Виды мутаций причины примеры. Генные мутации: примеры, причины, виды, механизмы

Мутация — устойчивое (то есть передающееся по наследству) преобразование , происходящее под влиянием внешней или внутренней среды. Процесс возникновения мутаций получил название мутагенеза .

К мутациям способны абсолютно все формы жизни на Земле — мутируют как , так и высокоразвитые организмы. Изменение организма идет на уровне , поэтому не всегда может быть заметна фенотипически.

Мутагены — факторы, вызывающие мутации организмов:

  • физические мутагены: температура, радиация, различные излучения;
  • химические: различные токсичные вещества
  • биологические: вирусы

Мутагены могут иметь как направленное , так и спонтанное действие , они универсальны (вызывают мутации у всех живых организмов) и у них отсутствует нижний порог — они способны вызывать изменеия даже в малых дозах

Соматический тип мутаций — изменения происходят в соматических (т.е. неполовых) клетках — клетках тела.

Яркий пример — появление на ветках черной смородины красных ягод или гетерохромия — явление разного цвета глаз у человека.

Они не передаются по наследству

Генеративный тип мутаций — это изменения, происходящие в генеративных, т.е., половых клетках (гаметах). Соответственно, этот тип мутаций передается по наследству.

Доминантные мутации появляются уже в первом поколении, а рецессивные — только во втором и последующих поколениях.

Давайте перечислим основные, наиболее часто встречающиеся в вопросах ЕГЭ,

Генные мутации — мутации, приводящие к изменению одного


Это может быть выпадение одного или нескольких нуклеотидов (в части С ЕГЭ по биологии такие задания встречаются довольно часто). Кажется, изменение несущественное, но оно влечет за собой серьезные последствия. Т.к. белок строится при «считывании» молекулы РНК, а она, в свою очередь, строится на «базе» ДНК, то такое изменение ведет к изменению белкового состава организма.

Наиболее частой причиной генных мутаций является сбой при удвоении (репликации) ДНК.

Яркие примеры проявления этого типа мутации — серповидно-клеточная анемия (смертельное заболевание), альбинизм и дальтонизм.

Наиболее вероятная мутация генов происходит при скрещивании тесно связанных организмов, которые унаследовали мутантный ген у общего предка. По этой причине вероятность возникновения мутации повышается у детей, чьи родители являются родственниками.

Геномные мутации изменение количества хромосом кариотипа организма.

  • анеуплойдия — изменение на одну или несколько хромосом (как добавление, так и уменьшение) — например, 47 хромосом вместо 46 — синдром Дауна;
  • полиплойдия — увеличение хромосомного набора в несколько раз (триплойдия, тетраплойдия и т.д.)- у животных не бывает, у растений — довольно часто. Почему у растений такое изменение встречается чаще?
    1) потому что у растений возможно самоопыление — одна клетка организма с таким нарушением оплодотворяется клеткой с точно таким же нарушением;
    2) в растительных клетках нет

Полиплоидия приводит к изменению признаков организма и поэтому является важным источником изменчивости в эволюции и селекции, особенно у растений

Причина такого типа мутации — неправильное расхождение хромосом в процессе .

Хромосомные мутации – изменение строения хромосом


Генные мутации - изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена а на т. Причины - нарушения при удвоении (репликации) ДНК

Генные мутации представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутациям генов относятся любые изменения молекулярной структуры ДНК, независимо от их локализации и влияния на жизнеспособность. Некоторые мутации не оказывают никакого влияния на структуру и функцию соответствующего белка. Другая (большая) часть генных мутаций приводит к синтезу дефектного белка, не способного выполнять свойственную ему функцию. Именно генные мутации обусловливают развитие большинства наследственных форм патологии.

