Звуковой барьер.

Републикую свой старый текст на тему “звукового барьера”:

Оказывается, одним из широко распространённых околоавиационных заблуждений является так называемый “звуковой барьер”, который “преодолевают” самолёты.

Даже больше: со сверхзвуковым полётом связан целый букет заблуждений. Как же обстоит дело в реальности? (Рассказ с фотографиями.)

Заблуждение первое: “хлопок”, якобы сопровождающий “преодоление звукового барьера” (ранее, ответ на этот вопрос опубликован на сайте “Элементы”).

С “хлопком” происходит недоразумение, вызванное неверным пониманием термина “звуковой барьер”. Этот “хлопок” правильно называть “звуковым ударом”. Самолет, движущийся со сверхзвуковой скоростью, создает в окружающем воздухе ударные волны, скачки воздушного давления. Упрощенно эти волны можно представить себе в виде сопровождающего полет самолета конуса, с вершиной, как бы привязанной к носовой части фюзеляжа, а образующими, направленными против движения самолета и распространяющимися довольно далеко, например до поверхности земли.

Когда граница этого воображаемого конуса, обозначающая фронт основной звуковой волны, достигает уха человека, то резкий скачок давления воспринимается на слух как хлопок. Звуковой удар, как привязанный, сопровождает весь полет самолета, при условии что самолет движется достаточно быстро, пусть и с постоянной скоростью. Хлопком же кажется проход основной волны звукового удара над фиксированной точкой поверхности земли, где, например, находится слушатель.

Другими словами, если бы сверхзвуковой самолет с постоянной, но сверхзвуковой, скоростью принялся летать над слушателем туда-сюда, то хлопок слышался бы каждый раз, спустя некоторое время после пролета самолета над слушателем на достаточно близком расстоянии.

А “звуковым барьером” в аэродинамике называют резкий скачок воздушного сопротивления, возникающий при достижении самолетом некоторой пограничной скорости, близкой к скорости звука. При достижении этой скорости характер обтекания самолета воздушным потоком меняется кардинальным образом, что в свое время сильно затрудняло достижение сверхзвуковых скоростей. Обычный, дозвуковой, самолет не способен устойчиво лететь быстрее звука, как бы его ни разгоняли, – он просто потеряет управление и развалится.

Для преодоления звукового барьера ученым пришлось разработать крыло со специальным аэродинамическим профилем и придумать другие ухищрения. Интересно, что пилот современного сверхзвукового самолета хорошо чувствует “преодоление” своим летательным аппаратом звукового барьера: при переходе на сверхзвуковое обтекание ощущается “аэродинамический удар” и характерные “скачки” в управляемости. Вот только с “хлопками” на земле эти процессы напрямую не связаны.

Заблуждение второе: “срыв тумана” .

Если о “хлопке” почти все знают, то с “туманом” ситуация несколько более “специальная”. Есть множество снимков, где летящий самолёт (обычно это истребитель) как бы “выскакивает” из туманного конуса. Смотрится очень эффектно:

Туман и относят к “звуковому барьеру”. Мол, это на фотографии как раз запечатлён момент “преодоления”, а туман и есть “тот самый барьер”.

На самом же деле, возникновение тумана связано лишь с резким перепадом давления, сопровождающим полёт самолёта. В результате аэродинамических эффектов за элементами конструкции самолёта образуются не только области повышенного давления, но и области разрежения воздуха (возникают колебания давления). Именно в этих областях разрежения (протекающего, фактически, без теплообмена с окружающей средой, так как процесс “очень быстрый”) и конденсируется водяной пар. Причиной этому служит резкое падение “локальной температуры”, приводящее к резкому смещению так называемой “точки росы”.

Так что, если влажность воздуха и температура подходят, то такой туман – вызванный интенсивной конденсацией атмосферной влаги – сопровождает весь полёт самолёта. И не обязательно на сверхзвуковой скорости. Например, на фотографии ниже, бомбардировщик B-2, а это дозвуковой самолёт, сопровождается характерной дымкой:

Конечно, так как фотография фиксирует один миг полёта, то, в случае со сверхзвуковыми самолётами, создаётся ощущение “выскакивающего” из тумана истребителя. Особенно выраженного эффекта можно достичь при полёте на небольших высотах над морем, так как в этом случае атмосфера обычно очень влажная.

Именно поэтому большинство “художественных” снимков сверхзвукового полёта сделано с борта того или иного корабля, а запечатлены на снимках самолёты палубной авиации.

(Использованы фотографии U.S. Navy News Service и U.S. Air Force Press Service)

(Отдельное спасибо Игорю Иванову за ценное замечание по физике образования тумана.)

Далее - мнения и дискуссии

(Сообщения ниже добавляются читателями сайта, через форму, расположенную в конце страницы.)

Звуковой барьер в аэродинамике - название ряда явлений, сопровождающих движение летательного аппарата (например, сверхзвукового самолёта, ракеты) на скоростях, близких к скорости звука или превышающих её.

При обтекании сверхзвуковым газовым потоком твёрдого тела на его передней кромке образуется ударная волна (иногда не одна, в зависимости от формы тела). На фото видны ударные волны, образованные на острие фюзеляжа модели, на передней и задней кромках крыла и на заднем окончании модели.

На фронте ударной волны (называемой иногда также скачком уплотнения), имеющем очень малую толщину (доли мм), почти скачкообразно происходят кардинальные изменения свойств потока - его скорость относительно тела снижается и становится дозвуковой, давление в потоке и температура газа скачком возрастают. Часть кинетической энергии потока превращается во внутреннюю энергию газа. Все эти изменения тем больше, чем выше скорость сверхзвукового потока. При гиперзвуковых скоростях (5 и выше Махов) температура газа достигает нескольких тысяч градусов, что создаёт серьёзные проблемы для аппаратов, движущихся с такими скоростями (например, шаттл «Колумбия» разрушился 1 февраля 2003 года из-за повреждения термозащитной оболочки, возникшего в ходе полёта).

