Как действует водородная бомба и каковы последствия взрыва? Инфографика. Самая мощная бомба в мире

У многих наших читателей водородная бомба ассоциируется с атомной, только гораздо более мощной. На самом деле это принципиально новое оружие, потребовавшее для своего создания несоизмеримо больших интеллектуальных усилий и работающее на принципиально других физических принципах.

«Слойка»

Современная бомба

Единственно, что роднит атомную и водородную бомбу, так это то, что обе высвобождают колоссальную энергию, скрытую в атомном ядре. Сделать это можно двумя путями: разделить тяжелые ядра, например, урана или плутония, на более легкие (реакция деления) или заставить слиться легчайшие изотопы водорода (реакция синтеза). В результате обеих реакций масса получившегося материала всегда меньше массы исходных атомов. Но масса не может исчезнуть бесследно — она переходит в энергию по знаменитой формуле Эйнштейна E=mc2.

A-bomb

Для создания атомной бомбы необходимым и достаточным условием является получение делящегося материала в достаточном количестве. Работа довольно трудоемкая, но малоинтеллектуальная, лежащая ближе к горнорудной промышленности, чем к высокой науке. Основные ресурсы при создании такого оружия уходят на строительство гигантских урановых рудников и обогатительных комбинатов. Свидетельством простоты устройства является тот факт, что между получением необходимого для первой бомбы плутония и первым советским ядерным взрывом не прошло и месяца.

Напомним вкратце принцип работы такой бомбы, известный из курса школьной физики. В ее основе лежит свойство урана и некоторых трансурановых элементов, например, плутония, при распаде выделять более одного нейтрона. Эти элементы могут распадаться как самопроизвольно, так и под воздействием других нейтронов.

Высвободившийся нейтрон может покинуть радиоактивный материал, а может и столкнуться с другим атомом, вызвав очередную реакцию деления. При превышении определенной концентрации вещества (критической массе) количество новорожденных нейтронов, вызывающих дальнейшее деление атомного ядра, начинает превышать количество распадающихся ядер. Количество распадающихся атомов начинает расти лавинообразно, рождая новые нейтроны, то есть происходит цепная реакция. Для урана-235 критическая масса составляет около 50 кг, для плутония-239 — 5,6 кг. То есть шарик плутония массой чуть меньше 5,6 кг представляет собой просто теплый кусок металла, а массой чуть больше существует всего несколько наносекунд.

Собственно схема работы бомбы простая: берем две полусферы урана или плутония, каждая чуть меньше критической массы, располагаем их на расстоянии 45 см, обкладываем взрывчаткой и взрываем. Уран или плутоний спекается в кусок надкритической массы, и начинается ядерная реакция. Все. Существует другой способ запустить ядерную реакцию — обжать мощным взрывом кусок плутония: расстояние между атомами уменьшится, и реакция начнется при меньшей критической массе. На этом принципе работают все современные атомные детонаторы.

Проблемы атомной бомбы начинаются с того момента, когда мы хотим нарастить мощность взрыва. Простым увеличением делящегося материала не обойтись — как только его масса достигает критической, он детонирует. Придумывались разные хитроумные схемы, например, делать бомбу не из двух частей, а из множества, отчего бомба начинала напоминать распотрошенный апельсин, а потом одним взрывом собирать ее в один кусок, но все равно при мощности свыше 100 килотонн проблемы становились непреодолимыми.

H-bomb

А вот горючее для термоядерного синтеза критической массы не имеет. Вот Солнце, наполненное термоядерным топливом, висит над головой, внутри его уже миллиарды лет идет термоядерная реакция, — и ничего, не взрывается. К тому же при реакции синтеза, например, дейтерия и трития (тяжелого и сверхтяжелого изотопа водорода) энергии выделяется в 4,2 раза больше, чем при сгорании такой же массы урана-235.

Изготовление атомной бомбы было скорее экспериментальным, чем теоретическим процессом. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Прежде чем начинать конструировать бомбу, надо было досконально разобраться в природе явлений, происходящих только в ядре звезд. Никакие эксперименты тут помочь не могли — инструментами исследователей были только теоретическая физика и высшая математика. Не случайно гигантская роль в разработке термоядерного оружия принадлежит именно математикам: Уламу, Тихонову, Самарскому и т. д.

Классический супер

К концу 1945 года Эдвард Теллер предложил первую конструкцию водородной бомбы, получившую название «классический супер». Для создания чудовищного давления и температуры, необходимых для начала реакции синтеза, предполагалось использовать обычную атомную бомбу. Сам «классический супер» представлял собой длинный цилиндр, наполненный дейтерием. Предусматривалась также промежуточная «запальная» камера с дейтериевотритиевой смесью — реакция синтеза дейтерия и трития начинается при более низком давлении. По аналогии с костром, дейтерий должен был играть роль дров, смесь дейтерия с тритием — стакана бензина, а атомная бомба — спички. Такая схема получила название «труба» — своеобразная сигара с атомной зажигалкой с одного конца. По такой же схеме начали разрабатывать водородную бомбу и советские физики.

Однако математик Станислав Улам на обыкновенной логарифмической линейке доказал Теллеру, что возникновение реакции синтеза чистого дейтерия в «супере» вряд ли возможно, а для смеси потребовалось бы такое количество трития, что для его наработки нужно было бы практически заморозить производство оружейного плутония в США.

Слойка с сахаром

В середине 1946 года Теллер предложил очередную схему водородной бомбы — «будильник». Она состояла из чередующихся сферических слоев урана, дейтерия и трития. При ядерном взрыве центрального заряда плутония создавалось необходимое давление и температура для начала термоядерной реакции в других слоях бомбы. Однако для «будильника» требовался атомный инициатор большой мощности, а США (как, впрочем, и СССР) испытывали проблемы с наработкой оружейного урана и плутония.

Осенью 1948 года к аналогичной схеме пришел и Андрей Сахаров. В Советском Союзе конструкция получила название «слойка». Для СССР, который не успевал в достаточном количестве нарабатывать оружейный уран-235 и плутоний-239, сахаровская слойка была панацеей. И вот почему.

В обычной атомной бомбе природный уран-238 не только бесполезен (энергии нейтронов при распаде не хватает для инициации деления), но и вреден, поскольку жадно поглощает вторичные нейтроны, замедляя цепную реакцию. Поэтому оружейный уран на 90% состоит из изотопа уран-235. Однако нейтроны, появляющиеся в результате термоядерного синтеза, в 10 раз более энергетичные, чем нейтроны деления, и облученный такими нейтронами природный уран-238 начинает превосходно делиться. Новая бомба позволяла использовать в качестве взрывчатки уран-238, который прежде рассматривался как отходы производства.

Изюминкой сахаровской «слойки» было также применение вместо остродефицитного трития белого легкого кристаллического вещества — дейтрида лития 6LiD.

Как упоминалось выше, смесь дейтерия и трития поджигается гораздо легче, чем чистый дейтерий. Однако на этом достоинства трития заканчиваются, а остаются одни недостатки: в нормальном состоянии тритий — газ, из-за чего возникают трудности с хранением; тритий радиоактивен и, распадаясь, превращается в стабильный гелий-3, активно пожирающий столь необходимые быстрые нейтроны, что ограничивает срок годности бомбы несколькими месяцами.

Нерадиоактивный дейтрид лития же при облучении его медленными нейтронами деления — последствиями взрыва атомного запала — превращается в тритий. Таким образом, излучение первичного атомного взрыва за мгновение вырабатывает достаточное для дальнейшей термоядерной реакции количество трития, а дейтерий в дейтриде лития присутствует изначально.

Именно такая бомба, РДС-6с, и была успешно испытана 12 августа 1953 на башне Семипалатинского полигона. Мощность взрыва составила 400 килотонн, и до сих пор не прекратились споры, был ли это настоящий термоядерный взрыв или сверхмощный атомный. Ведь на реакцию термоядерного синтеза в сахаровской слойке пришлось не более 20% суммарной мощности заряда. Основной вклад во взрыв внесла реакция распада облученного быстрыми нейтронами урана-238, благодаря которому РДС-6с и открыла эру так называемых «грязных» бомб.