Наиболее частыми моногенными заболеваниями являются у человека являются: муковисцидоз, гемохроматоз, адрено-генитальный синдром, фенилкетонурия, нейрофиброматоз, миопатии Дюшенна-Беккера и ряд других заболеваний. Клинически они проявляются признаками нарушений обмена веществ (метаболизма) в организме. Мутация может заключаться:

1) в замене основания в кодоне, это так называемая миссенсмутация (от англ, mis - ложный, неправильный + лат. sensus - смысл) - замена нуклеотида в кодирующей части гена, приводящая к замене аминокислоты в полипептиде;

2) в таком изменении кодонов, которое приведет к остановке считывания информации, это так называемая нонсенсмутация (от лат. non - нет + sensus - смысл) — замена нуклеотида в кодирующей части гена, приводит к образованию кодона-терминатора (стоп-кодона) и прекращению трансляции;

3) нарушении считывания информации, сдвиге рамки считывания, называемом фреймшифтом (от англ. frame - рамка + shift: - сдвиг, перемещение), когда молекулярные изменения ДНК приводят к изменению триплетов в процессе трансляции полипептидной цепи.

Известны и другие типы генных мутаций. По типу молекулярных изменений выделяют:

делении (от лат. deletio - уничтожение), когда происходит утрата сегмента ДНК размером от одного нуклеотида до гена;

дупликации (от лат. duplicatio - удвоение), т.е. удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов;

инверсии (от лат. inversio - перевертывание), т.е. поворот на 180° сегмента ДНК размерами от двух нукпеотидов до фрагмента, включающего несколько генов;

инсерции (от лат. insertio - прикрепление), т.е. вставка фрагментов ДНК размером от одного нуклеотида до целого гена.

Молекулярные изменения, затрагивающие от одного до нескольких нуклеотидов, рассматривают как точечную мутацию.

Принципиальным и отличительным для генной мутации является то, что она 1) приводит к изменению генетической информации, 2) может передаваться от поколения к поколению.

Определенная часть генных мутаций может быть отнесена к нейтральным мутациям, поскольку они не приводят к каким-либо изменениям фенотипа. Например, за счет вырожденности генетического кода одну и ту же аминокислоту могут кодировать два триплета, различающихся только по одному основанию. С другой стороны, один и тот же ген может изменяться (мутировать) в несколько различающихся состояний.

Например, ген, контролирующий группу крови системы АВ0. имеет три аллеля: 0, А и В, сочетания которых определяют 4 группы крови. Группа крови системы АВ0 является классическим примером генетической изменчивости нормальных признаков человека.

Именно генные мутации обусловливают развитие большинства Ласледственных форм патологии. Болезни, обусловленные подобными мутациями, называют генными, или моногенными, болезнями, Т. е. заболеваниями, развитие которых детерминируется мутацией одного гена.

Геномные и хромосомные мутации

Геномные и хромосомные мутации являются причинами возникновения хромосомных болезней. К геномным мутациям относятся анеуплоидии и изменение плоидности структурно неизмененных хромосом. Выявляются цитогенетическими методами.

Анеуплоидия — изменение (уменьшение — моносомия, увеличение — трисомия) числа хромосом в диплоидном наборе, некратное гаплоидному (2n + 1, 2n - 1 и т.д.).

Полиплоидия — увеличение числа наборов хромосом, кратное гаплоидному (3n, 4n, 5n и т.д.).

У человека полиплоидия, а также большинство анеуплоидии являются летальными мутациями.

К наиболее частым геномным мутациям относятся:

трисомия — наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре, при синдроме Дауна, по 18-й паре при синдроме Эдвардса, по 13-й паре при синдроме Патау; по половым хромосомам: XXX, ХХY, ХYY);

моносомия - наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная моносомия у человека, совместимая с жизнью, - моносомия по Х-хромосоме - приводит (к синдрому Шерешевского-Тернера (45, Х0).

Причиной, приводящей к анеуплоидии, является нерасхождение хромосом во время клеточного деления при образовании половых клеток или утрата хромосом в результате анафазного отставания, когда во время движения к полюсу одна из гомологичных хромосом может отстать от всех других негомологичных хромосом. Термин «нерасхождение» означает отсутствие разделения хромосом или хроматид в мейозе или митозе. Утрата хромосом может приводить к мозаицизму, при котором имеется одна эуплоидная (нормальная) клеточная линия, а другая — моносомная .