Когда эта волна достигает наблюдателя, находящегося, например, на Земле, он слышит громкий звук, похожий на взрыв. Распространенным заблуждением является мнение, будто бы это следствие достижения самолётом скорости звука, или «преодоления звукового барьера». На самом деле, в этот момент мимо наблюдателя проходит ударная волна, которая постоянно сопровождает самолёт, движущийся со сверхзвуковой скоростью. Обычно сразу после «хлопка» наблюдатель может слышать гул двигателей самолёта, не слышный до прохождения ударной волны, поскольку самолёт двигается быстрее звуков, издаваемых им. Очень похожее наблюдение имеет место при дозвуковом полёте - самолёт летящий над наблюдателем на большой высоте (больше 1 км) не слышен, точнее слышим с опозданием: направление на источник звука не совпадает с направлением на видимый самолёт для наблюдателя с земли.

Уже в ходе Второй мировой войны скорость истребителей стала приближаться к скорости звука. При этом пилоты иногда стали наблюдать непонятные в то время и угрожающие явления, происходящие с их машинами при полётах с предельными скоростями. Сохранился эмоциональный отчёт лётчика ВВС США своему командиру генералу Арнольду:
«Сэр, наши самолёты уже сейчас очень строги. Если появятся машины с еще большими скоростями, мы не сможем летать на них. На прошлой неделе я на своем „Мустанге“ спикировал на Me-109. Мой самолёт затрясся, словно пневматический молоток, и перестал слушаться рулей. Я никак не мог вывести его из пике. Всего в трехстах метрах от земли я с трудом выровнял машину…».

После войны, когда многие авиаконструкторы и лётчики-испытатели предпринимали настойчивые попытки достичь психологически значимой отметки - скорости звука, эти непонятные явления становились нормой, и многие из таких попыток закончились трагически. Это и вызвало к жизни не лишённое мистики выражение «звуковой барьер» (фр. mur du son, нем. Schallmauer - звуковая стена). Пессимисты утверждали, что этот предел превзойти невозможно, хотя энтузиасты, рискуя жизнью, неоднократно пытались сделать это. Развитие научных представлений о сверхзвуковом движении газа позволило не только объяснить природу «звукового барьера», но и найти средства его преодоления.

Исторические факты

* Первым пилотом, достигшим сверхзвуковой скорости в управляемом полёте, стал американский лётчик-испытатель Чак Йегер на экспериментальном самолёте Bell X-1 (с прямым крылом и ракетным двигателем XLR-11) достигший в пологом пикировании скорости М=1.06. Это произошло 14 октября 1947 года.
* В СССР звуковой барьер впервые был преодолён 26 декабря 1948 года Соколовским, а потом и Фёдоровым, в полётах со снижением на опытном истребителе Ла-176.
* Первым гражданским самолётом, преодолевшим звуковой барьер, стал пассажирский лайнер Douglas DC-8. 21 августа 1961 г. он достиг скорости 1.012 М или 1262 км/ч в ходе управляемого пике с высоты 12496 м. Полёт предпринимался с целью собрать данные для проектирования новых передних кромок крыла.
* 15 октября 1997 года, спустя 50 лет после преодоления звукового барьера на самолёте, англичанин Энди Грин преодолел звуковой барьер на автомобиле Thrust SSC.
* 14 октября 2012 года Феликс Баумгартнер стал первым человеком, преодолевшим звуковой барьер без помощи какого-либо моторизированного транспортного средства, в свободном падении во время прыжка с высоты 39 километров. В свободном падении он достиг скорости 1342,8 километра в час.

Фото:
* http://commons.wikimedia.org/wiki/File:F-18-diamondback_blast.jpg
* http://commons.wikimedia.org/wiki/File:Sonic_boom_cloud.jpg
* http://commons.wikimedia.org/wiki/File:F-14D_Tomcat_breaking_sound_barrier.jpg
* http://commons.wikimedia.org/wiki/File:B-1B_Breaking_the_sound_barrier.jpg
* http://commons.wikimedia.org/wiki/File:Transonic_Vapor_F-16_01.jpg
* http://commons.wikimedia.org/wiki/File:FA-18F_Breaking_SoundBarrier.jpg
* http://commons.wikimedia.org/wiki/File:Supersonic_aircraft_breaking_sound_barrier.jpg
* http://commons.wikimedia.org/wiki/File:FA18_faster_than_sound.jpg
* http://commons.wikimedia.org/wiki/File:FA-18_Super_Hornet_VFA-102.jpg
* http://it.wikipedia.org/wiki/File:F-22_Supersonic_Flyby.jpg



Или превышающих её.

Энциклопедичный YouTube

    1 / 3

    Как САМОЛЕТ преодолевает ЗВУКОВОЙ БАРЬЕР

    Полет в "космос" на самолете U-2 / Вид из кабины пилота

    Звуковой барьер. Полеты на сверхзвуковой скорости.

