Как работает свертывание крови? Свертывание крови Свертывание крови происходит благодаря.

Тромбоциты (кровяные пластинки) образуются в красном костном мозге. Содержание в 1 мл крови - 300 тысяч. Срок жизни 7-9 дней.

Свертывание крови при повреждении кровеносных сосудов происходит в 2 этапа. Сначала происходит склеивание тромбоцитов и образуется временный (непрочный) тромб. Затем под действием фермента тромбина растворенный в крови белок фибриноген превращается в нерастворимый фибрин, нити фибрина склеиваются, получается постоянный тромб.

Несвертываемость крови может быть вызвана недостатком кальция, витамина К (вырабатывается микрофлорой кишечника), наследственным заболеванием (гемофилией).

При «неправильном» переливании крови перелитые эритроциты несут чужеродные антигены, поэтому они пожираются местными фагоцитами. Массовое разрушение эритроцитов приводит к свертыванию крови прямо в сосудах. (При «правильном» переливании крови чужеродными частицами оказываются перелитые антитела (агглютинины), их уничтожение местными фагоцитами не приводит к отрицательным последствиям.)

Тесты

1. Сущность процесса свёртывания крови заключается в
А) склеивании эритроцитов
Б) переходе растворимого белка фибриногена в нерастворимый белок фибрин
В) увеличении числа форменных элементов в 1 см3 крови
Г) скапливании лейкоцитов вокруг чужеродных тел и микроорганизмов

2. В свёртывании крови участвуют
А) эритроциты
Б) лимфоциты
В) лейкоциты
Г) тромбоциты

3. Сущность свертывания крови заключается в
А) склеивании эритроцитов
Б) превращении фибриногена в фибрин
В) превращении лейкоцитов в лимфоциты
Г) склеивании лейкоцитов

4. У больного перед операцией определяют количество тромбоцитов в крови, для того чтобы
А) охарактеризовать состояние иммунной системы
Б) определить содержание кислорода в крови
В) выявить отсутствие (или наличие) воспалительного процесса в организме
Г) определить скорость свёртывания крови

5. Процесс свёртывания крови начинается с
А) повышения кровяного давления
Б) разрушения тромбоцитов
В) накопления в сосуде венозной крови
Г) образования местного очага воспаления

6. Одним из этапов образования тромба в кровеносном сосуде является
А) нагноение раны
Б) синтез гемоглобина
В) образование фибрина
Г) увеличение числа тромбоцитов

7. Что является основой тромба?
А) антитело
Б) гемоглобин
В) холестерин
Г) фибрин

8. Как называют безъядерные форменные элементы крови, разрушение которых приводит к свёртыванию крови?
А) эритроциты
Б) тромбоциты
В) лимфоциты
Г) макрофаги

9. Какую роль играют тромбоциты в крови человека?
А) переносят конечные продукты обмена веществ
Б) переносят питательные вещества
В) участвуют в фагоцитозе
Г) участвуют в её свёртывании

10. Тромб, закупоривающий повреждённое место сосуда, образуется из сети нитей
А) фибрина
Б) тромбина
В) фибриногена
Г) разрушающихся тромбоцитов

11. Для каких клеток крови характерны следующие признаки: плоские, мелкие, неправильной формы безъядерные образования, живущие несколько суток?
А) тромбоциты
Б) лимфоциты
В) эритроциты
Г) фагоциты

12. Из чего в основном состоит тромб
А) протромбин
Б) тромбин
В) фибрин
Г) фибриноген

13. Выберите правильный вариант, описывающий образование тромба: под действием X растворенный в крови Y превращается в Z
А) X-тромбин Y-фибриноген Z-фибрин
Б) X-фибрин Y-тромбин Z-фибриноген
В) X-фибрин Y-фибриноген Z-тромбин
Г) X-фибриноген Y-тромбин Z-фибрин

Свертывание крови - крайне сложный и во многом еще загадочный биохимический процесс, который запускается при повреждении кровеносной системы и ведет к превращению плазмы крови в студенистый сгусток, затыкающий рану и останавливающий кровотечение. Нарушения этой системы крайне опасны и могут привести к кровотечению, тромбозу или другим патологиям, которые совместно отвечают за львиную долю смертности и инвалидности в современном мире. Здесь мы рассмотрим устройство этой системы и расскажем о самых современных достижениях в ее изучении.

Каждый, кто хоть раз в жизни получал царапину или рану, приобретал тем самым замечательную возможность наблюдать превращение крови из жидкости в вязкую нетекучую массу, приводящее к остановке кровотечения. Этот процесс называется свертыванием крови и управляется сложной системой биохимических реакций.

Иметь какую-нибудь систему остановки кровотечения - абсолютно необходимо для любого многоклеточного организма, имеющего жидкую внутреннюю среду. Свертывание крови является жизненно необходимым и для нас: мутации в генах основных белков свертывания, как правило, летальны. Увы, среди множества систем нашего организма, нарушения в работе которых представляют опасность для здоровья, свертывание крови также занимает абсолютное первое место как главная непосредственная причина смерти: люди болеют разными болезнями, но умирают почти всегда от нарушений свертывания крови . Рак, сепсис, травма, атеросклероз, инфаркт, инсульт - для широчайшего круга заболеваний непосредственной причиной смерти является неспособность системы свертывания поддерживать баланс между жидким и твердым состояниями крови в организме.

Если причина известна, почему же с ней нельзя бороться? Разумеется, бороться можно и нужно: ученые постоянно создают новые методы диагностики и терапии нарушений свертывания. Но проблема в том, что система свертывания очень сложна. А наука о регуляции сложных систем учит, что управлять такими системами нужно особым образом. Их реакция на внешнее воздействие нелинейна и непредсказуема, и для того, чтобы добиться нужного результата, нужно знать, куда приложить усилие. Простейшая аналогия: чтобы запустить в воздух бумажный самолетик, его достаточно бросить в нужную сторону; в то же время для взлета авиалайнера потребуется нажать в кабине пилота на правильные кнопки в нужное время и в нужной последовательности. А если попытаться авиалайнер запустить броском, как бумажный самолетик, то это закончится плохо. Так и с системой свертывания: чтобы успешно лечить, нужно знать «управляющие точки».

Вплоть до самого последнего времени свертывание крови успешно сопротивлялось попыткам исследователей понять его работу, и лишь в последние годы тут произошел качественный скачок. В данной статье мы расскажем об этой замечательной системе: как она устроена, почему ее так сложно изучать, и - самое главное - поведаем о последних открытиях в понимании того, как она работает.