Дело в том, что основное радиоактивное загрязнение дают как раз продукты распада (в частности, стронций-90 и цезий-137). По существу, сахаровская «слойка» была гигантской атомной бомбой, лишь незначительно усиленной термоядерной реакцией. Не случайно всего один взрыв «слойки» дал 82% стронция-90 и 75% цезия-137, которые попали в атмосферу за всю историю существования Семипалатинского полигона.

Американ бомб

Тем не менее, первыми водородную бомбу взорвали именно американцы. 1 ноября 1952 года на атолле Элугелаб в Тихом океане было успешно испытано термоядерное устройство «Майк» мощностью 10 мегатонн. Назвать бомбой 74-тонное американское устройство можно с большим трудом. «Майк» представлял собой громоздкое устройство размером с двухэтажный дом, заполненное жидким дейтерием при температуре, близкой к абсолютному нулю (сахаровская «слойка» была вполне транспортабельным изделием). Однако изюминкой «Майка» были не размеры, а гениальный принцип обжатия термоядерной взрывчатки.

Напомним, что основная идея водородной бомбы состоит в создании условий для синтеза (сверхвысокого давления и температуры) посредством ядерного взрыва. В схеме «слойка» ядерный заряд расположен в центре, и поэтому он не столько сжимает дейтерий, сколько разбрасывает его наружу — увеличение количества термоядерной взрывчатки не приводит к увеличению мощности — она просто не успевает детонировать. Именно этим и ограничена предельная мощность данной схемы — самая мощная в мире «слойка» Orange Herald, взорванная англичанами 31 мая 1957 года, дала только 720 килотонн.

Идеально было бы, если бы заставить взрываться атомный запал внутрь, сжимая термоядерную взрывчатку. Но как это сделать? Эдвард Теллер выдвинул гениальную идею: сжимать термоядерное горючее не механической энергией и нейтронным потоком, а излучением первичного атомного запала.

В новой конструкции Теллера инициирующий атомный узел был разнесен с термоядерным блоком. Рентгеновское излучение при срабатывании атомного заряда опережало ударную волну и распространялось вдоль стенок цилиндрического корпуса, испаряя и превращая в плазму полиэтиленовую внутреннюю облицовку корпуса бомбы. Плазма, в свою очередь, переизлучала более мягкое рентгеновское излучение, которое поглощалось внешними слоями внутреннего цилиндра из урана-238 — «пушера». Слои начинали взрывообразно испаряться (это явление называют абляция). Раскаленную урановую плазму можно сравнить со струями сверхмощного ракетного двигателя, тяга которого направлена внутрь цилиндра с дейтерием. Урановый цилиндр схлопывался, давление и температура дейтерия достигала критического уровня. Это же давление обжимало центральную плутониевую трубку до критической массы, и она детонировала. Взрыв плутониевого запала давил на дейтерий изнутри, дополнительно сжимая и нагревая термоядерную взрывчатку, которая детонировала. Интенсивный поток нейтронов расщепляет ядра урана-238 в «пушере», вызывая вторичную реакцию распада. Все это успевало произойти до того момента, когда взрывная волна от первичного ядерного взрыва достигала термоядерного блока. Расчет всех этих событий, происходящих за миллиардные доли секунды, и потребовал напряжения ума сильнейших математиков планеты. Создатели «Майка» испытывали от 10-мегатонного взрыва не ужас, а неописуемый восторг — им удалось не только разобраться в процессах, которые в реальном мире идут только в ядрах звезд, но и экспериментально проверить свои теории, устроив свою небольшую звезду на Земле.

Браво

Обойдя русских по красоте конструкции, американцы не смогли сделать свое устройство компактным: они использовали жидкий переохлажденный дейтерий вместо порошкообразного дейтрида лития у Сахарова. В Лос-Аламосе на сахаровскую «слойку» реагировали с долей зависти: «вместо огромной коровы с ведром сырого молока русские используют пакет молока сухого». Однако утаить секреты друг от друга обеим сторонам не удалось. Первого марта 1954 года у атолла Бикини американцы испытали 15-мегатонную бомбу «Браво» на дейтриде лития, а 22 ноября 1955 года над семипалатинским полигоном рванула первая советская двухступенчатая термоядерная бомба РДС-37 мощностью 1,7 мегатонн, снеся чуть ли не полполигона. С тех пор конструкция термоядерной бомбы претерпела незначительные изменения (например, появился урановый экран между инициирующей бомбой и основным зарядом) и стала канонической. А в мире не осталось больше столь масштабных загадок природы, разгадать которые можно было бы столь эффектным экспериментом. Разве что рождение сверхновой звезды.

Атомная энергия выделяется не только при делении атомных ядер тяжелых элементов, но и при соединении (синтезе) легких ядер в более тяжелые.

Например, ядра атомов водорода, соединяясь, образуют ядра атомов гелия, при этом выделяется энергии на единицу веса ядерного горючего больше, чем при делении ядер урана.

Эти реакции синтеза ядер, протекающие при очень высоких температурах, измеряемых десятками миллионов градусов, получили название термоядерных реакций. Оружие, основанное на использовании энергии мгновенно выделяющейся в результате термоядерной реакции, называется термоядерным оружием .

Термоядерное оружие, в котором в качестве заряда (ядерного взрывчатого вещества) используются изотопы водорода, часто называют водородным оружием .

Особенно успешно протекает реакция синтеза между изотопами водорода - дейтерием и тритием.

В качестве заряда водородной бомбы может также применяться и дейтерий лития (соединение дейтерия с литием).

Дейтерий, или тяжелый водород, в незначительных количествах встречается в природе в составе тяжелой воды. В обычной воде в виде примеси содержится около 0,02% тяжелой воды. Чтобы получить 1 кг дейтерия, надо переработать не менее 25 т воды.

Тритий, или сверхтяжелый водород, в природе практически не встречается. Он получается искусственно, например, при облучении лития нейтронами. Для этой цели могут быть использованы нейтроны, выделяющиеся в ядерных реакторах.

Практически устройство водородной бомбы можно представить себе следующим образом: рядом с водородным зарядом, содержащим тяжелый и сверхтяжелый водород (т. е. дейтерий и тритий), находятся два удаленных друг от друга полушария из урана или плутония (атомный заряд).

Для сближения этих полушарий используются заряды из обычного взрывчатого вещества (тротила). Взрываясь одновременно, заряды из тротила сближают полушария атомного заряда. В момент их соединения происходит взрыв, тем самым создаются условия для термоядерной реакции, а следовательно, произойдет взрыв и водородного заряда. Таким образом, реакция взрыва водородной бомбы проходит две фазы: первая фаза - деление урана или плутония, вторая - фаза синтеза, при которой образуются ядра гелия и свободные нейтроны больших энергии. В настоящее время имеются схемы построения трехфазной термоядерной бомбы.

В трехфазной бомбе оболочку изготовляют из урана-238 (природного урана). В этом случае реакция проходит три фазы: первая фаза деления (уран или плутоний для детонации), вторая - термоядерная реакция в гидрите лития и третья фаза - реакция деления урана-238. Деление ядер урана вызывают нейтроны, которые выделяются в виде мощного потока при реакции синтеза.

Изготовление оболочки из урана-238 дает возможность увеличить мощность бомбы за счет наиболее доступного атомного сырья. По сообщению иностранной печати, уже испытывались бомбы мощностью 10-14 млн. тонн и более. Становится очевидным, что это не является пределом. Дальнейшее усовершенствование ядерного оружия идет как по линии создания бомб особо большой мощности, так и по линии разработки новых конструкций, позволяющих уменьшить вес и калибр бомб. В частности, работают над созданием бомбы, основанной полностью на синтезе. Имеются, например, сообщения в иностранной печати о возможности применения нового метода детонации термоядерных бомб на основе использования ударных волн обычных взрывчатых веществ.