    Субтитры

Ударная волна, вызванная летательным аппаратом

Уже в ходе Второй мировой войны скорость истребителей стала приближаться к скорости звука. При этом пилоты иногда стали наблюдать непонятные в то время и угрожающие явления, происходящие с их машинами при полётах с предельными скоростями. Сохранился эмоциональный отчёт лётчика ВВС США своему командиру генералу Арнольду:

Сэр, наши самолёты уже сейчас очень строги. Если появятся машины с ещё большими скоростями, мы не сможем летать на них. На прошлой неделе я на своём «Мустанге» спикировал на Me-109 . Мой самолёт затрясся, словно пневматический молоток, и перестал слушаться рулей. Я никак не мог вывести его из пике. Всего в трёхстах метрах от земли я с трудом выровнял машину…

После войны, когда многие авиаконструкторы и лётчики-испытатели предпринимали настойчивые попытки достичь психологически значимой отметки - скорости звука, эти непонятные явления становились нормой, и многие из таких попыток закончились трагически. Это и вызвало к жизни не лишённое мистики выражение «звуковой барьер» (фр. mur du son , нем. Schallmauer - звуковая стена). Пессимисты утверждали, что этот предел превзойти невозможно, хотя энтузиасты, рискуя жизнью, неоднократно пытались сделать это. Развитие научных представлений о сверхзвуковом движении газа позволило не только объяснить природу «звукового барьера», но и найти средства его преодоления.

При дозвуковом обтекании фюзеляжа, крыла и оперения самолёта на выпуклых участках их обводов возникают зоны местного ускорения потока . Когда скорость полёта летательного аппарата приближается к звуковой, местная скорость движения воздуха в зонах ускорения потока может несколько превысить скорость звука (рис. 1а). Миновав зону ускорения, поток замедляется, с неизбежным образованием ударной волны (таково свойство сверхзвуковых течений: переход от сверхзвуковой скорости к дозвуковой всегда происходит разрывно - с образованием ударной волны). Интенсивность этих ударных волн невелика - перепад давления на их фронтах мал, но они возникают сразу во множестве, в разных точках поверхности аппарата, и в совокупности они резко меняют характер его обтекания, с ухудшением его лётных характеристик: подъёмная сила крыла падает, воздушные рули и элероны теряют эффективность, аппарат становится неуправляемым, и всё это носит крайне нестабильный характер, возникает сильная вибрация . Это явление получило название волнового кризиса . Когда скорость движения аппарата становится сверхзвуковой ( > 1), течение вновь становится стабильным, хотя его характер изменяется принципиально (рис. 1б).

Рис. 1а. Аэрокрыло в близком к звуковому потоке. Рис. 1б. Аэрокрыло в сверхзвуковом потоке.

У крыльев с относительно толстым профилем в условиях волнового кризиса центр давления резко смещается назад, в результате чего нос самолёта «тяжелеет». Пилоты поршневых истребителей с таким крылом, пытавшиеся развить предельную скорость в пикировании с большой высоты на максимальной мощности, при приближении к «звуковому барьеру» становились жертвами волнового кризиса - попав в него, было невозможно выйти из пикирования не погасив скорость, что в свою очередь очень сложно сделать в пикировании. Наиболее известным случаем затягивания в пикирование из горизонтального полёта в истории отечественной авиации является катастрофа Бахчиванджи при испытании ракетного БИ-1 на максимальную скорость. У лучших истребителей Второй мировой войны с прямыми крыльями, таких как P-51 «Мустанг» или Me-109 , волновой кризис на большой высоте начинался со скоростей 700-750 км/ч. В то же время, реактивные Мессершмитт Me.262 и Me.163 того же периода имели стреловидное крыло, благодаря чему без проблем развивали скорость свыше 800 км/ч. Следует также отметить, что самолёт с традиционным винтом в горизонтальном полёте не может достичь скорости, близкой к скорости звука, поскольку лопасти воздушного винта попадают в зону волнового кризиса и теряют эффективность значительно раньше самолёта. Сверхзвуковые винты с саблевидными лопастями способны решить эту проблему, но на данный момент такие винты получаются слишком сложными в техническом плане и очень шумными, поэтому на практике не применяются.

Современные дозвуковые самолёты с крейсерской скоростью полёта, достаточно близкой к звуковой (свыше 800 км/ч), обычно выполняются со стреловидным крылом и оперением с тонкими профилями, что позволяет сместить скорость, при которой начинается волновой кризис, в сторону бо́льших значений. Сверхзвуковые самолёты, которым приходится проходить участок волнового кризиса при наборе сверхзвуковой скорости, имеют конструктивные отличия от дозвуковых, связанные как с особенностями сверхзвукового течения воздушной среды, так и с необходимостью выдерживать нагрузки, возникающие в условиях сверхзвукового полёта и волнового кризиса, в частности - треугольное в плане крыло с ромбовидным или треугольным профилем .

  • на дозвуковых скоростях полёта следует избегать скоростей, при которых начинается волновой кризис (эти скорости зависят от аэродинамических характеристик самолёта и от высоты полёта);
  • переход с дозвуковой скорости на сверхзвуковую реактивными самолётами должен выполняться насколько возможно быстрее, с использованием форсажа двигателя, чтобы избежать длительного полёта в зоне волнового кризиса.

Термин волновой кризис применяется и к водным судам, движущимся со скоростями, близкими к скорости волн на поверхности воды. Развитие волнового кризиса затрудняет рост скорости. Преодоление судном волнового кризиса означает выход на режим глиссирования (скольжения корпуса по поверхности воды).

В полётах со снижением на опытном истребителе

Прошел звуковой барьер:-)...

Прежде чем пуститься в разговоры по теме, внесем некоторую ясность в вопрос о точности понятий (то, что мне нравится:-)). Сейчас в достаточно широком употреблении находятся два термина: звуковой барьер и сверхзвуковой барьер . Звучат они похоже, но все же неодинаково. Однако, строгости особой разводить смысла нет: по сути это одно и то же. Определением звуковой барьер пользуются чаще всего люди более сведущие и более близкие к авиации. А вторым определением обычно все остальные.

Я думаю, что с точки зрения физики (и русского языка:-)) более правильно говорить все же звуковой барьер. Здесь простая логика. Ведь существует понятие скорость звука , а фиксированного понятия скорость сверхзвука, строго говоря, нет. Чуть забегая вперед скажу, что когда летательный аппарат летит на сверхзвуке, то он уже этот барьер прошел, а когда он его проходит (преодолевает), то он при этом проходит некое пороговое значение скорости, равное скорости звука (а не сверхзвука).

