кровеносных сосудов имеются рецепторные клетки, чувствительные к изменению осмотического давления крови. Эти клетки называются осморецепторами. Помимо кровеносных сосу­дов они находятся также в определенных структурах мозга, напри­мер в гипоталамусе (промежуточный мозг). При изменении осмо­тического давления крови в осморецепторах возникает потенциал действия, который по центростремительным нервным волокнам передается в гипоталамус и в кору больших полушарий. Центро­бежные нервные пути идут к выделительным органам. При учас­тии почек, потовых желез, желудочно-кишечного тракта из орга­низма уменьшается или увеличивается выделение воды и солей. Одновременно регулируется активность центра жажды, что вызы­вает изменение потребления животным воды и солей.

    В эфферентную часть рефлекторной дуги часто вовлекаются как самостоятельные звенья железы внутренней секреции - гипо­физ, надпочечники, щитовидная и паращитовидные железы, и их гормоны влияют на выделение воды и отдельных минеральных ве­ществ из организма.

    Таким образом, при изменении коллоидно-осмотического дав­ления крови включаются нейрогуморальные механизмы, быстро восстанавливающие нормальные параметры крови.

    Человека (и домашних животных) равна 1,050-1,060, для мужчин в среднем 1,057, для женщин - 1,053. Она зависит главным образом от количества или содержащегося в них гемоглобина и в меньшей степени — от состава жидкой части крови; возрастает после потери организмом, например, после потоотделения. При кровопотерях плотность уменьшается.

    Вязкость крови обусловлена внутренним при перемещении одних ее частиц по отношению к другим. При определении вязкости крови единицей вязкости служит вода.

    Вязкость цельной крови человека в физиологических условиях колеблется от 4 до 5, а вязкость плазмы крови - от 1,5 до 2. Вязкость цельной крови зависит главным образом от количества эритроцитов в крови и их объема и в меньшей степени - от (преимущественно от количества находящихся в ней белков и в меньшей степени - от содержания в ней солей).

    Вследствие набухания эритроцитов вязкость венозной крови больше вязкости артериальной крови. Длительная работа средней тяжести понижает вязкость крови, а тяжелая работа повышает ее.

    Солевой состав, осмотическое и коллоидно-осмотическое (онкотическое) давление крови

    Минеральные соли плазмы составляют около 0,9-1%. Количества солей в плазме относительно постоянны и в нормальных условиях колеблются в небольших пределах. У различных видов животных содержание минеральных веществ в плазме крови неодинаково.

    Физиологическое значение электролитов крови заключается в том, что они: 1) поддерживают относительное постоянство осмотического крови; 2) поддерживают относительное постоянство активной реакции крови; 3) влияют на и 4) влияют на состояние коллоидов.

    Относительное постоянство осмотического давления крови имеет большое биологическое значение, так как является условием сохранения относительного постоянства осмотического давления в тканях. Резкие колебания осмотического давления в тканях приводят к нарушениям их деятельности и даже к их гибели. Постоянство осмотического давления крови сохраняет целость эритроцитов.

    В нормальных условиях осмотическое давление в эритроцитах, в плазме крови и в клетках тканей и органов человека и млекопитающих животных равно 778316 - 818748 Па.

    Несмотря на большое содержание белков, число белковых в плазме невелико из-за их огромного молекулярного веса. Поэтому создаваемое ими коллоидное осмотическое (онкотическое) давление плазмы равно всего 3325 - 3990 Па, а осмотическое давление плазмы крови поддерживается на определенном, относительно постоянном уровне главным образом минеральными веществами.

    Среди минеральных веществ главная роль в поддержании осмотического давления принадлежит - хлористому натрию. Величина осмотического давления определяется криоскопическим методом по депрессии, или понижению точки замерзания крови ниже 0°. Показатель депрессии обозначается ∆ (дельта). У человека ∆ крови равна 0,56° (0,56-0,58°), следовательно, молекулярная концентрация в плазме крови составляет около 0,3 г-моль на 1 дм 3 .

    Реакция крови

    Активная реакция крови, как и всякого раствора, зависит от концентрации водородных (Н +) и гидроксильных (ОН —) ионов. Средняя рН крови человека, лошади и собаки при 37°С равна 7,35. Таким образом, реакция крови слабощелочная.

    Тела не влияет на рН крови, которая сохраняется со значительно большим постоянством, чем температура тела. Это постоянство рН обеспечивается работой выделительных органов, а также составом эритроцитов и кровяной плазмы. То, что состав плазмы крови имеет существенное значение для поддержания постоянства рН, доказывается тем обстоятельством, что для сдвига реакции в щелочную сторону к плазме нужно добавить приблизительно в 70 раз больше едкого натра, чем к чистой воде, а для сдвиг а реакции в кислую сторону нужно прибавить более чем в 3,25 раз больше соляной кислоты, чем к воде (см. так же статью « «). Постоянство реакции крови зависит от буферных систем.