Как устроено свертывание крови

Остановка кровотечения основана на той же идее, что используют домохозяйки для приготовления холодца - превращении жидкости в гель (коллоидную систему, где формируется сеть молекул, способная удержать в своих ячейках тысячекратно превосходящую ее по весу жидкость за счет водородных связей с молекулами воды). Кстати, та же идея используется в одноразовых детских подгузниках, в которые помещается разбухающий при смачивании материал. С физической точки зрения, там нужно решать ту же самую задачу, что и в свертывании - борьбу с протечками при минимальном приложении усилий.

Свертывание крови является центральным звеном гемостаза (остановки кровотечения). Вторым звеном гемостаза являются особые клетки - тромбоциты , - способные прикрепляться друг к другу и к месту повреждения, чтобы создать останавливающую кровь пробку.

Общее представление о биохимии свертывания можно получить из рисунка 1, внизу которого показана реакция превращения растворимого белка фибриногена в фибрин , который затем полимеризуется в сетку. Эта реакция представляет собой единственную часть каскада, имеющую непосредственный физический смысл и решающую четкую физическую задачу. Роль остальных реакций - исключительно регуляторная: обеспечить превращение фибриногена в фибрин только в нужном месте и в нужное время.

Рисунок 1. Основные реакции свертывания крови. Система свертывания представляет собой каскад - последовательность реакций, где продукт каждой реакции выступает катализатором следующей. Главный «вход» в этот каскад находится в его средней части, на уровне факторов IX и X: белок тканевый фактор (обозначен на схеме как TF) связывает фактор VIIa, и получившийся ферментативный комплекс активирует факторы IX и X. Результатом работы каскада является белок фибрин, способный полимеризоваться и образовывать сгусток (гель). Подавляющее большинство реакций активации - это реакции протеолиза, т.е. частичного расщепления белка, увеличивающего его активность. Почти каждый фактор свертывания обязательно тем или иным образом ингибируется: обратная связь необходима для стабильной работы системы.

Обозначения: Реакции превращения факторов свертывания в активные формы показаны односторонними тонкими черными стрелками . При этом фигурные красные стрелки показывают, под действием каких именно ферментов происходит активация. Реакции потери активности в результате ингибирования показаны тонкими зелеными стрелками (для простоты стрелки изображены как просто «уход», т.е. не показано, с какими именно ингибиторами происходит связывание). Обратимые реакции формирования комплексов показаны двусторонними тонкими черными стрелками . Белки свертывания обозначены либо названиями, либо римскими цифрами, либо аббревиатурами (TF - тканевый фактор, PC - протеин С, APC - активированный протеин С). Чтобы избежать перегруженности, на схеме не показаны: связывание тромбина с тромбомодулином, активация и секреция тромбоцитов, контактная активация свертывания.

Фибриноген напоминает стержень длиной 50 нм и толщиной 5 нм (рис. 2а ). Активация позволяет его молекулам склеиваться в фибриновую нить (рис 2б ), а затем в волокно, способное ветвиться и образовывать трехмерную сеть (рис. 2в ).

Рисунок 2. Фибриновый гель. а - Схематическое устройство молекулы фибриногена. Основа ее составлена из трех пар зеркально расположенных полипептидных цепей α, β, γ. В центре молекулы можно видеть области связывания, которые становятся доступными при отрезании тромбином фибринопептидов А и Б (FPA и FPB на рисунке). б - Механизм сборки фибринового волокна: молекулы крепятся друг к другу «внахлест» по принципу головка-к-серединке, образуя двухцепочечное волокно. в - Электронная микрофотография геля: фибриновые волокна могут склеиваться и расщепляться, образуя сложную трехмерную структуру.

Рисунок 3. Трехмерная структура молекулы тромбина. На схеме показаны активный сайт и части молекулы, ответственные за связывание тромбина с субстратами и кофакторами. (Активный сайт - часть молекулы, непосредственно распознающее место расщепления и осуществляющее ферментативный катализ.) Выступающие части молекулы (экзосайты) позволяют осуществлять «переключение» молекулы тромбина, делая его мультифункциональным белком, способным работать в разных режимах. Например, связывание тромбомодулина с экзосайтом I физически перекрывает доступ к тромбину прокоагулянтным субстратам (фибриноген, фактор V) и аллостерически стимулирует активность по отношению к протеину C.

Активатор фибриногена тромбин (рис. 3) принадлежит к семейству сериновых протеиназ - ферментов, способных осуществлять расщепление пептидных связей в белках. Он является родственником пищеварительных ферментов трипсина и химотрипсина. Протеиназы синтезируются в неактивной форме, называемой зимогеном . Чтобы их активировать, необходимо расщепить пептидную связь, удерживающую часть белка, которая закрывает активный сайт. Так, тромбин синтезируется в виде протромбина, который может быть активирован. Как видно из рис. 1 (где протромбин обозначен как фактор II), это катализируется фактором Xa.

Вообще, белки свертывания называют факторами и нумеруют римскими цифрами в порядке официального открытия. Индекс «а» означает активную форму, а его отсутствие - неактивный предшественник. Для давно открытых белков, таких как фибрин и тромбин, используют и собственные имена. Некоторые номера (III, IV, VI) по историческим причинам не используются.

Активатором свертывания служит белок, называемый тканевым фактором , присутствующий в мембранах клеток всех тканей, за исключением эндотелия и крови. Таким образом, кровь остается жидкой только благодаря тому, что в норме она защищена тонкой защитной оболочкой эндотелия. При любом нарушении целостности сосуда тканевой фактор связывает из плазмы фактор VIIa, а их комплекс - называемый внешней теназой (tenase, или Xase, от слова ten - десять, т.е. номер активируемого фактора) - активирует фактор X.

Тромбин также активирует факторы V, VIII, XI, что ведет к ускорению его собственного производства: фактор XIa активирует фактор IX, а факторы VIIIa и Va связывают факторы IXa и Xa, соответственно, увеличивая их активность на порядки (комплекс факторов IXa и VIIIa называется внутренней теназой ). Дефицит этих белков ведет к тяжелым нарушениям: так, отсутствие факторов VIII, IX или XI вызывает тяжелейшую болезнь гемофилию (знаменитую «царскую болезнь», которой болел царевич Алексей Романов); а дефицит факторов X, VII, V или протромбина несовместим с жизнью.

Такое устройство системы называется положительной обратной связью : тромбин активирует белки, которые ускоряют его собственное производство. И здесь возникает интересный вопрос, а зачем они нужны? Почему нельзя сразу сделать реакцию быстрой, почему природа делает ее исходно медленной, а потом придумывает способ ее дополнительного ускорения? Зачем в системе свертывания дублирование? Например, фактор X может активироваться как комплексом VIIa-TF (внешняя теназа), так и комплексом IXa-VIIIa (внутренняя теназа); это выглядит совершенно бессмысленным.