Энергия, выделяемая при взрыве водородной бомбы, может быть в тысячи раз больше, чем энергия взрыва атомной бомбы. Однако радиус разрушения не может превышать во столько же раз радиус разрушений, вызванных взрывом атомной бомбы.

Радиус действия ударной волны при воздушном взрыве водородной бомбы с тротиловым эквивалентом в 10 млн. т больше радиуса действия ударной волны, образующейся при взрыве атомной бомбы с тротиловым эквивалентом в 20000 тонн, примерно в 8 раз, тогда как мощность бомбы больше в 500 раз, т. е. на корень кубический из 500. Соответственно этому и площадь разрушения увеличивается примерно в 64 раза, т. е. пропорционально корню кубическому из коэффициента увеличения мощности бомбы в квадрате.

По данным иностранных авторов, при ядерном взрыве мощностью 20 млн. т площадь полного разрушения обычных наземных строений, по подсчетам американских специалистов, может достигнуть 200 км 2 , зона значительных разрушений - 500 км 2 и частичных - до 2580 км 2 .

Это значит, заключают иностранные специалисты, что взрыва одной бомбы подобной мощности достаточно для разрушения современного крупного города. Как известно, занимаемая площадь Парижа - 104 км 2 , Лондона - 300 км 2 , Чикаго - 550 км 2 , Берлина - 880 км 2 .

Масштабы поражений и разрушений от ядерного взрыва мощностью в 20 млн. т могут быть представлены схематично, в следующем виде:

Область смертельных доз начальной радиации в радиусе до 8 км (на площади до 200 км 2);

Область поражений световым излучением (ожоги)] в радиусе до 32 км (на площади около 3000 км 2).

Повреждения жилых зданий (выбиты стекла, осыпалась штукатурка и т. д.) могут наблюдаться даже на расстоянии до 120 км от места взрыва.

Приведенные данные из открытых иностранных источников являются ориентировочными, они получены при испытании ядерных боеприпасов меньшей мощности и путем расчетов. Отклонения от этих данных в ту или другую сторону будут зависеть от различных факторов, и в первую очередь от рельефа местности, характера застройки, метеорологических условий, растительного покрова и т. д.

Изменить радиус поражения в значительной степени можно путем создания искусственно тех или других условий, снижающих эффект воздействия поражающих факторов взрыва. Так, например, можно уменьшить поражающее действие светового излучения, сократить площадь, на которой могут возникнуть ожоги у людей и воспламеняться предметы, путем создания дымовой завесы.

Проведенные опыты в США по созданию дымовых завес при ядерных взрывах в 1954-1955 гг. показали, что при плотности завесы (масляных туманов), получаемой при расходе 440-620 л масла на 1 км 2 , воздействие светового излучения ядерного взрыва в зависимости от расстояния до эпицентра можно ослабить на 65-90 %.

Ослабляют поражающее воздействие светового излучения также и другие дымы, которые не только не уступают, а в ряде случаев превосходят масляные туманы. В частности, промышленный дым, уменьшающий атмосферную видимость, может ослабить воздействие светового излучения в такой же степени, как и масляные туманы.

Намного можно уменьшить поражающий эффект ядерных взрывов путем рассредоточенного строительства населенных пунктов, создания массивов лесных насаждений и т. д.

Особо следует отметить резкое уменьшение радиуса поражения людей в зависимости от использования тех или других средств защиты. Известно, например, что даже на небольшом сравнительно расстоянии от эпицентра взрыва надежным укрытием от воздействия светового излучения и проникающей радиации является убежище, имеющее слой земляного покрытия толщиной 1,6 м или слой бетона в 1 м.

Убежище легкого типа уменьшает радиус зоны поражения людей по сравнению с открытым расположением в шесть раз, а площадь поражения сокращается в десятки раз. При использовании крытых щелей радиус возможного поражения уменьшается в 2 раза.

Следовательно, при максимальном использовании всех имеющихся способов и средств защиты можно добиться значительного снижения воздействия поражающих факторов ядерного оружия и тем самым уменьшения людских и материальных потерь при его применении.

Говоря о масштабах разрушений, которые могут быть вызваны взрывами ядерного оружия большой мощности, необходимо иметь в виду, что поражения будут нанесены не только действием ударной волны, светового излучения и проникающей радиации, но и действием радиоактивных веществ, выпадающих по пути движения образовавшегося при взрыве облака, в состав которого входят не только газообразные продукты взрыва, но и твердые частицы различной величины как по весу, так и по размерам. Особенно большое количество радиоактивной пыли образуется при наземных взрывах.

Высота подъема облака и его размеры во многом зависят от мощности взрыва. По сообщению иностранной печати, при испытании ядерных зарядов мощностью в несколько миллионов тонн тротила, которые проводились США в районе Тихого океана в 1952-1954 гг., верхушка облака достигла высоты 30-40 км.

В первые минуты после взрыва облако имеет форму шара и с течением времени вытягивается по направлению ветра, достигая огромной величины (около 60- 70 км).

Примерно через час после взрыва бомбы с тротиловым эквивалентом в 20 тысяч т объем облака достигает 300 км 3 , а при взрыве бомбы в 20 млн. т объем может достигнуть 10 тыс. км 3 .

Двигаясь по направлению потока воздушных масс, атомное облако может занять полосу протяженностью в несколько десятков километров.

Из облака при его движении, после подъема в верхние слои разряженной атмосферы, уже через несколько минут начинает выпадать на землю радиоактивная пыль, заражая по пути территорию в несколько тысяч квадратных километров.

В первое время выпадают наиболее тяжелые частицы пыли, которые успевают осесть в течение нескольких часов. Основная масса крупной пыли выпадает в первые 6-8 часов после взрыва.

Около 50% частиц (наиболее крупных) радиоактивной пыли выпадает в течение первых 8 часов после взрыва. Это выпадение часто называют местным в отличие от общего, повсеместного.

Более мелкие частицы пыли остаются в воздухе на различных высотах и выпадают на землю в течение примерно двух недель после взрыва. За это время облако может обойти вокруг земного шара несколько раз, захватывая при этом широкую полосу параллельно широте, на которой был произведен взрыв.

Частицы малых размеров (до 1 мк) остаются в верхних слоях атмосферы, распределяясь более равномерно вокруг земного шара, и выпадают в течение последующего ряда лет. По заключению ученых, выпадение мелкой радиоактивной пыли продолжается повсеместно на протяжении около десяти лет.

Наибольшую опасность для населения представляет радиоактивная пыль, выпадающая в первые часы после взрыва, так как при этом уровень радиоактивного заражения является настолько высоким, что может вызвать смертельные поражения людей и животных, оказавшихся на территории по пути движения радиоактивного облака.

Размеры площади и степень заражения местности в результате выпадения радиоактивной пыли во многом зависят от метеорологических условий, рельефа местности, высоты взрыва, величины заряда бомбы, характера грунта и т. п. Наиболее важным фактором, определяющим размеры площади заражения, ее конфигурацию, является направление и сила ветров, господствующих в районе взрыва на различных высотах.

Чтобы определить возможное направление движения облака, необходимо знать, в каком направлении и с какой скоростью дует ветер на различных высотах, начиная с высоты примерно 1 км и кончая 25-30 км. Для этого метеослужба должна вести постоянные наблюдения и измерения ветра с помощью радиозондов на различных высотах; на основании полученных данных определять, в каком направлении вероятнее всего движение радиоактивного облака.

При взрыве водородной бомбы, произведенном США в 1954 году в районе центральной части Тихого океана (на атолле Бикини), зараженный участок территории имел форму вытянутого эллипса, который простирался на 350 км по ветру и на 30 км против ветра. Наибольшая ширина полосы составляла около 65 км. Общая площадь опасного заражения достигала около 8 тыс. км 2 .

Как известно, в результате этого взрыва заражению радиактивной пылью подверглось японское рыболовное судно «Фукурюмару», которое находилось в то время на расстоянии около 145 км. Находившиеся на этом судне 23 рыбака получили поражения, причем один из них смертельное.