Вот как-то так:-). При этом первое понятие употребляется значительно реже, чем второе. Это, видимо, оттого, что слово сверхзвуковой звучит более экзотично и привлекательно. А в сверхзвуковом полете экзотика безусловно присутствует и, естественно, привлекает многих. Однако далеко не все люди, смакующие слова «сверхзвуковой барьер » понимают на самом деле, что же такое. Не раз уже в этом убеждался, заглядывая на форумы, читая статьи даже смотря телевизор.

Вопрос этот на самом деле с точки зрения физики достаточно сложен. Но мы в сложности, конечно, не полезем. Просто постараемся, как обычно, прояснить ситуацию используя принцип «объяснения аэродинамики на пальцах»:-).

Итак, к барьеру (звуковому:-))!… Самолет в полете, воздействуя на такую упругую среду, как воздух, становится мощным источником звуковых волн . Что такое звуковые волны в воздухе знают, я думаю, все:-).

Звуковые волны (камертон).

Это чередование областей сжатия и разрежения, распространяющихся в разные стороны от источника звука. Примерно как круги на воде, которые тоже как раз волнами и являются (только не звуковыми:-)). Именно такие области, воздействуя на барабанную перепонку уха, позволяют нам слышать все звуки этого мира, от человеческого шепота до грохота реактивных двигателей.

Пример звуковых волн.

Точками распространения звуковых волн могут быть различные узлы самолета. Например двигатель (его звук известен любому:-)), или детали корпуса (например, носовая часть), которые, уплотняя перед собой воздух при движении, создают определенного вида волны давления (сжатия), бегущие вперед.

Все эти звуковые волны распространяются в воздушной среде с уже известной нам скоростью звука. То есть если самолет дозвуковой, да еще и летит на малой скорости, то они от него как бы убегают. В итоге при приближении такого самолета мы слышим сначала его звук, а потом уже пролетает он сам.

Оговорюсь, правда, что это справедливо, если самолет летит не очень высоко. Ведь скорость звука – это не скорость света:-). Величина ее не столь велика и звуковым волнам нужно время, чтобы дойти до слушателя. Поэтому очередность появления звука для слушателя и самолета, если тот летит на большой высоте может измениться.

А раз звук не так уж и быстр, то с увеличением собственной скорости самолет начинает догонять волны им испускаемые. То есть, если бы он был неподвижен, то волны расходились бы от него в виде концентрических окружностей , как круги на воде от брошенного камня. А так как самолет движется, то в секторе этих кругов, соответствующем направлению полета, границы волн (их фронты ) начинают сближаться.

Дозвуковое движение тела.

Соответственно, промежуток между самолетом (его носовой частью) и фронтом самой первой (головной) волны (то есть это та область, где происходит постепенное, в известной степени, торможение набегающего потока при встрече с носовой частью самолета (крыла, хвостового оперения) и, как следствие, увеличение давления и температуры ) начинает сокращаться и тем быстрее, чем больше скорость полета.

Наступает такой момент, когда этот промежуток практически исчезает (или становится минимальным), превращаясь в особого рода область, которую называют скачком уплотнения . Это происходит тогда, когда скорость полета достигает скорости звука, то есть самолет движется с той же скоростью, что и волны им испускаемые. Число Маха при этом равно единице (М=1 ).

Звуковое движение тела (М=1).

Скачок уплотнения , представляет собой очень узкую область среды (порядка 10 -4 мм ), при прохождении через которую происходит уже не постепенное, а резкое (скачкообразное) изменение параметров этой среды - скорости, давления, температуры, плотности . В нашем случае скорость падает, давление, температура и плотность растут. Отсюда такое название - скачок уплотнения.

Несколько упрощенно обо всем этом я бы еще сказал так. Сверхзвуковой поток резко затормозить невозможно, но ему это делать приходится, ведь уже нет возможности постепенного торможения до скорости потока перед самым носом самолета, как на умеренных дозвуковых скоростях. Он как бы натыкается на участок дозвука перед носом самолета (или носком крыла) и сминается в узкий скачок, передавая ему большую энергию движения, которой обладает.

Можно, кстати, сказать и наоборот, что самолет передает часть своей энергии на образование скачков уплотнения, чтобы затормозить сверхзвуковой поток.

Сверхзвуковое движение тела.

Есть для скачка уплотнения и другое название. Перемещаясь вместе с самолетом в пространстве, он представляет собой по сути дела фронт резкого изменения вышеуказанных параметров среды (то есть воздушного потока). А это есть суть ударная волна .

Скачок уплотнения и ударная волна, вобщем-то, равноправные определения, но в аэродинамике более употребимо первое.

Ударная волна (или скачок уплотнения) могут быть практически перпендикулярными к направлению полета, в этом случае они принимают в пространстве приблизительно форму круга и называются прямыми . Это обычно бывает на режимах, близких к М=1 .

Режимы движения тела. ! - дозвук, 2 - М=1, сверхзвук, 4 - ударная волна (скачок уплотнения).

При числах М > 1 они уже располагаются под углом к направлению полета. То есть самолет уже перегоняет собственный звук. В этом случае они называются косыми и в пространстве принимают форму конуса, который, кстати, носит название конуса Маха , по имени ученого, занимавшегося исследованиями сверхзвуковых течений (упоминал о нем в одной из ).

Конус Маха.

Форма этого конуса (его так сказать «стройность») как раз и зависит от числа М и связана с ним соотношением: М= 1/sin α , где α – это угол между осью конуса и его образующей. А коническая поверхность касается фронтов всех звуковых волн, источником которых стал самолет, и которые он «обогнал», выйдя на сверхзвуковую скорость.