В крови также присутствуют ингибиторы протеиназ свертывания. Основными являются антитромбин III и ингибитор пути тканевого фактора. Кроме этого, тромбин способен активировать сериновую протеиназу протеин С , которая расщепляет факторы свертывания Va и VIIIa, заставляя их полностью терять свою активность.

Протеин С - предшественник сериновой протеиназы, очень похожей на факторы IX, X, VII и протромбин. Он активируется тромбином, как и фактор XI. Однако при активации получившаяся сериновая протеиназа использует свою ферментативную активность не для того, чтобы активировать другие белки, а для того, чтобы их инактивировать. Активированный протеин С производит несколько протеолитических расщеплений в факторах свертывания Va и VIIIa, заставляя их полностью терять свою кофакторную активность. Таким образом, тромбин - продукт каскада свертывания - ингибирует свое собственное производство: это называется отрицательной обратной связью. И опять у нас регуляторный вопрос: зачем тромбин одновременно ускоряет и замедляет собственную активацию?

Эволюционные истоки свертывания

Формирование защитных систем крови началось у многоклеточных свыше миллиарда лет назад - собственно, как раз в связи с появлением крови. Сама система свертывания является результатом преодоления другой исторической вехи - возникновения позвоночных около пятисот миллионов лет назад. Скорее всего, эта система возникла из иммунитета. Появление очередной системы иммунных реакций, которая боролась с бактериями путем обволакивания их фибриновым гелем, привело к случайному побочному результату: кровотечение стало прекращаться быстрее. Это позволило увеличивать давление и силу потоков в кровеносной системе, а улучшение сосудистой системы, то есть улучшение транспорта всех веществ, открыло новые горизонты развития. Кто знает, не было ли появление свертывания тем преимуществом, которое позволило позвоночным занять свое нынешнее место в биосфере Земли?

У ряда членистогих (таких, как рак-мечехвост) свертывание также существует, но оно возникло независимо и осталось на иммунологических ролях. Насекомые, как и прочие беспозвоночные, обычно обходятся более слабой разновидностью системы остановки кровотечения, основанной на агрегации тромбоцитов (точнее, амебоцитов - дальних родственников тромбоцитов). Этот механизм вполне функционален, но накладывает принципиальные ограничения на эффективность сосудистой системы, - так же, как трахейная форма дыхания ограничивает максимально возможный размер насекомого.

К сожалению, существа с промежуточными формами системы свертывания почти все вымерли. Единственным исключением являются бесчелюстные рыбы: геномный анализ системы свертывания у миноги показал, что она содержит гораздо меньше компонентов (то есть, устроена заметно проще) . Начиная же с челюстных рыб и до млекопитающих системы свертывания очень похожи. Системы клеточного гемостаза также работают по схожим принципам, несмотря на то, что мелкие, безъядерные тромбоциты характерны только для млекопитающих. У остальных позвоночных тромбоциты - крупные клетки, имеющие ядро.

Подводя итог, система свертывания изучена очень хорошо. В ней уже пятнадцать лет не открывали новых белков или реакций, что для современной биохимии составляет вечность. Конечно, нельзя совсем исключить вероятность такого открытия, но пока что не существует ни одного явления, которое мы не могли бы объяснить при помощи имеющихся сведений. Скорее наоборот, система выглядит гораздо сложнее, чем нужно: мы напомним, что из всего этого (довольно громоздкого!) каскада собственно желированием занимается только одна реакция, а все остальные нужны для какой-то непонятной регуляции.

Именно поэтому сейчас исследователи-коагулологи, работающие в самых разных областях - от клинической гемостазиологии до математической биофизики, - активно переходят от вопроса «Как устроено свертывание?» к вопросам «Почему свертывание устроено именно так?» , «Как оно работает?» и, наконец, «Как нам нужно воздействовать на свертывание, чтобы добиться желаемого эффекта?» . Первое, что необходимо сделать для ответа - научиться исследовать свертывание целиком, а не только отдельные реакции.

Как исследовать свертывание?

Для изучения свертывания создаются различные модели - экспериментальные и математические. Что именно они позволяют получить?

С одной стороны, кажется, что самым лучшим приближением для изучения объекта является сам объект. В данном случае - человек или животное. Это позволяет учитывать все факторы, включая ток крови по сосудам, взаимодействия со стенками сосудов и многое другое. Однако в этом случае сложность задачи превосходит разумные границы. Модели свертывания позволяют упростить объект исследования, не упуская его существенных особенностей.

Попытаемся составить представление о том, каким требованиям должны отвечать эти модели, чтобы корректно отражать процесс свертывания in vivo .

В экспериментальной модели должны присутствовать те же биохимические реакции, что и в организме. Должны присутствовать не только белки системы свертывания, но и прочие участники процесса свертывания - клетки крови, эндотелия и субэндотелия. Система должна учитывать пространственную неоднородность свертывания in vivo : активацию от поврежденного участка эндотелия, распространение активных факторов, присутствие тока крови.

Рассмотрение моделей свертывания естественно начать с методов исследования свертывания in vivo . Основа практически всех используемых подходов такого рода заключается в нанесении подопытному животному контролируемого повреждения с тем, чтобы вызвать гемостатическую или тромботическую реакцию. Данная реакция исследуется различными методами:

  • наблюдение за временем кровотечения;
  • анализ плазмы, взятой у животного;
  • вскрытие умерщвленного животного и гистологическое исследование;
  • наблюдение за тромбом в реальном времени с использованием микроскопии или ядерного магнитного резонанса (рис. 4).

Рисунок 4. Формирование тромба in vivo в модели тромбоза, индуцированного лазером. Эта картинка воспроизведена из исторической работы, где ученые впервые смогли пронаблюдать развитие тромба «вживую». Для этого в кровь мыши впрыснули концентрат флуоресцентно меченных антител к белкам свертывания и тромбоцитам, и, поместив животное под объектив конфокального микроскопа (позволяющего осуществлять трехмерное сканирование), выбрали доступную для оптического наблюдения артериолу под кожей и повредили эндотелий лазером. Антитела начали присоединяться к растущему тромбу, сделав возможным его наблюдение.

Классическая постановка эксперимента по свертыванию in vitro заключается в том, что плазма крови (или цельная кровь) смешивается в некоторой емкости с активатором, после чего производится наблюдение за процессом свертывания. По методу наблюдения экспериментальные методики можно разделить на следующие типы:

  • наблюдение за самим процессом свертывания;
  • наблюдение за изменением концентраций факторов свертывания от времени.