Действию выпавшей радиоактивной пыли после взрыва 1 марта 1954 года подверглись также 29 американских служащих и 239 жителей Маршалловых островов, причем все получившие поражения находились на расстоянии более 300 км от места взрыва. Оказались зараженными также и другие суда, находившиеся в Тихом океане на удалении до 1500 км от Бикини, и часть рыбы вблизи японского берега.

На загрязнение атмосферы продуктами взрыва указывали выпавшие в мае месяце на тихоокеанском побережье и Японии дожди, в которых была обнаружена сильно повышенная радиоактивность. Районы, в которых отмечено выпадение радиоактивных осадков в течение мая 1954 года, занимают около трети всей территории Японии.

Приведенные выше данные о масштабах поражений, которые могут быть нанесены населению при взрыве атомных бомб больших калибров, показывают, что ядерные заряды большой мощности (миллионы тонн тротила) можно считать оружием радиологическим, т. е. оружием, поражающим больше радиоактивными продуктами взрыва, чем ударной волной, световым излучением и проникающей радиацией, действующей в момент взрыва.

Поэтому в ходе подготовки населенных пунктов и объектов народного хозяйства к гражданской обороне, необходимо повсеместно предусматривать мероприятия по защите населения, животных, продуктов питания, фуража и воды от заражения продуктами взрыва ядерных зарядов, которые могут выпадать по пути движения радиоактивного облака.

При этом следует иметь в виду, что в результате выпадения радиоактивных веществ будет подвергаться заражению не только поверхность почвы и предметов, но и воздух, растительность, вода в открытых водоемах и т. д. Воздух будет зараженным как в период оседания радиоактивных частиц, так и в последующее время, особенно вдоль дорог при движении транспорта или при ветреной погоде, когда осевшие частицы пыли будут опять подыматься в воздух.

Следовательно, незащищенные люди и животные могут оказаться пораженными радиоактивной пылью, попадающей в органы дыхания вместе с воздухом.

Опасными также окажутся пищевые продукты и вода, заражённые радиоактивной пылью, которые при попадании в организм могут вызвать тяжелое заболевание, иногда со смертельным исходом. Таким образом, в районе выпадения радиоактивных веществ, образующихся при ядерном взрыве, люди будут подвергаться поражению не только в результате внешнего облучения, но и при попадании в организм зараженной пищи, воды или воздуха. При организации защиты от поражения продуктами ядерного взрыва следует учитывать, что степень заражения по следу движения облака по мере удаления от места взрыва снижается.

Поэтому и опасность, которой подвергается население, находящееся в районе полосы заражения, на различном расстоянии от места взрыва неодинакова. Наиболее опасными будут районы, близлежащие от места взрыва, и районы, расположенные вдоль оси движения облака (средняя часть полосы по следу движения облака).

Неравномерность радиоактивного заражения по пути движения облака в известной мере имеет закономерный характер. Это обстоятельство необходимо принимать во внимание при организации и проведении мероприятий по противорадиационной защите населения.

Необходимо также учитывать, что от момента взрыва до момента выпадения из облака радиоактивных веществ проходит некоторое время. Это время тем больше, чем дальше от места взрыва, и может исчисляться несколькими часами. Население районов, удаленных от места взрыва, будет располагать достаточным временем, чтобы принять соответствующие меры защиты.

В частности, при условии своевременной подготовки средств оповещения и четкой работе соответствующих формирований ГО население может быть оповещено об опасности примерно за 2-3 часа.

В течение этого времени при заблаговременной подготовке населения и высокой организованности можно осуществить ряд мероприятий, обеспечивающих достаточно надежную защиту от радиоактивного поражения людей и животных. Выбор тех или иных мер и способов защиты будет определяться конкретными условиями создавшейся обстановки. Однако общие принципы должны быть определены, и в соответствии с этим заранее разработаны планы гражданской обороны.

Можно считать, что при определенных условиях наиболее рациональным следует признать принятие в первую очередь мер защиты на месте, используя все средства и. способы, предохраняющие как от попадания радиоактивных веществ внутрь организма, так и от внешнего облучения.

Как известно, наиболее эффективным средством защиты от внешнего облучения являются убежища { приспособленные с учетом требований противоатомной защиты, а также здания с массивными стенами, построенные из плотных материалов (кирпича, цемента, железобетона и т. д.), в том числе подвалы, землянки, погреба, крытые щели и обычные жилые постройки.

При оценке защитных свойств зданий и сооружений можно руководствоваться следующими ориентировочными данными: деревянный дом ослабляет действие радиоактивных излучений в зависимости от толщины стен в 4-10 раз, каменный дом - в 10-50 раз, погреба и подвалы в деревянных домах - в 50-100 раз, щель с перекрытием из слоя земли 60-90 см - в 200-300 раз.

Следовательно, в планах гражданской обороны должно быть предусмотрено использование в случае необходимости в первую очередь сооружений, обладающих более мощными защитными средствами; при получении сигнала об опасности поражения население должно немедленно укрыться в этих помещениях и находиться там до тех пор, пока не будет объявлено о дальнейших действиях.

Время пребывания людей в помещениях, предназначенных для укрытия, будет зависеть, главным образом, от того, в какой степени окажется зараженным район месторасположения населенного пункта, и скорости снижения уровня радиации с течением времени.

Так, например, в населенных пунктах, находящихся на значительном расстоянии от места взрыва, где суммарные дозы облучения, которые получат незащищенные люди, могут в течение короткого времени стать безопасными, населению целесообразно переждать это время в укрытиях.

В районах сильного радиоактивного заражения, где суммарная доза, которую могут получить незащищенные люди, будет высокой и снижение ее окажется продолжительным в этих условиях, длительное пребывание людей в укрытиях станет затруднительным. Поэтому наиболее рациональным в таких районах следует считать сначала укрытие населения на месте, а затем эвакуация его в незаряженные районы. Начало эвакуации и ее продолжительность будет зависеть от местных условий: уровня радиоактивного заражения, наличия транспортных средств, путей сообщения, времени года, отдаленности мест размещения эвакуированных и т. д.

Таким образом, территорию радиоактивного заражения по следу радиоактивного облака можно разделить условно на две зоны с различными принципами защиты населения.

В первую зону входит территория, где уровни радиации по истечении 5-6 суток после взрыва остаются высокими и снижаются медленно (примерно на 10-20% ежесуточно). Эвакуация населения из таких районов может начаться лишь после снижения уровня радиации до таких показателей, при которых за время сбора и движения в зараженной зоне люди не получат суммарной дозы более 50 р.

Ко второй зоне относятся районы, в которых уровни радиации снижаются в течение первых 3-5 суток после взрыва до 0,1 рентген/час.

Эвакуация населения из этой зоны не целесообразна, так как это время можно переждать в укрытиях.

Успешное осуществление мероприятий по защите населения во всех случаях немыслимо без тщательной радиационной разведки и наблюдения и постоянного контроля уровня радиации.

Говоря о защите населения от радиоактивного поражения по следу движения облака, образовавшегося при ядерном взрыве, следует помнить, что можно избежать поражения или достигнуть его снижения лишь при четкой организации комплекса мероприятий, к которым относится:

  • организация системы оповещения, обеспечивающей своевременное предупреждение населения о наиболее вероятном направлении движения радиоактивного облака и опасности поражения. В этих целях должны быть использованы все имеющиеся средства связи - телефон, радиостанции, телеграф, радиотрансляция и т. д.;
  • подготовка формирований ГО для проведения разведки как в городах, так и в районах сельской местности;
  • укрытие людей в убежищах или других помещениях, защищающих от радиоактивных излучений (подвалы, погреба, щели и т. д.);
  • проведение эвакуации населения и животных из района устойчивого заражения радиоактивной пылью;
  • подготовка формирований и учреждений медицинской службы ГО к действиям по оказанию помощи пораженным, главным образом лечению, проведению санитарной обработки, экспертизы воды и пищевых продуктов на зараженность радиоактивными веществ вами;
  • заблаговременное проведение мероприятий по защите продуктов питания на складах, в торговой сети, на предприятиях общественного питания, а также источников водоснабжения от заражения радиоактивной пылью (герметизация складских помещений, подготовка тары, подручных материалов для укрытия продуктов, подготовка средств для дезактивации продовольствия и тары, оснащение дозиметрическими приборами);
  • проведение мероприятий по защите животных и оказание помощи животным в случае поражения.