Кроме того скачки уплотнения могут быть также присоединенными , когда они примыкают к поверхности тела, двигающегося со сверхзвуковой скоростью или же отошедшими , если они с телом не соприкасаются.

Виды скачков уплотнения при сверхзвуковом обтекании тел различной формы.

Обычно скачки становятся присоединенными, если сверхзвуковой поток обтекает какие-либо остроконечные поверхности. Для самолета это, например, может быть заостренная носовая часть, ПВД, острый край воздухозаборника. При этом говорят «скачок садится », например, на нос.

А отошедший скачок может получиться при обтекании закругленных поверхностей, например, передней закругленной кромки толстого аэродинамического профиля крыла.

Различные узлы корпуса летательного аппарата создают в полете довольно сложную систему скачков уплотнения. Однако, наиболее интенсивные из них – два. Один головной на носовой части и второй – хвостовой на элементах хвостового оперения. На некотором расстоянии от летательного аппарата промежуточные скачки либо догоняют головной и сливаются с ним, либо их догоняет хвостовой.

Скачки уплотнения на модели самолета при продувке в аэродинамической трубе (М=2).

В итоге остаются два скачка, которые, вобщем-то, воспринимаются земным наблюдателем как один из-за небольших размеров самолета по сравнению с высотой полета и, соответственно,т небольшим промежутком времени между ними.

Интенсивность (другими словами энергетика ) ударной волны (скачка уплотнения) зависит от различных параметров (скорости движения летательного аппарата, его конструктивных особенностей, условий среды и др.) и определяется перепадом давления на ее фронте.

По мере удаления от вершины конуса Маха, то есть от самолета, как источника возмущений ударная волна ослабевает, постепенно переходит в обычную звуковую волну и в конечном итоге совсем исчезает.

А от того, какой степени интенсивностью будет обладать скачок уплотнения (или ударная волна), достигший земли зависит эффект, который он может там произвести. Ведь не секрет, что всем известный «Конкорд» летал на сверхзвуке только над Атлантикой, а военные сверхзвуковые самолеты выходят на сверхзвук на больших высотах или в районах, где отсутствуют населенные пункты (по крайней мере вроде как должны это делать:-)).

Эти ограничения очень даже оправданы. Для меня, например, само определение ударная волна ассоциируется со взрывом. И дела, которые достаточно интенсивный скачок уплотнения может наделать, вполне могут ему соответствовать. По крайней мере стекла из окон могут повылетать запросто. Свидетельств этому существует достаточно (особенно в истории советской авиации, когда она была достаточно многочисленной и полеты были интенсивными). Но ведь можно наделать дел и похуже. Стоит только полететь пониже:-)…

Однако в большинстве своем то, что остается от скачков уплотнения при достижении ими земли уже неопасно. Просто сторонний наблюдатель на земле может при этом услышать звук, схожий с грохотом или взрывом. Именно с этим фактом связаны одно расхожее и довольно стойкое заблуждение.

Люди, не слишком искушенные в авиационной науке, услышав такой звук, говорят, что это самолет преодолел звуковой барьер (сверхзвуковой барьер ). На самом деле это не так. Это утверждение не имеет ничего общего с действительностью по крайней мере по двум причинам.

Ударная волна (скачок уплотнения).

Во-первых, если человек, находящийся на земле, слышит высоко в небе гулкий грохот, то это означает, всего лишь, (повторяюсь:-)) что его ушей достиг фронт ударной волны (или скачок уплотнения ) от летящего где-то самолета. Этот самолет уже летит на сверхзвуковой скорости, а не только что перешел на нее.

И если этот же человек смог бы вдруг оказаться в нескольких километрах впереди по следованию самолета, то он опять бы услышал тот же звук от того же самолета, потому что попал бы под действие той же ударной волны, движущейся вместе с самолетом.

Она перемещается со сверхзвуковой скоростью, и по сему приближается бесшумно. А уже после того, как она окажет свое не всегда приятное воздействие на барабанные перепонки (хорошо, когда только на них:-)) и благополучно пройдет дальше, становится слышен гул работающих двигателей.

Примерная схема полета самолета при различных значениях числа М на примере истребителя Saab 35 "Draken". Язык, к сожалению, немецкий, но схема вобщем понятна.

Более того сам переход на сверхзвук не сопровождается никакими единовременными «бумами» , хлопками , взрывами и т.п. На современном сверхзвуковом самолете летчик о таком переходе чаще всего узнает только по показанию приборов. При этом происходит, однако, некий процесс, но он при соблюдении определенных правил пилотирования ему практически не заметен.

Но и это еще не все:-). Скажу больше. в виде именно какого-то ощутимого, тяжелого, труднопересекаемого препятствия, в который самолет упирается и который нужно «прокалывать» (слышал я и такие суждения:-)) не существует.

Строго говоря, вообще никакого барьера нет. Когда-то на заре освоения больших скоростей в авиации это понятие сформировалось скорее как психологическое убеждение о трудности перехода на сверхзвуковую скорость и полете на ней. Появились даже высказывания о том, что это вообще невозможно, тем более, что предпосылки к такого рода убеждениям и высказываниям были вполне конкретные.

Однако, обо всем по порядку…

В аэродинамике существует другой термин, который достаточно точно описывает процесс взаимодействия с воздушным потоком тела, движущегося в этом потоке и стремящегося перейти на сверхзвук. Это волновой кризис . Именно он как раз и делает некоторые нехорошие вещи, которые традиционно ассоциируют с понятием звуковой барьер .