Второй подход дает несравненно больше информации. Теоретически, зная концентрации всех факторов в произвольный момент времени, можно получить полную информацию о системе. На практике исследование даже двух белков одновременно дорого и связано с большими техническими трудностями.

Наконец, свертывание в организме протекает неоднородно. Формирование сгустка запускается на поврежденной стенке, распространяется с участием активированных тромбоцитов в объеме плазмы, останавливается с помощью эндотелия сосудов. Адекватно изучить эти процессы с помощью классических методов невозможно. Вторым важным фактором является наличие потока крови в сосудах.

Осознание этих проблем привело к появлению, начиная с 1970-х годов, разнообразных проточных экспериментальных систем in vitro . Несколько больше времени потребовалось на осознание пространственных аспектов проблемы. Только в 1990-е годы стали появляться методы, учитывающие пространственную неоднородность и диффузию факторов свертывания, и только в последнее десятилетие они стали активно использоваться в научных лабораториях (рис. 5).

Рисунок 5. Пространственный рост фибринового сгустка в норме и патологии. Свертывание в тонком слое плазмы крови активировалось иммобилизованным на стенке тканевым фактором. На фотографиях активатор расположен слева . Серая расширяющаяся полоса - растущий фибриновый сгусток.

Наряду с экспериментальными подходами для исследований гемостаза и тромбоза также используются математические модели (этот метод исследований часто называется in silico ). Математическое моделирование в биологии позволяет устанавливать глубокие и сложные взаимосвязи между биологической теорией и опытом. Проведение эксперимента имеет определенные границы и сопряжено с рядом трудностей. Кроме того, некоторые теоретически возможные эксперименты неосуществимы или запредельно дороги вследствие ограничений экспериментальной техники. Моделирование упрощает проведение экспериментов, так как можно заранее подобрать необходимые условия для экспериментов in vitro и in vivo , при которых интересующий эффект будет наблюдаем.

Регуляция системы свертывания

Рисунок 6. Вклад внешней и внутренней теназы в формирование фибринового сгустка в пространстве. Мы использовали математическую модель, чтобы исследовать, как далеко может простираться влияние активатора свертывания (тканевого фактора) в пространстве. Для этого мы посчитали распределение фактора Xa (который определяет распределение тромбина, который определяет распределение фибрина). На анимации показаны распределения фактора Xa, произведенного внешней теназой (комплексом VIIa–TF) или внутренней теназой (комплексом IXa–VIIIa), а также общее количество фактора Xa (заштрихованная область). (Вставка показывает то же самое на более крупной шкале концентраций.) Можно видеть, что произведенный на активаторе фактор Xa не может проникнуть далеко от активатора из-за высокой скорости ингибирования в плазме. Напротив, комплекс IXa–VIIIa работает вдали от активатора (т.к. фактор IXa медленнее ингибируется и потому имеет большее расстояние эффективной диффузии от активатора), и обеспечивает распространение фактора Xa в пространстве.

Сделаем следующий логический шаг и попробуем ответить на вопрос - а как описанная выше система работает?

Каскадное устройство системы свертывания

Начнем с каскада - цепочки активирующих друг друга ферментов. Один фермент, работающий с постоянной скоростью, дает линейную зависимость концентрации продукта от времени. У каскада из N ферментов эта зависимость будет иметь вид t N , где t - время. Для эффективной работы системы важно, чтобы ответ носил именно такой, «взрывной» характер, поскольку это сводит к минимуму тот период, когда сгусток фибрина еще непрочен.

Запуск свертывания и роль положительных обратных связей

Как упоминалось в первой части статьи, многие реакции свертывания медленны. Так, факторы IXa и Xa сами по себе являются очень плохими ферментами и для эффективного функционирования нуждаются в кофакторах (факторах VIIIa и Va, соответственно). Эти кофакторы активируются тромбином: такое устройство, когда фермент активирует собственное производство, называется петлей положительной обратной связи.

Как было показано нами экспериментально и теоретически, положительная обратная связь активации фактора V тромбином формирует порог по активации - свойство системы не реагировать на малую активацию, но быстро срабатывать при появлении большой. Подобное умение переключаться представляется весьма ценным для свертывания: это позволяет предотвратить «ложное срабатывание» системы.

Роль внутреннего пути в пространственной динамике свертывания

Одной из интригующих загадок, преследовавших биохимиков на протяжении многих лет после открытия основных белков свертывания, была роль фактора XII в гемостазе. Его дефицит обнаруживался в простейших тестах свертывания, увеличивая время, необходимое для образования сгустка, однако, в отличие от дефицита фактора XI, не сопровождался нарушениями свертывания.

Один из наиболее правдоподобных вариантов разгадки роли внутреннего пути был предложен нами с помощью пространственно неоднородных экспериментальных систем. Было обнаружено, что положительные обратные связи имеют большое значение именно для распространения свертывания. Эффективная активация фактора X внешней теназой на активаторе не поможет сформировать сгусток вдали от активатора, так как фактор Xa быстро ингибируется в плазме и не может далеко отойти от активатора. Зато фактор IXa, который ингибируется на порядок медленнее, вполне на это способен (и ему помогает фактор VIIIa, который активируется тромбином). А там, куда сложно дойти и ему, начинает работать фактор XI, также активируемый тромбином. Таким образом, наличие петель положительных обратных связей помогает создать трехмерную структуру сгустка.

Путь протеина С как возможный механизм локализации тромбообразования

Активация протеина С тромбином сама по себе медленна, но резко ускоряется при связывании тромбина с трансмембранным белком тромбомодулином, синтезируемым клетками эндотелия. Активированный протеин С способен разрушать факторы Va и VIIIa, на порядки замедляя работу системы свертывания. Ключом к пониманию роли данной реакции стали пространственно-неоднородные экспериментальные подходы. Наши эксперименты позволили предположить, что она останавливает пространственный рост тромба, ограничивая его размер.

Подведение итогов

В последние годы сложность системы свертывания постепенно становится менее загадочной. Открытие всех существенных компонентов системы, разработка математических моделей и использование новых экспериментальных подходов позволили приоткрыть завесу тайны. Структура каскада свертывания расшифровывается, и сейчас, как мы видели выше, практически для каждой существенной части системы выявлена или предложена роль, которую она играет в регуляции всего процесса.

На рисунке 7 представлена наиболее современная попытка пересмотреть структуру системы свертывания. Это та же схема, что и на рис. 1, где разноцветным затенением выделены части системы, отвечающие за разные задачи, как обсуждалось выше. Не все в этой схеме является надежно установленным. Например, наше теоретическое предсказание, что активация фактора VII фактором Xa позволяет свертыванию пороговым образом отвечать на скорость потока, остается пока еще непроверенным в эксперименте.