Для обеспечения надежной защиты животных необходимо предусмотреть содержание их в колхозах, совхозах по возможности мелкими группами по бригадам, фермам или населенным пунктам, имеющим места укрытия.

Следует также предусмотреть создание дополнительных водоемов или колодцев, которые могут стать резервными источниками водоснабжения в случае заражения воды постояннодействующих источников.

Важное значение приобретают складские помещения, в которых хранится фураж, а также животноводческие помещения, которые по возможности следует герметизировать.

Для защиты ценных племенных животных необходимо иметь индивидуальные средства защиты, которые могут быть изготовлены из подручных материалов на месте (повязки для защиты глаз, торбы, покрывала и др.), а также противогазы (при наличии).

Для проведения дезактивации помещений и ветеринарной обработки животных необходимо заблаговременно учесть имеющиеся в хозяйстве дезинфекционные установки, опрыскиватели, дождевальные установки, жижерасбрасыватели и другие механизмы и емкости, при помощи которых можно производить работы по обеззараживанию и ветобработке;

Организация и подготовка формирований и учреждений для проведения работ по дезактивации сооружений, местности, транспорта, одежды, снаряжения и друтого имущества ГО, для чего заранее осуществляются мероприятия по приспособлению коммунальной техники, сельскохозяйственных машин, механизмов и приборов для этих целей. В зависимости от наличия техники должны быть созданы и обучены соответствующие формирования - отряды» команды» группы, звенья и т. д.

Наша статья посвящена истории создания и общим принципам синтеза такого устройства, как иногда называемой водородной. Вместо выделения энергии взрыва при расщеплении ядер тяжелых элементов, вроде урана, она генерирует даже большее ее количество путем слияния ядер легких элементов (например, изотопов водорода) в один тяжелый (например, гелий).

Почему предпочтительнее слияние ядер?

При термоядерной реакции, заключающейся в слиянии ядер участвующих в ней химических элементов, генерируется значительно больше энергии на единицу массы физического устройства, чем в чистой атомной бомбе, реализующей ядерную реакцию деления.

В атомной бомбе делящееся ядерное топливо быстро, под действием энергии подрыва обычных взрывчатых веществ объединяется в небольшом сферическом объеме, где создается его так называемая критическая масса, и начинается реакция деления. При этом многие нейтроны, освобождающиеся из делящихся ядер, будут вызывать деление других ядер в массе топлива, которые также выделяют дополнительные нейтроны, что приводит к цепной реакции. Она охватывает не более 20 % топлива, прежде чем бомба взрывается, или, возможно, гораздо меньше, если условия не идеальны: так в атомных бомбах Малыш, сброшенной на Хиросиму, и Толстяк, поразившей Нагасаки, КПД (если такой термин вообще можно к ним применять) были всего 1,38 % и 13%, соответственно.

Слияние (или синтез) ядер охватывает всю массу заряда бомбы и длится, пока нейтроны могут находить еще не вступившее в реакцию термоядерное горючее. Поэтому масса и взрывная мощность такой бомбы теоретически неограниченны. Такое слияние может продолжаться теоретически бесконечно. Действительно, термоядерная бомба является одним из потенциальных устройств конца света, которое может уничтожить всю человеческую жизнь.

Что такое реакция слияния ядер?

Топливом для реакции термоядерного синтеза служат изотопы водорода дейтерий или тритий. Первый отличается от обычного водорода тем, что в его ядре, кроме одного протона содержится еще и нейтрон, а в ядре трития уже два нейтрона. В природной воде один атом дейтерия приходится на 7000 атомов водорода, но из его количества. содержащегося в стакане воды, можно в результате термоядерной реакции получить такое же количество теплоты, как и при сгорании 200 л бензина. На встрече в 1946 году с политиками, отец американской водородной бомбы Эдвард Теллер подчеркнул, что дейтерий дает больше энергии на грамм веса, чем уран или плутоний, однако стоит двадцать центов за грамм в сравнении с несколькими сотнями долларов за грамм топлива для ядерного деления. Тритий в природе в свободном состоянии вообще не встречается, поэтому он гораздо дороже, чем дейтерий, с рыночной ценой в десятки тысяч долларов за грамм, однако наибольшее количество энергии высвобождается именно в реакции слияния ядер дейтерия и трития, при которой образуется ядро атома гелия и высвобождается нейтрон, уносящий избыточную энергию в 17,59 МэВ

D + T → 4 Не + n + 17,59 МэВ.

Схематически эта реакция показана на рисунке ниже.

Много это или мало? Как известно, все познается в сравнении. Так вот, энергия в 1 МэВ примерно в 2,3 миллиона раз больше, чем выделяется при сгорании 1 кг нефти. Следовательно слияние только двух ядер дейтерия и трития высвобождает столько энергии, сколько выделяется при сгорании 2,3∙10 6 ∙17,59 = 40,5∙10 6 кг нефти. А ведь речь идет только о двух атомах. Можете представить, как высоки были ставки во второй половине 40-х годов прошлого века, когда в США и СССР развернулись работы, результатом которых стала термоядерная бомба.

Как все начиналось

Еще летом 1942 г. в начале реализации проекта создания атомной бомбы в США (Манхэтенский проект) и позднее в аналогичной советской программе, задолго до того, как была построена бомба, основанная на делении ядер урана, внимание некоторых участников этих программ было привлечено к устройству, которое может использовать гораздо более мощную термоядерную реакцию слияния ядер. В США сторонником этого подхода, и даже, можно сказать, его апологетом, был уже упомянутый выше Эдвард Теллер. В СССР это направление развивал Андрей Сахаров, будущий академик и диссидент.

Для Теллера его увлечение термоядерным синтезом в годы создания атомной бомбы сыграло скорее медвежью услугу. Будучи участником Манхэтенского проекта, он настойчивые призывал к перенаправлению средств на реализацию собственных идей, целью которых была водородная и термоядерная бомба, что не понравилось руководству и вызвало напряженность в отношениях. Поскольку в то время термоядерное направление исследований не было поддержано, то после создания атомной бомбы Теллер покинул проект и занялся преподавательской деятельностью, а также исследованиями элементарных частиц.

Однако начавшаяся холодная война, а больше всего создание и успешное испытание советской атомной бомбы в 1949 г., стали для яростного антикоммуниста Теллера новым шансом реализовать свои научные идеи. Он возвращается в Лос-Аламосскую лабораторию, где создавалась атомная бомба, и совместно со Станиславом Уламом и Корнелиусом Эвереттом приступает к расчетам.

Принцип термоядерной бомбы

Для того чтобы началась реакция слияния ядер, нужно мгновенно нагреть заряд бомбы до температуры в 50 миллионов градусов. Схема термоядерной бомбы, предложенная Теллером, использует для этого взрыв небольшой атомной бомы, которая находится внутри корпуса водородной. Можно утверждать, что было три поколения в развитии ее проекта в 40-х годах прошлого века:

  • вариант Теллера, известный как "классический супер";
  • более сложные, но и более реальные конструкции из нескольких концентрических сфер;
  • окончательный вариант конструкции Теллера-Улама, которая является основой всех работающих поныне систем термоядерного оружия.

Аналогичные этапы проектирования прошли и термоядерные бомбы СССР, у истоков создания которых стоял Андрей Сахаров. Он, по-видимому, вполне самостоятельно и независимо от американцев (чего нельзя сказать о советской атомной бомбе, созданной совместными усилиями ученых и разведчиков, работавших в США) прошел все вышеперечисленные этапы проектирования.