Нерасхождение хромосом наиболее часто наблюдается во время мейоза. Хромосомы, которые в норме должны делиться во время мейоза, остаются соединенными вместе и в анафазе отходят к одному полюсу клетки. Таким образом, возникают две гаметы, одна из которых имеет добавочную хромосому, а другая не имеет этой хромосомы. При оплодотворении гаметы с нормальным набором хромосом гаметой с лишней хромосомой возникает трисомия (т. е. в клетке присутствует три гомологичные хромосомы), при оплодотворении гаметой без одной хромосомы возникает зигота с моносомией. Если моносомая зигота образуется по какой-либо аутосомной (не половой) хромосоме, то развитие организма прекращается на самых ранних стадиях развития.

Хромосомные мутации - это структурные изменения отдельных хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению нормального диплоидного набора. Несмотря на то что хромосомные аберрации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала. Различают две большие группы хромосомных мутаций: внутрихромосомные и межхромосомные.

Внутрихромосомные мутации — это аберрации в пределах одной хромосомы. К ним относятся:

делеции (от лат. deletio — уничтожение) - утрата одного из участков хромосомы, внутреннего или терминального. Это может обусловить нарушение эмбриогенеза и формирование множественных аномалий развития (например, деления в регионе короткого плеча 5-й хромосомы, обозначаемая как 5р-, приводит к недоразвитию гортани, порокам сердца, отставанию умственного развития). Этот симптомокомплекс известен как синдром «кошачьего крика», поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье;

инверсии (от лат. inversio — перевертывание). В результате двух точек разрывов хромосомы образовавшийся фрагмент встраивается на прежнее место после поворота на 180°. В результате нарушается только порядок расположения генов;

дупликации (от лат duplicatio — удвоение) — удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по одному из коротких плеч 9-й хромосомы обуслошшвает множественные пороки, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Схемы наиболее частых хромосомных аберраций:
Делении: 1 - концевая; 2 - интерстициальная. Инверсии: 1 - перицентрическая (с захватом центромеры); 2 - парацентрическая (в пределах одного плеча хромосомы)

Межхромосомные мутации, или мутации перестройки — обмен фрагментами между негомологичными хромосомами. Такие мутации получили название транслокации (от лат. tгаns — за, через + locus — место). Это:

Реципрокная транслокация, когда две хромосомы обмениваются своими фрагментами;

Нереципрокная транслокация, когда фрагмент одной хромосомы транспортируется на другую;

- «центрическое» слияние (робертсоновская транслокация) - соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч.

При поперечном разрыве хроматид через центромеры «сестринские» хроматиды становятся «зеркальными» плечами двух разных хромосом, содержащих одинаковые наборы генов. Такие хромосомы называют изохромосомами. Как внутрихромосомные (делеции, инверсии и дупликации), так и межхромосомные (транслокации) аберрации и изохромосомы связаны с физическими изменениями структуры хромосом, в том числе с механическими разломами.

Наследственная патология как результат наследственной изменчивости

Наличие общих видовых признаков позволяет объединять всех людей на земле в единый вид Homo sapiens. Тем не менее мы без труда, одним взглядом выделяем лицо знакомого нам человека в толпе незнакомых людей. Чрезвычайное разнообразие людей — как внутри групповое (например, разнообразие в пределах этноса), так и межгрупповое — обусловлено генетическим их отличием. В настоящее время считается, что вся внутривидовая изменчивость обусловлена различными генотипами, возникающими и поддерживаемыми естественным отбором.

Известно, что гаплоидный геном человека содержит 3,3х10 9 пар нуклеотидных остатков, что теоретически позволяет иметь до 6-10 млн генов. Вместе с тем данные современных исследований свидетельствуют, что в геноме человека содержится примерно 30-40 тыс. генов. Около трети всех генов имеют более чем один аллель, т. е. являются полиморфными.