Свертывание крови - переход из жидкого состояния в желеобразный сгусток - является биологически важной защитной реакцией организма, препятствующей кровопотере.

На месте ранения мелкого кровеносного сосуда создается кровяной сгусток - тромб, являющийся как бы пробкой, которая закупоривает сосуд и прекращает дальнейшее кровотечение. При уменьшении способности крови к свертыванию даже незначительные ранения могут вызвать смертельное кровотечение.

Выпущенная из сосудов кровь человека начинает свертываться через 3-4 минуты, а через 5-6 минут полностью превращается в студенистый сгусток. При повреждении внутренней оболочки (интимы) кровеносных сосудов и при повышенной свертываемости крови может происходить свертывание крови и внутри кровеносных сосудов в целом организме. В этом случае тромб образуется внутри сосуда.

В основе свертывания крови лежит изменение физико-химического состояния содержащегося в плазме белка - фибриногена. Последний переходит из растворимой формы в нерастворимую, превращаясь в фибрин и образуя сгусток.

Фибрин выпадает в виде длинных тонких нитей, образуя сети, в петлях которых задерживаются форменные элементы. Если же выпускаемую из сосуда кровь взбивать метелочкой, то на метелочке остается большая часть образующегося фибрина. Хорошо отмытый от эритроцитов фибрин имеет белый цвет и волокнистое строение.

Кровь, из которой таким образом удален фибрин, называют дефибринированной. Она состоит из форменных элементов и кровяной сыворотки. Следовательно, сыворотка крови отличается по своему составу от плазмы отсутствием фибриногена.

Сыворотку можно отделить от кровяного сгустка, если оставить на некоторое время пробирку со свернувшейся кровью. При этом сгусток крови в пробирке уплотняется, стягивается и из него отжимается некоторое количество сыворотки.

Рис. 2. Схема свертывания крови.

Свертываться способна не только цельная кровь, но и плазма. Если отделить центрифугированием плазму от форменных элементов на холоду, который препятствует свертыванию крови, а затем плазму согреть до 20-35°, то она быстро свернется.

Для объяснения механизма свертывания крови был предложен ряд теорий. В настоящее время общим признанием пользуется ферментативная теория свертывания крови, основы которой заложены почти столетие назад А. Шмидтом.

Согласно этой теории, конечным звеном свертывания является переход растворенного в плазме фибриногена в нерастворимый фибрин под влиянием фермента тромбина (рис. 2, стадия III).

Тромбина в циркулирующей крови нет. Он образуется из белка плазмы крови - протромбина, синтезируемого печенью. Для образования тромбина необходимо взаимодействие протромбина с тромбопластином, которое должно происходить в присутствии ионов кальция (рис. 2, стадия II).

Тромбопластина в циркулирующей крови также нет. Он образуется при разрушении кровяных пластинок (кровяной тромбопластин) или при повреждении тканей (тканевой тромбопластин).

Образование кровяного тромбопластина начинается с разрушения кровяных пластинок и взаимодействия выделяющихся при этом веществ с имеющимся в плазме крови глобулином - фактором V (другое его название глобулин-акцелератор) и с другим глобулином плазмы крови - так называемым антигемофилическим глобулином (другое его название тромбопластиноген), а также еще с одним веществом плазмы крови - так называемым плазменным компонентом тромбопластина (другое его название фактор Кристмаса). Кроме того, для образования кровяного тромбопластина необходимо также присутствие ионов кальция (см. рис. 2, стадия I, слева).

Образование тканевого тромбопластина происходит при взаимодействии веществ, выделяющихся из разрушенных клеток тканей, с уже упомянутым глобулином плазмы крови - фактором V, а также с глобулином плазмы крови - фактором VII (другое его название проконвертин) и тоже обязательно в присутствии ионов кальция (рис. 2, стадия I, справа). После возникновения тромбопластина быстро начинается процесс свертывания крови.

Приведенная схема является далеко не полной, так как в действительности в процессе свертывания крови принимают участие значительно больше разных веществ.

При отсутствии в крови упомянутого выше антигемофилического глобулина, принимающего участие в образовании тромбопластина, возникает заболевание - гемофилия, характеризующееся резко пониженной свертываемостью крови. При гемофилии даже небольшое ранение может привести к опасной кровопотере.

Разработаны химические методы извлечения из плазмы тромбина и получения его в больших количествах (Б. А. Кудряшов). Этот препарат значительно ускоряет свертывание крови. Так, оксалатная кровь, в которой тромбин не образуется вследствие осаждения кальция, после прибавления тромбина свертывается в пробирке в течение 2-3 секунд. Если при ранении органа (например, печени, селезенки, мозга) кровотечение нельзя остановить перевязкой сосудов, то накладывание на их поверхность марли, смоченной раствором тромбина, быстро прекращает кровотечение.

После перехода фибриногена в фибрин образовавшийся сгусток уплотняется, стягивается, иначе говоря, происходит его ретракция. Этот процесс совершается под влиянием вещества, называемого ретрактозимом, освобождающегося при распаде кровяных пластинок. В экспериментах на кроликах показано, что при резком уменьшении количества кровяных пластинок свертывание крови может произойти, но уплотнения сгустка не наступает, и он остается рыхлым, не обеспечивая хорошего закрытия поврежденного кровеносного сосуда.

Свертываемость крови изменяется под влиянием нервной системы. Свертывание ускоряется при болевых раздражениях. Повышение свертываемости крови при этом препятствует кровопотере. При раздражении верхнего шейного симпатического узла время свертывания крови укорачивается, а при удалении его - удлиняется.

Свертывание крови может также изменяться условнорефлекторно. Так, если какой-либо сигнал многократно сочетается с болевым раздражением, то затем при действии только одного сигнала, который прежде не оказывал никакого влияния на свертывание крови, этот процесс ускоряется. Можно думать, что при раздражении нервной системы в организме образуются какие-то вещества, ускоряющие свертывание крови. Известно, например, что адреналин, выделение которого из надпочечников стимулируется нервной системой и увеличивается при болевых раздражениях и эмоциональных состояниях, повышает свертываемость крови. Одновременно с этим адреналин суживает артерии и артериолы и тем способствует также уменьшению кровотечения при ранении кровеносных сосудов. Приспособительное значение этих фактов ясно.

Ряд физических факторов и химических соединений тормозит свертывание крови. В связи с этим следует в первую очередь отметить действие холода, который значительно замедляет процесс свертывания крови.