Первые два поколения обладали тем свойством, что они имели последовательность сцепленных "слоев", каждый из которых усиливал некоторый аспект предыдущего, и в некоторых случаях устанавливалась обратная связь. Там не было четкого разделения между первичной атомной бомбой и вторичной термоядерной. В отличие от этого, схема термоядерной бомбы разработки Теллера-Улама резко различает первичный взрыв, вторичный, и при необходимости, дополнительный.

Устройство термоядерной бомбы по принципу Теллера-Улама

Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба (т. е. первичный заряд) используется для генерации излучения, сжимает и нагревает термоядерное топливо. Андрей Сахаров в Советском Союзе, по-видимому, независимо придумал аналогичную концепцию, которую он назвал "третьей идеей".

Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже.

Она имела цилиндрическую форму, с примерно сферической первичной атомной бомбой на одном конце. Вторичный термоядерный заряд в первых, еще непромышленных образцах, был из жидкого дейтерия, несколько позднее он стал твердым из химического соединения под названием дейтерид лития.

Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы (эта идея сначала была использована в СССР) просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще.

По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой (или урановой) оболочкой. Между зарядами находится щит нейтронной защиты. Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия.

Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже.

В ней первичный заряд сплюснут, как арбуз или мяч в американском футболе, а вторичный заряд - сферический. Такие формы гораздо более эффективно вписываются во внутренний объем конических ракетных боеголовок.

Последовательность термоядерного взрыва

Когда первичная атомная бомба детонирует, то в первые мгновения этого процесса генерируется мощное рентгеновское излучение (поток нейтронов), которое частично блокируется щитом нейтронной защиты, и отражается от внутренней облицовки корпуса, окружающего вторичный заряд, так что рентгеновские лучи симметрично падают на него по всей его длине.

На начальных этапах термоядерной реакции нейтроны от атомного взрыва поглощаются пластиковым заполнителем, чтобы не допустить чересчур быстрого разогрева топлива.

Рентгеновские лучи вызвают появление вначале плотной пластиковой пены, заполняющей пространство между корпусом и вторичным зарядом, которая быстро переходит в состояние плазмы, нагревающей и сжимающей вторичный заряд.

Кроме того, рентгеновские лучи испаряют поверхность контейнера, окружающего вторичный заряд. Симметрично испаряющееся относительно этого заряда вещество контейнера приобретает некоторый импульс, направленный от его оси, а слои вторичного заряда согласно закону сохранения количества движения получают импульс, направленный к оси устройства. Принцип здесь тот же, что и в ракете, только если представить, что ракетное топливо разлетается симметрично от ее оси, а корпус сжимается внутрь.

В результате такого сжатия термоядерного топлива, его объем уменьшается в тысячи раз, а температура достигает уровня начала реакции слияния ядер. Происходит взрыв термоядерной бомбы. Реакция сопровождается образованием ядер трития, которые сливаются с ядрами дейтерия, изначально имеющимися в составе вторичного заряда.

Первые вторичные заряды были построены вокруг стержневого сердечника из плутония, неофициально называемого "свечой", который вступал в реакцию ядерного деления, т. е. осуществлялся еще один, дополнительный атомный взрыв с целью еще большего поднятия температуры для гарантированного начала реакции слияния ядер. В настоящее время считается, что более эффективные системы сжатия устранили «свечу», позволяя дальнейшую миниатюризацию конструкции бомбы.

Операция Плющ

Так назвались испытания американского термоядерного оружия на Маршалловых островах в 1952 г. во время которых была взорвана первая термоядерная бомба. Она называлась Плющ Майк и была построена по типовой схеме Теллера-Улама. Ее вторичный термоядерный заряд был помещен в цилиндрический контейнер, представляющий собой термически изолированный сосуд Дьюара с термоядерным топливом в виде жидкого дейтерия, вдоль оси которого проходила «свеча» из 239-плутония. Дьюар, в свою очередь, был покрыт слоем 238-урана весом более 5 метрических тонн, который в процессе взрыва испарялся, обеспечивая симметричное сжатие термоядерного топлива. Контейнер с первичным и вторичным зарядами был помещен в стальной корпус 80 дюймов шириной и 244 дюйма длиной со стенками в 10-12 дюймов толщиной, что было крупнейшим примером кованого изделия до того времени. Внутренняя поверхность корпуса был выстлана листами свинца и полиэтилена для отражения излучения после взрыва первичного заряда и создания плазмы, разогревающей вторичный заряд. Все устройство весило 82 тонны. Вид устройства незадолго до взрыва показан на фото ниже.

Первое испытание термоядерной бомбы состоялось 31 октября 1952 г. Мощность взрыва составила 10,4 мегатонны. Аттол Эниветок, на котором он был произведен, был полностью разрушен. Момент взрыва показан на фото ниже.

СССР дает симметричный ответ

Термоядерное первенство США продержалось недолго. 12.08.1953 г. на Семипалатинском полигоне была испытана первая советская термоядерная бомба РДС-6, разработанная под руководством Андрея Сахарова и Юлия Харитона.Из описания выше становится ясно, что американцами на Эниветоке была взорвана собственно не бомба, как вид готового к применению боеприпаса, а скорее лабораторное устройство, громоздкое и весьма несовершенное. Советские же ученые, несмотря на небольшую мощность всего 400 кг, испытали вполне законченный боеприпас с термоядерным топливом в виде твердого дейтерида лития, а не жидкого дейтерия, как у американцев. Кстати, следует отметить, что в составе дейтерида лития используется только изотоп 6 Li (это связано с особенностями прохождения термоядерных реакций), а в природе он находится в смеси с изотопом 7 Li. Поэтому были построены специальные производства для разделения изотопов лития и отбора только 6 Li.

Достижение предельной мощности

Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30.10.1961 г. в СССР над полигоном Новая Земля в воздухе на высоте около 4 км была взорвана самая мощная термоядерная бомба, которая когда-либо была построена и испытана, известная на Западе как «Царь-бомба».

Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн. При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50. Реальная мощность взрыва составила до 58 мегатонн.Внешний вид бомбы показан на фото ниже.

Последствия его были впечатляющими. Несмотря на весьма существенную высоту взрыва в 4000 м, невероятно яркий огненный шар нижним краем почти достиг Земли, а верхним поднялся до высоты более 4,5 км. Давление ниже точки разрыва было в шесть раз выше пикового давления при взрыве в Хиросиме. Вспышка света была настолько яркой, что ее было видно на расстоянии 1000 километров, несмотря на пасмурную погоду. Один из участников теста увидел яркую вспышку через темные очки и почувствовал последствия теплового импульса даже на расстоянии 270 км. Фото момента взрыва показано ниже.

При этом было показано, что мощность термоядерного заряда действительно не имеет ограничений. Ведь достаточно было выполнить третью ступень, и расчетная мощность была бы достигнута. А ведь можно наращивать число ступеней и далее, так как вес «Царь-бомбы» составил не более 27 тонн. Вид этого устройства показан на фото ниже.

После этих испытаний многим политикам и военным как в СССР, так и в США стало ясно, что наступил предел гонки ядерных вооружений и ее нужно остановить.

Современная Россия унаследовала ядерный арсенал СССР. Сегодня термоядерные бомбы России продолжают служить сдерживающим фактором для тех, кто стремится к мировой гегемонии. Будем надеяться, что они сыграют свою роль только в виде средства устрашения и никогда не будут взорваны.

Солнце как термоядерный реактор

Общеизвестно, что температура Солнца, точнее его ядра, достигающая 15000000 °К, поддерживается за счет непрерывного протекания термоядерных реакций. Однако все, что мы могли почерпнуть из предыдущего текста, говорит о взрывном характере таких процессов. Тогда почему Солнце не взрывается как термоядерная бомба?