Концепция наследственного полиморфизма была сформулирована Э. Фордом в 1940 г. для объяснения существования в популяции двух или более различающихся форм, когда частота наиболее редкой из них не может быть объяснена только мутационными событиями. Поскольку мутация гена является редким событием (1х10 6), частоту мутантного аллеля, составляющую более 1%, можно объяснить только его постепенным накоплением в популяции за счет селективных преимуществ носителей данной мутации.

Многочисленность расщепляющихся локусов, многочисленность аллелей в каждом из них наряду с явлением рекомбинации создает неисчерпаемое генетическое разнообразие человека. Расчеты свидетельствуют, что за всю историю человечества на земном шаре не было, нет и в обозримом будущем не встретится генетического повторения, т.е. каждый рожденный человек является уникальным явлением во Вселенной. Неповторимость генетической конституции во многом определяет особенности развития заболевания у каждого конкретного человека.

Человечество эволюционировало как группы изолированных популяций, длительное время проживающих в одних и тех же условиях окружающей среды, включая климатогеографические характеристики, характер питания, возбудителей болезней, культурные традиции и т.д. Это привело к закреплению в популяции специфических для каждой из них сочетаний нормальных аллелей, наиболее адекватных условиям среды. В связи с постепенным расширением ареала обитания, интенсивными миграциями, переселением народов возникают ситуации, когда полезные в определенных условиях сочетания конкретных нормальных генов в других условиях не обеспечивают оптимальное функционирование некоторых систем организма. Это приводит к тому, что часть наследственной изменчивости, обусловленная неблагоприятным сочетанием непатологических генов человека, становится основой развития так называемым болезней с наследственным предрасположением.

Кроме того, у человека как социального существа естественный отбор со временем протекал во все более специфических формах, что также расширяло наследственное разнообразие. Сохранялось то, что могло отметаться у животных, или, наоборот, терялось то, что животные сохраняли. Так, полноценное обеспечение потребностей в витамине С привело в процессе эволюции к утере гена L-гулонодактоноксидазы, катализирующей синтез аскорбиновой кислоты. В процессе эволюции человечество приобретало и нежелательные признаки, имеющие прямое отношение к патологии. Например, у человека в процессе эволюции появились гены, определяющие чувствительность к дифтерийному токсину или к вирусу полиомиелита.

Таким образом, у человека, как и у любого другого биологического вида, нет резкой грани между наследственной изменчивостью, ведущей к нормальным вариациям признаков, и наследственной изменчивостью, обусловливающей возникновение наследственных болезней. Человек, став биологическим видом Homo sapiens, как бы заплатил за «разумность» своего вида накоплением патологических мутаций. Это положение лежит в основе одной из главных концепций медицинской генетики об эволюционном накоплении патологических мутации в популяциях человека.

Наследственная изменчивость популяций человека, как поддерживаемая, так и уменьшаемая естественным отбором, формирует так называемый генетический груз.

Некоторые патологические мутации могут в течение исторически длительного времени сохраняться и распространяться в популяциях, обусловливая гак называемый сегрегационный генетический груз; другие патологические мутации возникают в каждом поколении как результат новых изменений наследственной структуры, создавая мутационный груз.

Отрицательный эффект генетического груза проявляется повышенной летальностью (гибель гамет, зигот, эмбрионов и детей), снижением фертильности (уменьшенное воспроизводство потомства), уменьшением продолжительности жизни, социальной дизадаптацией и инвалидизацией, а также обусловливает повышенную необходимость в медицинской помощи.

Английский генетик Дж.Ходдейн был первым, кто привлек внимание исследователей к существованию генетического груза, хотя сам термин был предложен Г. Меллером еще в конце 40-х гг. Смысл понятия «генетический груз» связан с высокой степенью генетической изменчивости, необходимой биологическому виду для того, чтобы иметь возможность приспосабливаться к изменяющимся условиям среды.

Геномы живых организмов являются относительно стабильными, что необходимо для сохранения видовой структуры и преемственности развития. С целью поддержания стабильности в клетке работают различные системы репарации, исправляющие нарушения в структуре ДНК. Тем не менее, если бы изменения в структуре ДНК вообще не сохранялись, виды не могли бы адаптироваться к меняющимся условиям внешней среды и эволюционировать. В создании эволюционного потенциала, т.е. необходимого уровня наследственной изменчивости, основная роль принадлежит мутациям.