Свертывание крови замедляется также, если кровь поместить в стеклянный сосуд, стенки которого покрыты парафином или силиконом, после чего они не смачиваются кровью. В таком сосуде кровь может оставаться жидкой в течение нескольких часов. В этих условиях в значительной мере затрудняется разрушение кровяных пластинок и выход в кровь содержащихся в них веществ, участвующих в образовании тромбина.

Свертыванию крови препятствуют щавелевокислые и лимоннокислые соли. При добавлении к крови лимоннокислого натрия происходит связывание ионов кальция; щавелевокислый аммоний вызывает выпадение кальция в осадок. И в том, и в другом случае становится невозможным образование тромбопластина и тромбина. Оксалаты и цитраты применяются только для предотвращения свертывания крови вне организма. Их нельзя в больших количествах вводить в организм, так как связывание кальция крови в организме вызывает тяжелые нарушения жизнедеятельности.

Некоторые вещества, их называют антикоагулянтами, полностью устраняют возможность свертывания крови. К их числу относятся гепарин, выделяемый из ткани легких и печени, и гирудин, выделяемый из слюнных желез пиявки. Гепарин препятствует действию тромбина на фибриноген, а также угнетает активность тромбопластина. Гирудин действует угнетающе на третью стадию процесса свертывания крови, т. е. препятствует образованию фибрина.

Имеются также антикоагулянты так называемого непрямого действия. Не влияя непосредственно на процесс свертывания крови, они угнетают образование веществ, участвующих в этом процессе. Сюда относятся полученные синтетически препараты - дикумарин, пелентан и др., блокирующие синтез в печени протромбина и фактора VII.

В составе белков сыворотки обнаружено еще одно вещество - фибринолизин, растворяющее образовавшийся фибрин. Это вещество представляет собой фермент, находящийся в плазме крови в неактивной форме. Его предшественник профибринолизин активируется фибринокиназой, содержащейся во многих тканях тела.

Из всего изложенного следует, что в крови имеются одновременно две системы: свертывающая и противосвертывающая. В норме они находятся в определенном равновесии, что препятствует процессам внутрисосудистого свертывания крови. Это равновесие нарушается при некоторых заболеваниях и ранениях.

Значение физиологической противосвертывающей системы показано в опытах Б. А. Кудряшова. Если животному быстро ввести в вену достаточное количество тромбина, то наступает смерть вследствие внутрисосудистого свертывания крови. Если такую же смертельную дозу тромбина вводить в организм медленно, то животное не гибнет, но его кровь в значительной мере теряет способность к свертыванию.

Это позволило сделать вывод, что введение тромбина вызывает в организме появление веществ, препятствующих свертыванию крови. Выделение этих веществ регулируется нервной системой. Если денервировать у крысы одну лапу и медленно вводить ей в вену тромбин, то кровь свернется только в сосудах денервированной лапы. Считают, что повышение уровня тромбина в сосудистом русле вызывает рефлекторно выделение стенкой сосуда веществ, препятствующих свертыванию. Перерезка нервов, а также воздействие наркотических веществ подавляют этот рефлекс.

При травме тканей происходит повреждение мельчайших или крупных кровеносных сосудов, начинается кровотечение. В таких случаях начинает действовать система свертываемости крови. Свертывание - превращение жидкой крови в эластичный сгусток в результате перехода растворенного в плазме белка фибриногена в нерастворимый фибрин при истечении крови из поврежденного сосуда. К основным функциям крови относятся: транспортная и защитная. К защитной функции можно отнести и способность к свертыванию. Благодаря этой способности, при повреждениях наружных покровов или внутренних тканей организма, возможна закупорка места повреждения тромбом, препятствующим также проникновению возбудителей заболеваний в организм. Быстрое свертывание крови ускоряет начало процесса заживления раны.

Обычно свертывание крови происходит в течение 5-7 минут. Если кровь свертывается слишком долго или вовсе не свертывается, можно предположить наличие гемофилии. Если кровь свертывается слишком быстро, то возникает опасность эмболии, инфаркта миокарда или инсульта (все эти заболевания могут вызвать образующиеся в сосудах сгустки крови).

В результате кровяного свертывания появляются плотные образования (процесс напоминает створаживание молока). Плотные образования крови формируют пробку (тромб), которая закупоривает рану, препятствуя кровотечению. Одновременно сокращаются мышцы кровеносных сосудов, разорванные края которых втягиваются внутрь. Так кровеносные сосуды закрываются еще плотнее. Приблизительно через 20 мин. это сокращение проходит. Если бы кровь не свертывалась, то кровотечение началось бы снова.

Кровь свертывается под воздействием различных факторов, которые называют факторами свертывания крови. Прежде всего, это воздух, оказывающий влияние на наружные раны. Процесс свертывания также могут обусловить неровности стенок кровеносных сосудов и их острые края. Тогда содержащиеся в крови тромбоциты в месте повреждения активируют фермент тромбин (коагулирующий фактор).

Под воздействием тромбина и кальция, который всегда присутствует в крови, фибриноген - белок, растворенный в плазме крови, превращается в фибрин (волокнистое вещество). Длинные эластичные нити фибрина образуют плотный нитяной клубок (сгусток).

В образовавшийся сгусток попадают различные форменные элементы крови, образующие своеобразную заплатку. При образовании сгустков и затягивании раны, нити фибрина сжимаются и выталкивают из сгустка сыворотку крови. Сгусток становится достаточно плотным и способным защитить рану от инфекции. По мере заживления раны сгусток фибрина растворяется и рассасывается.

Для того, чтобы тромбин вызвал свертывание, в организме человека должна произойти цепная химическая реакция, в которой принимают участие около 30 различных химических веществ, включая вышеупомянутые ферменты и кальций. Основной реакцией является превращение протромбина (первичного вещества) в тромбин - фермент, вызывающий свертывание крови. В плазме сначала находится только протромбин. Так предотвращается самопроизвольное свертывание. Для образования тромбина из протромбина необходимо 12 факторов. При нехватке хотя бы одного из этих факторов, цепная реакция не происходит, и кровь не сворачивается.

Одним из важнейших процессов, протекающих в нашем организме, является свертывание крови. Схема его будет описана ниже (также для наглядности предоставлены и изображения). И поскольку это сложный процесс, стоит рассмотреть его в подробностях.

Как всё происходит?

Итак, обозначенный процесс отвечает за остановку кровотечения, произошедшего из-за повреждения той или иной составляющей сосудистой системы организма.

Если говорить простым языком, то можно выделить три фазы. Первая - активация. После повреждения сосуда начинают происходить последовательные реакции, которые в итоге приводят к образованию так называемой протромбиназы. Это - сложный комплекс, состоящий из V и X Он образуется на фосфолипидной поверхности мембран тромбоцитов.