Итак кое-что о кризисе:-). Любой летательный аппарат состоит из частей, обтекание которых воздушным потоком в полете может быть не одинаково. Возьмем, к примеру, крыло, точнее обыкновенный классический дозвуковой профиль .

Из основ знаний о том, как образуется подъемная сила нам хорошо известно, что скорость потока в прилежащем слое верхней криволинейной поверхности профиля разная. Там где профиль более выпуклый она больше общей скорости потока, далее, когда профиль уплощается она снижается.

Когда крыло движется в потоке на скоростях, близких к скорости звука, может наступить момент, когда в такой вот, к примеру, выпуклой области скорость слоя воздуха, которая уже итак больше общей скорости потока, становится звуковой и даже сверхзвуковой.

Местный скачок уплотнения, возникающий на трансзвуке при волновом кризисе.

Дальше по профилю эта скорость снижается и в какой-то момент опять становится дозвуковой. Но, как мы уже говорили выше, быстро затормозиться сверзвуковое течение не может, поэтому неизбежно возникновение скачка уплотнения .

Такие скачки появляются на разных участках обтекаемых поверхностей, и первоначально они достаточно слабы, но количество их может быть велико, и с ростом общей скорости потока увеличиваются зоны сверхзвука, скачки «крепнут» и сдвигаются к задней кромке профиля. Позже такие же скачки уплотнения появляются на нижней поверхности профиля.

Полное сверхзвуковое обтекание профиля крыла.

Чем все это чревато? А вот чем. Первое – это значительный рост аэродинамического сопротивления в диапазоне трансзвуковых скоростей (около М=1, более или менее). Это сопротивление растет за счет резкого увеличения одной из его составляющих – волнового сопротивления . Того самого, которое мы ранее при рассмотрении полетов на дозвуковых скоростях во внимание не принимали.

Для образования многочисленных скачков уплотнения (или ударных волн) при торможении сверхзвукового потока, как я уже говорил выше, тратится энергия, и берется она из кинетической энергии движения летательного аппарата. То есть самолет элементарно тормозится (и очень ощутимо!). Это и есть волновое сопротивление.

Более того, скачки уплотнения из-за резкого торможения потока в них, способствуют отрыву пограничного слоя после себя и превращения его из ламинарного в турбулентный . Это еще более увеличивает аэродинамическое сопротивление.

Отекание профиля при различных числах М. Скачки уплотнения, местные зоны сверхзвука, турбулентные зоны.

Второе . Из-за появления местных сверхзвуковых зон на профиле крыла и дальнейшем их сдвиге к хвостовой части профиля с увеличением скорости потока и, тем самым, изменения картины распределения давления на профиле, точка приложения аэродинамических сил (центр давления) тоже смещается к задней кромке. В результате появляется пикирующий момент относительно центра масс самолета, заставляющий его опустить нос.

Во что все это выливается… Из-за довольно резкого роста аэродинамического сопротивления самолету требуется ощутимый запас мощности двигателя для преодоления зоны трансзвука и выхода на, так сказать, настоящий сверхзвук.

Резкое возрастание аэродинамического сопротивления на трансзвуке (волновой кризис) за счет роста волнового сопротивления. Сd - коэффициент сопротивления.

Далее. Из-за возникновения пикирующего момента появляются сложности в управлении по тангажу. Кроме того из-за неупорядоченности и неравномерности процессов, связанных с возникновением местных сверхзвуковых зон со скачками уплотнения тоже затрудняется управление . Например по крену, из-за разных процессов на левой и правой плоскостях.

Да еще плюс возникновение вибраций , часто довольно сильных из-за местной турбулизации.

Вобщем, полный набор удовольствий, который носит название волновой кризис . Но, правда, все они имеют место (имели,конкретное:-)) при использовании типичных дозвуковых самолетов (с толстым профилем прямого крыла) с целью достижения сверхзвуковых скоростей.

Первоначально, когда еще не было достаточно знаний, и не были всесторонне исследованы процессы выхода на сверхзвук, этот самый набор считался чуть ли не фатально непреодолимым и получил название звуковой барьер (или сверхзвуковой барьер , если хотите:-)).

При попытках преодоления скорости звука на обычных поршневых самолетах было немало трагических случаев. Сильная вибрация порой приводила к разрушениям конструкции. Самолетам не хватало мощности для требуемого разгона. В горизонтальном полете он был невозможен из-за эффекта , имеющего ту же природу, что и волновой кризис .

Поэтому для разгона применяли пикирование. Но оно вполне могло стать фатальным. Появляющийся при волновом кризисе пикирующий момент делал пике затяжным , и из него, иной раз, не было выхода. Ведь для восстановления управления и ликвидации волнового кризиса необходимо было погасить скорость. Но сделать это в пикировании крайне трудно (если вообще возможно).

Затягивание в пикирование из горизонтального полета считается одной из главных причин катастрофы в СССР 27 мая 1943 года известного экспериментального истребителя БИ-1 с жидкостным ракетным двигателем. Проводились испытания на максимальную скорость полета, и по оценкам конструкторов достигнутая скорость была больше 800 км/ч . После чего произошло затягивание в пике, из которого самолет не вышел.

Экспериментальный истребитель БИ-1.

В наше время волновой кризис уже достаточно хорошо изучен и преодоление звукового барьера (если это требуется:-)) особого труда не составляет. На самолетах, которые предназначены для полетов с достаточно большими скоростями применены определенные конструктивные решения и ограничения, облегчающие их летную эксплуатацию.

Как известно, волновой кризис начинается при числах М, близких к единице. Поэтому практически все реактивные дозвуковые лайнеры (пассажирские, в частности) имеют полетное ограничение по числу М . Обычно оно находится в районе 0,8-0,9М . Летчику предписывается следить за этим. Кроме того на многих самолетах при достижении уровня ограничения , после чего скорость полета должна быть снижена.