Термином “мутация ” Г. де Фриз в своем классическом труде “Мутационная теория” (1901-1903) обозначил явление скачкообразного, прерывистого изменения признака. Он отметил ряд особенностей мутационной изменчивости :

  • мутация — это качественно новое состояние признака;
  • мутантные формы константны;
  • одни и те же мутации могут возникать повторно;
  • мутации могут быть полезными и вредными;
  • выявление мутаций зависит от количества проанализированных особей.

В основе возникновения мутации лежит изменение структуры ДНК или хромосомы, поэтому мутации наследуются в последующих поколениях. Мутационная изменчивость универсальна; она имеет место у всех животных, высших и низших растений, бактерий и вирусов.

Условно мутационный процесс делят на спонтанный и индуцированный. Первый протекает под влиянием естественных факторов (внешних или внутренних), второй — при целенаправленном воздействии на клетку. Частота спонтанного мутагенеза очень низкая. У человека она лежит в пределах 10 -5 — 10 -3 на ген за поколение. В пересчете на геном это означает, что у каждого из нас имеется в среднем один ген, которого не было у родителей.

Большинство мутаций являются рецессивными, что очень важно, т.к. мутации нарушают сложившуюся норму (дикий тип) и поэтому оказываются вредными. Однако рецессивный характер мутантных аллелей позволяет им длительное время сохраняться в популяции в гетерозиготном состоянии и проявляться в результате комбинативной изменчивости. Если возникшая мутация оказывает благоприятное влияние на развитие организма, она будет сохраняться естественным отбором и распространяться среди особей популяции.

По характеру действия мутантного гена мутации делят на 3 вида:

  • морфологические,
  • физиологические,
  • биохимические.

Морфологические мутации изменяют формирование органов и ростовые процессы у животных и растений. Примером данного вида изменений могут служить мутации по окраске глаз, форме крыла, окраске тела, форме щетинок у дрозофилы; коротконогость у овец, карликовость у растений, короткопалость (брахидактилия) у человека и др.

Физиологические мутации обычно понижают жизнеспособность особей, среди них много летальных и полулетальных мутаций. Примером физиологических мутаций являются дыхательные мутации у дрожжей, хлорофильные мутации у растений, гемофилия у человека.

К биохимическим мутациям относят такие, которые подавляют или нарушают синтез определенных химических веществ, обычно в результате отсутствия необходимого фермента. К этому типу относятся ауксотрофные мутации бактерий, определяющие неспособность клетки синтезировать какое-либо вещество (например, аминокислоту). Такие организмы способны жить только при наличии этого вещества в среде. У человека результатом биохимической мутации является тяжелое наследственное заболевание — фенилкетонурия, обусловленное отсутствием фермента синтезирующего тирозин из фенилаланина, в результате чего фенилаланин накапливается в крови. Если вовремя не установить наличие этого дефекта и не исключить фенилаланин из диеты новорожденных, то организму грозит гибель из-за сильного нарушения развития мозга.

Мутации могут быть генеративными и соматическими . Первые возникают в половых клетках, вторые — в клетках тела. Их эволюционная ценность различна и связана со способом размножения.

Генеративные мутации могут происходить на разных этапах развития половых клеток. Чем раньше они возникнут, тем большее количество гамет будет их нести, и, следовательно, увеличится шанс их передачи потомству. Аналогичная ситуация имеет место и в случае возникновения соматической мутации. Чем раньше она происходит, тем большее количество клеток будет ее нести. Особи, имеющие измененные участки тела, называются мозаиками, или химерами. Например, у дрозофилы наблюдается мозаицизм по окраске глаз: на фоне красной окраски в результате мутации возникают белые пятна (лишенные пигмента фасетки).

У организмов, размножающихся только половым способом, соматические мутации не представляют никакой ценности ни для эволюции, ни для селекции, т.к. они не наследуются. У растений, которые могут размножаться вегетативно, соматические мутации могут стать материалом для отбора. Например, почковые мутации, которые дают измененные побеги (спорты). От такого спорта И.В. Мичурин, используя метод прививки, получил новый сорт яблони Антоновка 600-граммовая.