Вторая фаза - коагуляция. На этом этапе из фибриногена образуется фибрин - высокомолекулярный белок, который является основой тромбов, возникновение которых и подразумевает свертывание крови. Схема, предоставленная ниже, данную фазу наглядно демонстрирует.

И, наконец, третий этап. Он подразумевает образование фибринового сгустка, отличающегося плотной структурой. К слову, именно путём его промывания и высушивания удаётся получить «материал», который потом используется для приготовления стерильных плёнок и губок для остановки кровотечения, вызванного разрывом мелких сосудов при хирургических операциях.

О реакциях

Выше было кратко описано Схема, кстати, была разработана в далёком 1905 году учёным-коагулологом по имени Пауль Оскар Моравиц. И она не теряет своей актуальности до сих пор.

Но с 1905 года в области понимания свёртывания крови как сложного процесса изменилось многое. Благодаря прогрессу, конечно же. Учёные смогли открыть десятки новых реакций и белков, которые участвуют в данном процессе. И теперь более распространена каскадная схема свертывания крови. Благодаря ей восприятие и понимание такого сложного процесса становится немного более понятным.

Как можно видеть на предоставленном ниже изображении, происходящее буквально «разобрано на кирпичики». Принимается во внимание внутренняя и внешняя система - кровяная и тканевая. Для каждой характерна определённая деформация, наступающая вследствие повреждения. В кровяной системе вред наносится сосудистым стенкам, коллагену, протеазам (расщепляющие ферменты) и катехоламинам (молекулы-медиаторы). В тканевой же наблюдается повреждение клеток, вследствие которого из них выходит тромбопластин. Который является важнейшим стимулятором процесса свёртывания (иначе называемом коагуляцией). Он выходит непосредственно в кровь. Таков его «путь», но имеет он защитный характер. Ведь именно тромбопластин запускает процесс свёртывания. После его выхода в кровь начинается осуществление вышеперечисленных трёх фаз.

Время

Итак, что примерно представляет собой свертывание крови, схема понять помогла. Теперь хотелось бы немного поговорить о времени.

Весь процесс занимает как максимум 7 минут. Первая фаза длится от пяти до семи. В течение этого времени образуется протромбин. Данное вещество является сложной разновидностью белковой структуры, отвечающей за протекание процесса свёртывания и способность крови к сгущению. Которая используется нашим организмом в целях образования тромба. Он закупоривает повреждённое место, благодаря чему кровотечение останавливается. Всё это занимает 5-7 минут. Вторая и третья стадии происходят намного быстрее. За 2-5 секунд. Потому что эти фазы свертывания крови (схема предоставлена выше) затрагивают процессы, которые происходят повсеместно. А значит и у места повреждения непосредственно.

Протромбин, в свою очередь, образуется в печени. И на его синтез необходимо время. Насколько быстро выработается достаточное количество протромбина, зависит от количества витамина К, содержащегося в организме. Если его не хватает, кровотечение будет остановить сложно. И это является серьёзной проблемой. Поскольку нехватка витамина К указывает на нарушение синтеза протромбина. А это - недуг, который необходимо лечить.

Стабилизация синтеза

Что ж, общая схема свертывания крови понятна - теперь следует уделить немного внимания теме, касающейся того, что необходимо делать для восстановления необходимого количества витамина К в организме.

Для начала - правильно питаться. Самое большое количество витамина К содержится в зелёном чае - 959 мкг в 100 г! В три раза больше, кстати, чем в чёрном. Потому стоит его активно пить. Не стоит пренебрегать и овощами - шпинатом, белокочанной капустой, томатами, зелёным горошком, репчатым луком.

В мясе витамин К тоже содержится, но не во всём - только в телятине, говяжьей печени, баранине. Но меньше всего его находится в составе чеснока, изюма, молока, яблок и винограда.

Впрочем, если ситуация серьёзная, то одним разнообразием меню помочь будет сложно. Обычно врачи настоятельно рекомендуют комбинировать свой рацион с препаратами, ими прописанными. С лечением не стоит затягивать. Необходимо как можно скорее к нему приступить, чтобы нормализовать механизм свертывания крови. Схема лечения прописывается непосредственно врачом, и он также обязан предупредить, что может случиться, если рекомендациями пренебречь. А последствиями может стать дисфункция печени, тромбогеморрагический синдром, опухолевые заболевания и поражение стволовых клеток костного мозга.

Схема Шмидта

В конец XIX века жил известный физиолог и доктор медицинских наук. Звали его Александр Александрович Шмидт. Он прожил 63 года, и бóльшую часть времени посвятил исследованию проблем гематологии. Но особенно тщательно он изучал тему свёртывания крови. У него удалось установить ферментативный характер данного процесса, вследствие чего учёный предложил теоретическое ему объяснение. Которое наглядно изображает предоставленная ниже схема свертывания крови.

В первую очередь происходит сокращение повреждённого сосуда. Затем на месте дефекта образуется рыхлая, первичная тромбоцитарная пробка. Затем она укрепляется. Вследствие чего образуется красный тромб (иначе именуемый кровяным сгустком). После чего он частично или полностью растворяется.

В ходе данного процесса проявляются определённые факторы свертывания крови. Схема, в своём развёрнутом варианте, также их отображает. Обозначаются они арабскими цифрами. И всего их насчитывается 13. И о каждом необходимо рассказать.

Факторы

Полноценная схема свертывания крови невозможна без их перечисления. Что ж, начать стоит с первого.

Фактор I - это бесцветный белок фибриноген. Синтезируемый в печени, растворённый в плазе. Фактор II - протромбин, о котором уже говорилось выше. Его уникальная способность заключается в связывании ионов кальция. И именно впоследствии расщепления этого вещества формируется фермент свёртывания.

Фактор III - это липопротеин, тканевый тромбопластин. Его принято называть транспортом фосфолипидов, холестерина, а ещё триацилглицеридов.

Следующим фактором, IV, являются ионы Са2+. Те самые, которые связываются под воздействием бесцветного белка. Они задействованы во многих сложных процессах, помимо свёртывания, в секреции нейромедиаторов, например.

Фактор V - это глобулин. Который тоже образуется в печени. Он необходим для связывания кортикостероидов (гормональных веществ) и их транспортировки. Фактор VI определённое время существовал, но потом его было решено изъять из классификации. Поскольку учёные выяснили - его включает в себя фактор V.

Но классификацию менять не стали. Потому следом за V идёт фактор VII. Включающий в себя проконвертин, с участием которого образуется тканевая протромбиназа (первая фаза).