Практически все самолеты, летающие на скоростях как минимум 800 км/ч и выше имеют стреловидное крыло (по крайней мере по передней кромке:-)). Оно позволяет отодвинуть начало наступления волнового кризиса до скоростей, соответствующих М=0,85-0,95 .

Стреловидное крыло. Принципиальное действие.

Причину такого эффекта можно объяснить достаточно просто. На прямое крыло воздушный поток со скоростью V набегает практически под прямым углом, а на стреловидное (угол стреловидности χ ) под некоторым углом скольжения β . Скорость V можно в векторном отношении разложить на два потока: Vτ и Vn .

Поток Vτ не влияет на распределение давления на крыле, зато это делает поток Vn, как раз и определяющий несущие свойства крыла. А он заведомо меньше по величине общего потока V. Поэтому на стреловидном крыле наступление волнового кризиса и рост волнового сопротивления происходит ощутимо позже, чем на прямом крыле при той же скорости набегающего потока.

Экспериментальный истребитель Е-2А (предшественник МИГ-21). Типичное стреловидное крыло.

Одной из модификаций стреловидного крыла стало крыло со сверхкритическим профилем (упоминал о нем ). Оно тоже позволяет сдвинуть начало волнового кризиса на большие скорости, кроме того позволяет повысить экономичность, что немаловажно для пассажирских лайнеров.

SuperJet 100. Стреловидное крыло со сверхкритическим профилем.

Если же самолет предназначен для перехода звукового барьера (проходя и волновой кризис тоже:-)) и полета на сверхзвуке, то он обычно всегда отличается определенными конструктивными особенностями. В частности, обычно имеет тонкий профиль крыла и оперения с острыми кромками (в том числе ромбовидный или треугольный) и определенную форму крыла в плане (например, треугольную или трапециевидную с наплывом и т.д.).

Сверхзвуковой МИГ-21. Послелователь Е-2А. Типичное треугольное в плане крыло.

МИГ-25. Пример типичного самолета, созданного для полета на сверхзвуке. Тонкие профили крыла и оперения, острые кромки. Трапециевидное крыло. профиль

Прохождение пресловутого звукового барьера , то есть переход на сверхзвуковую скорость такие самолеты осуществляют на форсажном режиме работы двигателя в связи с ростом аэродинамического сопротивления, ну и, конечно, для того, чтобы быстрее проскочить зону волнового кризиса . И сам момент этого перехода чаще всего никак не ощущается (повторяюсь:-)) ни летчиком (у него разве что может снизиться уровень звукового давления в кабине), ни сторонним наблюдателем, если бы, конечно, он мог за этим наблюдать:-).

Однако, здесь стоит сказать еще об одном заблуждении, со сторонними наблюдателями связанным. Наверняка многие видели такого рода фотографии, подписи под которыми гласят, что это есть момент преодоления самолетом звукового барьера , так сказать, визуально.

Эффект Прандтля-Глоэрта. Не связан с прохождением звукового барьера.

Во-первых , мы уже знаем, что звукового барьера, как такового-то и нет, и сам переход на сверхзвук ничем таким сверхординарным (в том числе и хлопком или взрывом) не сопровождается.

Во-вторых . То, что мы видели на фото – это так называемый эффект Прандтля-Глоэрта . Я о нем уже писал . Он никак напрямую не связан с переходом на сверхзвук. Просто на больших скоростях (дозвуковых, кстати:-)) самолет, двигая перед собой определенную массу воздуха создает сзади некоторую область разрежения . Сразу после пролета эта область начинает заполняться воздухом из близлежащего пространства с естественным увеличением объема и резким падением температуры.

Если влажность воздуха достаточна и температура падает ниже точки росы окружающего воздуха, то происходит конденсация влаги из водяных паров в виде тумана, который мы и видим. Как только условия восстанавливаются до исходных, этот туман сразу исчезает. Весь этот процесс достаточно скоротечен.

Такому процессу на больших околозвуковых скоростях могут способствовать местные скачки уплотнени я, иногда помогая формировать вокруг самолета нечто похожее на пологий конус.

Большие скорости благоприятствуют этому явлению, однако, если влажность воздуха окажется достаточной, то оно может возникнуть (и возникает) на довольно малых скоростях . Например, над поверхностью водоемов. Большинство, кстати, красивых фото такого характера сделаны с борта авианосца, то есть в достаточно влажном воздухе.

Вот так и получается. Кадры, конечно, классные, зрелище эффектное:-), но это совсем не то, чем его чаще всего называют. здесь совсем не при чем (и сверхзвуковой барьер тоже:-)). И это хорошо, я думаю, иначе наблюдателям, которые делают такого рода фото и видео могло бы не поздоровиться. Ударная волна , знаете ли:-)…

В заключении один ролик (ранее я его уже использовал), авторы которого показывают действие ударной волны от самолета, летящего на малой высоте со сверхзвуковой скоростью. Определенное преувеличение там, конечно, присутствует:-), но общий принцип понятен. И опять же эффектно:-)…

А на сегодня все. Спасибо, что дочитали статью до конца:-). До новых встреч…

Фотографии кликабельны.

Впрочем, обо всем по порядку. Впервые звуковой барьер преодолел американский летчик-испытатель Чак Йегер на экспериментальном самолете Bell X-1 (с прямым крылом и ракетным двигателем XLR-11). Это случилось семьдесят с лишним лет назад - в 1947 году. Ему удалось разогнаться быстрее скорости звука, направив самолет в пологое пикирование. Спустя год это же удалось и советским летчикам-испытателям Соколовскому и Федорову на экспериментальном, существовавшем в единственном экземпляре истребителе Ла-176.