Дело в том, что при огромной доле водорода в составе солнечной массы, которая достигает 71 %, доля его изотопа дейтерия, ядра которого только и могут участвовать в реакции термоядерного синтеза, ничтожно мала. Дело в том, что ядра дейтерия сами образуются в результате слияния двух ядер водорода, да не просто слияния, а с распадом одного из протонов на нейтрон, позитрон и нейтрино (т. наз. бета-распад), что является редким событием. При этом образующиеся ядра дейтерия распределены по объему солнечного ядра довольно равномерно. Поэтому при её огромных размерах и массе отдельные и редкие очаги термоядерных реакций относительно небольшой мощности как бы размазаны по всему его ядру Солнца. Выделяемого при этих реакциях тепла явно недостаточно, чтобы мгновенно выжечь весь дейтерий в Солнце, но хватает для его нагрева до температуры, обеспечивающей жизнь на Земле.

12 августа 1953 года в 7.30 утра на Семипалатинском полигоне была испытана первая советская водородная бомба , которая имела служебное название "Изделие РДС‑6c". Это было четвертое по счету советское испытание ядерного оружия.

Начало первых работ по термоядерной программе в СССР относится ещё к 1945 году . Тогда была получена информация об исследованиях, ведущихся в США над термоядерной проблемой. Они были начаты по инициативе американского физика Эдварда Теллера в 1942 году. За основу была взята теллеровская концепция термоядерного оружия, получившая в кругах советских ученых‑ядерщиков название "труба" ‑ цилиндрический контейнер с жидким дейтерием, который должен был нагреваться от взрыва инициирующего устройства типа обычной атомной бомбы. Только в 1950 году американцы установили, что "труба" бесперспективна, и они продолжили разработку других конструкций. Но к этому времени советскими физиками уже была самостоятельно разработана другая концепция термоядерного оружия, которая вскоре ‑ в 1953 году ‑ привела к успеху.

Альтернативную схему водородной бомбы придумал Андрей Сахаров. В основу бомбы им была положена идея "слойки" и применения дейтерида лития‑6. Разработанный в КБ‑11 (сегодня это город Саров, бывший Арзамас‑16, Нижегородская область) термоядерный заряд РДС‑6с представлял собой сферическую систему из слоев урана и термоядерного горючего, окруженных химическим взрывчатым веществом.

Академик Сахаров - депутат и диссидент 21 мая исполняется 90 лет со дня рождения советского физика, политического деятеля, диссидента, одного из создателя советской водородной бомбы, лауреата Нобелевской премии мира академика Андрея Сахарова. Он умер в 1989 году в возрасте 68 лет, семь из которых Андрей Дмитриевич провел в ссылке.

Для увеличения энерговыделения заряда в его конструкции был использован тритий. Основная задача при создании подобного оружия заключалась в том, чтобы с помощью энергии, выделенной при взрыве атомной бомбы, нагреть и поджечь тяжелый водород — дейтерий, осуществить термоядерные реакции с выделением энергии, способные сами себя поддерживать. Для увеличения доли "сгоревшего" дейтерия Сахаров предложил окружить дейтерий оболочкой из обычного природного урана, который должен был замедлить разлет и, главное, существенно повысить плотность дейтерия. Явление ионизационного сжатия термоядерного горючего, ставшее основой первой советской водородной бомбы, до сих пор называют "сахаризацией".

По результатам работ над первой водородной бомбой Андрей Сахаров получил звание Героя Соцтруда и лауреата Сталинской премии.

"Изделие РДС‑6с" было выполнено в виде транспортабельной бомбы весом 7 тонн, которая помещалась в бомбовом люке бомбардировщика Ту‑16. Для сравнения — бомба, созданная американцами, весила 54 тонн и была размером с трехэтажный дом.

Чтобы оценить разрушительные воздействия новой бомбы, на Семипалатинском полигоне построили город из промышленных и административных зданий. В общей сложности на поле имелось 190 различных сооружений. В этом испытании впервые были применены вакуумные заборники радиохимических проб, автоматически открывавшиеся под действием ударной волны. Всего к испытаниям РДС‑6с было подготовлено 500 различных измерительных, регистрирующих и киносъемочных приборов, установленных в подземных казематах и прочных наземных сооружениях. Авиационно‑техническое обеспечение испытаний — измерение давления ударной волны на самолет, находящийся в воздухе в момент взрыва изделия, забор проб воздуха из радиоактивного облака, аэрофотосъемка района осуществлялось специальной летной частью. Подрыв бомбы осуществлялся дистанционно, подачей сигнала с пульта, который находился в бункере.

Было решено произвести взрыв на стальной башне высотой 40 метров, заряд был расположен на высоте 30 метров . Радиоактивный грунт от прошлых испытаний был удален на безопасное расстояние, специальные сооружения были отстроены на своих же местах на старых фундаментах, в 5 метрах от башни был сооружен бункер для установки разработанной в ИХФ АН СССР аппаратуры, регистрирующей термоядерные процессы.

На поле установили военную технику всех родов войск. В ходе испытаний были уничтожены все опытные сооружения в радиусе до четырех километров. Взрыв водородной бомбы мог бы полностью разрушить город в 8 километров в поперечнике. Экологические последствия взрыва оказались ужасающими: на долю первого взрыва приходится 82% стронция‑90 и 75% цезия‑137.

Мощность бомбы достигла 400 килотонн, в 20 раз больше первых атомных бомб в США и СССР.

Уничтожение последнего ядерного заряда в Семипалатинске. Справка 31 мая 1995 г. на бывшем Семипалатинском полигоне был уничтожен последний ядерный заряд. Семипалатинский полигон был создан в 1948 г. специально для проведения испытаний первого советского ядерного устройства. Полигон располагался в северо-восточном Казахстане.

Работа по созданию водородной бомбы стала первой в мире интеллектуальной "битвой умов" поистине мирового масштаба. Создание водородной бомбы инициировало появление совершенно новых научных направлений — физики высокотемпературной плазмы, физики сверхвысоких плотностей энергии, физики аномальных давлений. Впервые в истории человечества было масштабно использовано математическое моделирование.

Работы по "изделию РДС‑6с" создали научно‑технический задел, который затем был использован в разработке несравнимо более совершенной водородной бомбы принципиально нового типа — водородной бомбы двухстадийной конструкции.

Водородная бомба сахаровской конструкции не только стала серьезным контраргументом в политическом противостоянии между США и СССР, но и послужила причиной бурного развития советской космонавтики тех лет. Именно после успешных ядерных испытаний ОКБ Королева получило важное правительственное задание разработать межконтинентальную баллистическую ракету для доставки к цели созданного заряда. В дальнейшем ракета, получившая название "семерка", вывела в космос первый искусственный спутник Земли , и именно на ней стартовал первый космонавт планеты Юрий Гагарин.

Материал подготовлен на основе информации открытых источников

Взрыв произошел в 1961 году. В радиусе нескольких сотен километров от полигона произошла спешная эвакуация людей, так как ученые рассчитали, что разрушены, будут все без исключения дома. Но такого эффекта никто не ожидал. Взрывная волна обошла планету трижды. Полигон остался «чистым листом», на нем исчезли все возвышенности. Здания в секунду превращались в песок. В радиусе 800 километров был слышен ужасный взрыв.

Если вы думаете, что атомная боеголовка является самым страшным оружием человечества, значит еще не знаете об водородной бомбе. Мы решили исправить эту оплошность и рассказать о том, что же это такое. Мы уже рассказывали о и .

Немного о терминологии и принципах работы в картинках

Разбираясь в том, как выглядит ядерная боеголовка и почему, необходимо рассмотреть принцип ее работы, основанный на реакции деления. Сначала в атомной бомбе происходит детонация. В оболочке располагаются изотопы урана и плутония. Они распадаются на частички, захватывая нейтроны. Далее разрушается один атом и инициируется деление остальных. Делается это при помощи цепного процесса. В конце начинается сама ядерная реакция. Части бомбы становятся одним целым. Заряд начинает превышать критическую массу. При помощи такой структуры освобождается энергия и происходит взрыв.