Фактор VIII - это белок, выраженной в одной цепочке. Известен, как антигемофильный глобулин А. Именно из-за его нехватки развивается такое редкое наследственное заболевание, как гемофилия. Фактор IX является «родственным» ранее упомянутому. Так как это антигемофильный глобулин В. Фактор X - непосредственно глобулин, синтезируемый в печени.

И, наконец, последние три пункта. Это фактор Розенталя, Хагемана и стабилизация фибрина. Они, в совокупности, влияют на образование межмолекулярных связей и нормальное функционирование такого процесса, как свертывание крови.

Схема Шмидта включает все эти факторы. И достаточно бегло с ними ознакомиться, чтобы понять, насколько описываемый процесс сложен и многозначен.

Противосвёртывающая система

Данное понятие также необходимо отметить внимание. Выше была описана система свертывания крови - схема также наглядно демонстрирует протекание этого процесса. Но так называемое «противосвёртывание» тоже имеет место быть.

Для начала хотелось бы отметить, что в ходе эволюции ученые решали две совершенно противоположные задачи. Они пытались выяснить - как организму удаётся предотвратить вытекание крови из повреждённых сосудов, и при этом сохранить её в жидком состоянии в целых? Что ж, решением второй задачи стало обнаружение противосвертывающей системы.

Она представляет собой определённый набор плазменных белков, которые способны снижать скорость химических реакций. То есть ингибировать.

И в данном процессе участвует антитромбин III. Его главная функция заключается в контролировании работы некоторых факторов, которые включает схема процесса свертывания крови. Важно уточнить: он не регулирует образование тромба, а устраняет ненужные ферменты, попавшие в кровоток из места, где тот формируется. Для чего это необходимо? Для предотвращения распространения свёртывания на участки кровеносного русла, которые оказались повреждёнными.

Препятствующий элемент

Рассказывая о том, что представляет собой система свертывания крови (схема которой представлена выше), нельзя не отметить вниманием такое вещество, как гепарин. Он представляет собой серосодержащий кислый гликозаминогликан (один из видов полисахаридов).

Это - прямой антикоагулянт. Вещество, способствующее угнетению активности свёртывающей системы. Именно гепарин препятствует процессу образования тромбов. Как это происходит? Гепарин просто снижает активность тромбина в крови. Однако это - естественное вещество. И оно несёт пользу. Если ввести данный антикоагулянт в организм, то можно поспособствовать активированию антитромбина III и липопротеинлипазы (ферменты, расщепляющие триглицериды - главные источники энергии для клеток).

Так вот, гепарин часто используется ля лечения тромботических состояний. Лишь одна его молекула может активировать большое количество антитромбина III. Соответственно, гепарин можно считать катализатором - поскольку действие в данном случае действительно схоже с эффектом, вызываемом ими.

Есть и другие вещества с таким же действием, содержащиеся в Взять, к примеру, α2- макроглобулин. Он способствует расщеплению тромба, оказывает влияние на процесс фибринолиза, выполняет функцию транспорта для 2-валентных ионов и некоторых белков. А ещё ингибирует вещества, участвующие в процессе свёртывания.

Наблюдаемые изменения

Есть ещё один нюанс, который не демонстрирует традиционная схема свертывания крови. Физиология нашего организма такова, что многие процессы подразумевают не только химические изменения. Но ещё и физические. Если бы мы могли наблюдать за свёртыванием невооруженным взглядом, то увидели бы, что форма тромбоцитов в его процессе меняется. Они превращаются в округлые клетки с характерными шиповидными отростками, которые необходимы для интенсивного осуществления агрегации - объединения элементов в единое целое.

Но это ещё не всё. Из тромбоцитов в процессе свёртывания выделяются различные вещества - катехоламины, серотонин и т.д. По причине этого просвет сосудов, которые оказались повреждёнными, сужается. За счёт чего происходит функциональная ишемия. Кровоснабжение в повреждённом месте снижается. И, соответственно, излияние постепенно тоже сводится к минимуму. Это даёт тромбоцитам возможность перекрыть повреждённые места. Они, за счёт своих шиповидных отростков, будто бы «крепятся» к краям коллагеновых волокон, которые находятся у краёв раны. На этом заканчивается первая, самая долгая фаза активации. Завершается она образованием тромбина. После чего следует ещё несколько секунд фазы коагуляции и ретракции. А последний этап - восстановление нормального кровообращения. И оно имеет большое значение. Поскольку полноценное заживление раны невозможно без хорошего кровоснабжения.

Полезно знать

Что ж, примерно так на словах и выглядит упрощенная схема свертывания крови. Впрочем, есть ещё несколько нюансов, которые хотелось бы отметить вниманием.

Гемофилия. О ней уже упоминалось выше. Это очень опасное заболевание. Любое кровоизлияние человеком, им страдающим, переживается тяжело. Заболевание наследственное, развивается из-за дефектов белков, принимающих участие в процессе свёртывание. Обнаружить его можно достаточно просто - при малейшем порезе человек потеряет много крови. И потратит немало времени на её остановку. А при особо тяжелых формах кровоизлияние может начаться без причин. Люди, страдающие гемофилией, могут рано подвергнуться инвалидизации. Поскольку частые кровоизлияния в мышечные ткани (обычные гематомы) и в суставы - это не редкость. Лечится ли это? С трудом. Человек должен в прямом смысле слова относиться к своему телу, как к хрупкому сосуду, и всегда быть аккуратным. Если случается кровотечение - нужно срочно ввести донорскую свежую кровь, в которой содержится фактор XVIII.

Обычно данным заболеванием страдают мужчины. А женщины выступают в роли носительниц гена гемофилии. Интересно, что британская королева Виктория была таковой. Одному из её сыновей заболевание передалось. Насчёт остальных двух неизвестно. С тех пор гемофилию, кстати, нередко называют королевской болезнью.

Но бывают и обратные случаи. Имеется в виду Если она наблюдается, то человеку тоже нужно быть не менее аккуратным. Повышенная свертываемость говорит о высоком риске образования внутрисосудистых тромбов. Которые закупоривают целые сосуды. Нередко последствием может стать тромбофлебит, сопровождающийся воспалением венозных стенок. Но этот дефект лечится проще. Часто, кстати, он является приобретённым.

Удивительно, сколько всего происходит в организме человека, когда тот элементарно порезался листком бумаги. Можно ещё долго рассказывать об особенностях крови, её свёртывании и процессах, которые его сопровождают. Но вся наиболее интересная информация, как и наглядно демонстрирующие её схемы, предоставлена выше. С остальным, при желании, можно ознакомиться в индивидуальном порядке.