Это были сложные для авиации времена. Летчики буквально по крупицам собирали опыт, каждый раз рискуя жизнями, чтобы узнать, возможны ли полеты на скоростях выше одного Маха. Флаттер крыла, волновое сопротивление унесли не одну жизнь, до того как конструкторы научились бороться с этими явлениями.

Все дело в том, что при преодолении скорости звука резко возрастает аэродинамическое сопротивление и растет кинетический нагрев конструкции от трения набегающего воздушного потока. Кроме того, в этот момент фиксируется смещение аэродинамического фокуса, что ведет к утрате устойчивости и управляемости самолета.

Спустя 12 лет серийные сверхзвуковые истребители МиГ-19 уже охотились за американскими самолетами-шпионами, а еще ни один гражданский самолет не попытался превысить скорость звука. Это произошло лишь 21 августа 1961 года: пассажирский самолет Douglas DC-8, упав в пике, разогнался до 1,1 Маха. Полет был экспериментальным, с целью собрать больше информации об поведении машины на таких скоростях.

Спустя еще некоторое время в воздух поднялись советский Ту-144 и британо-французский «Конкорд». Практически одновременно: наша машина чуть раньше, 31 декабря 1968 года, а европейская - в марте 1969-го. А вот по объему перевезенных пассажиров за все время эксплуатации моделей капиталисты нас сильно перещеголяли. Если на счету Ту-144 всего чуть больше 3000 пассажиров, то «Конкорды», работая до 2003 года, перевезли более 2,5 миллиона человек. Впрочем, и это не помогло проекту. В конечном счете он был закрыт, очень некстати оказалась и громкая катастрофа под Парижем, в которой никакой вины сверхзвукового самолета не было.

Три ответа «нет»

В качестве железной причины бесперспективности коммерческих сверхзвуковых самолетов обычно приводятся три довода - слишком дорого, слишком сложно, слишком громко. И действительно, каждый, кто наблюдал полет реактивного сверхзвукового военного самолета, никогда не забудет ощущение удара по ушам и того дикого грохота, с которым мимо тебя пролетает самолет на сверхзвуке.

К слову, звуковой удар это не одномоментное явление, он сопровождает самолет по всему пути следования, все время, когда скорость летательного аппарата выше скорости звука. Сложно спорить и с тем, что топлива реактивный самолет потребляет столько, что, кажется, проще его сразу заправлять банкнотами.

Говоря о современных проектах сверхзвукового пассажирского самолета в первую очередь нужно ответить на каждый из этих вопросов. Только в этом случае можно надеяться на то, что все существующие проекты окажутся не мертворожденными.

Звук

Конструкторы решили начать со звука. За последние годы появилось много научных работ, доказывающих, что определенная форма фюзеляжа и крыльев может снизить количество ударных волн, создаваемых самолетом, и уменьшить их интенсивность. Подобное решение потребовало полной переработки корпусов, многократной компьютерной проработки моделей и нескольких тысяч часов продувки будущих самолетов в аэротрубе.

Основные проекты, работающие над аэродинамикой самолета будущего, это QueSST от специалистов из NASA и японская разработка D-SEND-2, создаваемая под эгидой местного Агентства аэрокосмических исследований JAXA. Оба эти проекта ведутся уже несколько лет, планомерно подбираясь к «идеальной» для сверхзвуковых полетов аэродинамике.

Предполагается, что новые сверхзвуковые пассажирские самолеты будут создавать не резкий и жесткий звуковой удар, а гораздо более приятные уху мягкие звуковые пульсации. То есть будет, конечно, все равно громко, но не «громко и больно». Еще одним способом решения проблемы звукового барьера стало уменьшение размеров самолета. Почти все разработки, ведущиеся в настоящее время, - это небольшие летательные аппараты, способные на перевозку 10-40 пассажиров максимум.

Однако есть и в этом вопросе компании-выскочки. В сентябре прошлого года бостонская авиакомпания Spike Aerospace объявила о том, что у них уже практически готова модель сверхзвукового пассажирского самолета S-512 Quiet Supersonic Jet. Предполагается, что летные испытания начнутся уже в 2018 году, а первый самолет с пассажирами на борту стартует не позже конца 2023 года.

Еще более дерзким оказалось заявление создателей, что со звуком проблема практически решена и первые испытания покажут это. Думается, что специалисты из NASA и JAXA, потратившие на решение этой проблемы много лет, будут следить за испытаниями более чем внимательно.

Также существует еще одно интересное решение проблемы звука - это преодоление звукового барьера самолетом при практически вертикальном взлете. В таком случае действие ударных волн окажется слабее, а после набора высоты в 20-30 тысяч метров об этой проблеме можно будет забыть - слишком далеко от Земли.

Двигатели

Работа над двигателями для будущих сверхзвуковых самолетов тоже не прекращается. Даже дозвуковые двигатели за последние годы смогли прилично прибавить в мощности и экономичности за счет внедрения специальных редукторов, керамических материалов и введения дополнительного воздушного контура.

Со сверхзвуковыми самолетами все немного сложнее. Дело в том, что при современном уровне технологического развития турбореактивные двигатели способны достигать максимальной скорости в 2,2 Маха (около 2500 километров в час), для достижения же большей скорости требуется использовать прямоточные двигатели, способные разогнать летательный аппарат до гиперзвуковых скоростей (более 5 чисел Маха). Впрочем, это - пока что - скорее фантастика.

По словам разработчиков, им удается уже в настоящее время достигнуть себестоимости полета на 30 процентов меньшей, чем у «Конкорда», даже при небольшом количестве пассажиров. Такие данные обнародовал стартап Boom Technologies в 2016 году. По их мнению, билет по маршруту Лондон-Нью-Йорк будет стоить около $ 5000, что сопоставимо с ценой за билет при полете первым классом на обычном, дозвуковом самолете.