Кстати, ядерную бомбу еще называют атомной. А водородная получила название термоядерной. Поэтому вопрос, чем отличается атомная бомба от ядерной, по сути своей является некорректным. Это одно и то же. Отличие ядерной бомбы от термоядерной же заключается не только в названии.

Термоядерная реакция основана не на реакции деления, а сжатия тяжелых ядер. Ядерная боеголовка является детонатором или запалом для водородной бомбы. Другими словами, представьте себе огромную бочку с водой. В нее погружают атомную ракету. Вода представляет собой тяжелую жидкость. Тут протон со звуком замещается в ядре водорода на два элемента - дейтерий и тритий:

  • Дейтерий представляет собой один протон и нейтрон. Их масса вдвое тяжелее, чем водород;
  • Тритий состоит из одного протона и двух нейтронов. Они тяжелее водорода в три раза.

Испытания термоядерной бомбы

, окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. Разрушительная сила атомного оружия начала привлекать каждую из сторон. США первыми сделали и испытали ядерную бомбу. Но вскоре стало понятно, что она не может иметь больших размеров. Поэтому было решено попробовать сделать термоядерную боеголовку. Тут снова же преуспела Америка. Советы решили не проигрывать в гонке и испытали компактную, но мощную ракету, которую можно перевозить даже на обычном самолете Ту-16. Тогда все поняли, чем отличается ядерная бомба от водородной.

Для примера, первая американская термоядерная боеголовка была такой высокой, как трехэтажный дом. Ее нельзя было доставить небольшим транспортом. Но потом по разработкам СССР размеры были уменьшены. Если проанализировать , можно сделать вывод, что эти ужасные разрушения были не такими уж и большими. В тротиловом эквиваленте сила удара была всего несколько десятком килотонн. Поэтому здания были уничтожены только в двух городах, а в остальной части страны услышали звук ядерной бомбы. Если это была бы водородная ракета, всю Японию бы разрушили полностью всего одной боеголовкой.

Ядерная бомба со слишком сильным зарядом может взорваться непроизвольно. Начнется цепная реакция и произойдет взрыв. Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Ведь термоядерную боеголовку можно сделать какой угодно мощности, не боясь самопроизвольного подрыва.

Это заинтересовало Хрущева, который приказал сделать самую мощную водородную боеголовку в мире и таким образом приблизиться к выигрышу гонки. Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете.

Взрыв произошел в 1961 году. В радиусе нескольких сотен километров от полигона произошла спешная эвакуация людей, так как ученые рассчитали, что разрушены, будут все без исключения дома. Но такого эффекта никто не ожидал. Взрывная волна обошла планету трижды. Полигон остался «чистым листом», на нем исчезли все возвышенности. Здания в секунду превращались в песок. В радиусе 800 километров был слышен ужасный взрыв. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте.

Современные опасности использования водородной бомбы

Отличие атомной бомбы от термоядерной мы уже рассмотрели. А теперь представьте, какими бы были последствия взрыва, если бы ядерная бомба, сброшенная на Хиросиму и Нагасаки, была водородной с тематическим эквивалентом. От Японии не осталось бы и следа.

По заключениям испытаний, ученые сделали вывод о последствиях термоядерной бомбы. Некоторые думают, что водородная боеголовка является более чистой, то есть фактически не радиоактивной. Это связано с тем, что люди слышат название «водо» и недооценивают ее плачевное влияние на окружающую среду.

Как мы уже разобрались, водородная боеголовка основана на огромном количестве радиоактивных веществ. Ракету без уранового заряда сделать можно, но пока на практике этого не применялось. Сам процесс будет очень сложным и затратным. Поэтому реакция синтеза разбавляется ураном и получается огромная мощность взрыва. Радиоактивные осадки, которые неумолимо выпадут на цель сброса, увеличиваются на 1000%. Они нанесут вред здоровью даже тем, кто находится в десятках тысяч километров от эпицентра. При подрыве создается огромный огненный шар. Все, что попадает в радиус его действия, уничтожается. Выжженная земля может быть необитаемой десятилетиями. На обширной территории совершенно точно ничего не вырастет. И зная силу заряда, по определенной формуле можно рассчитать теоретически зараженную площадь.

Также стоит упомянуть о таком эффекте, как ядерная зима. Это понятие даже страшнее разрушенных городов и сотен тысяч человеческих жизней. Будет уничтожено не только место сброса, но и фактически весь мир. Сначала статус обитаемой потеряет только одна территория. Но в атмосферу произойдет выброс радиоактивного вещества, которое снизит яркость солнца. Это все смешается с пылью, дымом, сажей и создаст пелену. Она разнесется по всей планете. Урожаи на полях будут уничтожены на несколько десятилетий вперед. Такой эффект спровоцирует голод на Земле. Население сразу сократится в несколько раз. И выглядит ядерная зима более чем реально. Ведь в истории человечества, а конкретнее, в 1816 году, был известен подобный случай после мощнейшего извержения вулкана. На планете тогда был год без лета.

Скептики, которые не верят в подобное стечение обстоятельств, могут переубедить себя расчетами ученых:

  1. Когда на Земле произойдет похолодание на градус, этого не заметит никто. А вот на количестве осадков это отразится.
  2. Осенью произойдет похолодание на 4 градуса. Ввиду отсутствия дождей, возможны неурожаи. Ураганы будут начинаться даже там, где их никогда не было.
  3. Когда температура упадет еще на несколько градусов, на планете будет первый год без лета.
  4. Далее последует малый ледниковый период. Температура падает на 40 градусов. Даже за незначительное время это станет разрушительным для планеты. На Земле будут наблюдаться неурожаи и вымирание людей, проживающих в северных зонах.
  5. После наступит ледниковый период. Отражение солнечных лучей произойдет, не достигая поверхности земли. За счет этого, температура воздуха достигнет критической отметки. На планете перестанут расти культуры, деревья, замерзнет вода. Это приведет к вымиранию большей части населения.
  6. Те, кто выживут, не переживут последнего периода - необратимого похолодания. Этот вариант совсем печальный. Он станет настоящим концом человечества. Земля превратится в новую планету, непригодную для обитания человеческого существа.

Теперь о еще одной опасности. Стоило России и США выйти из стадии холодной войны, как появилась новая угроза. Если вы слышали о том, кто такой Ким Чен Ир, значит понимаете, что на достигнутом он не остановится. Этот любитель ракет, тиран и правитель Северной Кореи в одном флаконе, может с легкостью спровоцировать ядерный конфликт. О водородной бомбе он говорит постоянно и отмечает, что в его части страны уже есть боеголовки. К счастью, в живую их пока никто не видел. Россия, Америка, а также ближайшие соседи - Южная Корея и Япония, очень обеспокоены даже такими гипотетическими заявлениями. Поэтому надеемся, что наработки и технологии у Северной Кореи еще долго будут на недостаточном уровне, чтобы разрушить весь мир.

Для справки. На дне мирового океана лежат десятки бомб, которые были утеряны при транспортировке. А в Чернобыле, который не так далеко от нас, до сих пор хранятся огромные запасы урана.

Стоит задуматься, можно ли допустить подобные последствия ради испытаний водородной бомбы. И, если между странами, обладающими этим оружием, произойдет глобальный конфликт, на планете не останется ни самих государств, ни людей, ни вообще ничего, Земля превратится в чистый лист. И если рассматривать, чем отличается ядерная бомба от термоядерной, главным пунктом можно назвать количество разрушений, а также последующий эффект.

Теперь небольшой вывод. Мы разобрались, что ядерная и атомная бомба - это одно и тоже. А еще, она является основой для термоядерной боеголовки. Но использовать ни то, ни другое не рекомендуется даже для испытаний. Звук от взрыва и то, как выглядят последствия, не является самым страшным. Это грозит ядерной зимой, смертью сотен тысяч жителей в один момент и многочисленными последствиями для человечества. Хотя между такими зарядами, как атомная и ядерная бомба различия есть, действие обеих разрушительно для всего живого.