Мутации разнообразны не только по своему фенотипическому проявлению, но и по тем изменениям, которые происходят в генотипе. Различают мутации генные , хромосомные и геномные .

Генные мутации

Генные мутации изменяют структуру отдельных генов. Среди них значительную часть составляют точковые мутации , при которых изменение затрагивает одну пару нуклеотидов. Чаще всего при точковых мутациях происходит замена нуклеотидов. Такие мутации бывают двух типов: транзиции и трансверсии. При транзициях в нуклеотидной паре пурин замещается на пурин или пиримидин на пиримидин, т.е. пространственная ориентация оснований не изменяется. При трансверсиях пурин замещается на пиримидин или пиримидин на пурин, что изменяет пространственную ориентацию оснований.

По характеру влияния замены оснований на структуру кодируемого геном белка выделяют три класса мутаций: missence-мутации, nonsence-мутации и samesence-мутации.

Missence-мутации изменяют смысл кодона, что приводит к появлению в составе белка одной неверной аминокислоты. Это может иметь очень серьезные последствия. Например, тяжелое наследственное заболевание — серповидно-клеточная анемия, одна из форм малокровия, вызвана заменой единственной аминокислоты в составе одной из цепей гемоглобина.

Nonsеnce-мутация — это появление (в результате замены одного основания) кодона-терминатора внутри гена. Если не включится система неоднозначности трансляции (см. выше), процесс синтеза белка будет прерван, и ген будет способен синтезировать только фрагмент полипептида (абортивный белок).

При samesence-мутации замена одного основания приводит к появлению кодона-синонима. В этом случае изменения генетического кода не происходит, и синтезируется нормальный белок.

Кроме замены нуклеотидов, точковые мутации могут быть вызваны вставкой или выпадением одной пары нуклеотидов. Эти нарушения приводят к изменению рамки считывания, соответственно, изменяется генетический код и синтезируется измененный белок.

К генным мутациям относят удвоение и потерю небольших участков гена, а также инсерции — вставки дополнительного генетического материала, источником которого чаще всего являются мобильные генетические элементы. Генные мутации являются причиной существования псевдогенов — неактивных копий функционирующих генов, у которых отсутствует экспрессия, т.е. не образуется функциональный белок. В псевдогенах мутации могут накапливаться. С активацией псевдогенов связывают процесс развития опухолей.

Для появления генных мутаций имеются две основные причины: ошибки в ходе процессов репликации, рекомбинации и репарации ДНК (ошибки трех Р) и действие мутагенных факторов. Примером ошибок в работе ферментных систем в ходе вышеуказанных процессов является неканоническое спаривание оснований. Оно наблюдается при включении в молекулу ДНК минорных оснований — аналогов обычных. Например, вместо тимина может включаться бромурацил, который достаточно легко соединяется с гуанином. Благодаря этому пара АТ замещается на GC.

Под действием мутагенов может происходить превращение одного основания в другое. Например, азотистая кислота путем дезаминирования превращает цитозин в урацил. В следующем цикле репликации он спаривается с аденином и исходная пара GC замещается на АТ.

Хромосомные мутации

Более серьезные изменения в генетическом материале происходят в случае хромосомных мутаций . Их называют хромосомными аберрациями, или хромосомными перестройками. Перестройки могут затрагивать одну хромосому (внутрихромосомные) или несколько (межхромосомные).

Внутрихромосомные перестройки могут быть трех типов: потеря (нехватка) участка хромосомы; удвоение участка хромосомы (дупликации); поворот участка хромосомы на 180° (инверсии). К межхромосомным перестройкам относятся транслокации — перемещение участка одной хромосомы на другую, не гомологичную ей хромосому.

Утрата внутреннего участка хромосомы, не затрагивающего теломеры, носит название делеции , а потеря концевого участка — дефишенси . Оторвавшийся участок хромосомы, если он лишен центромеры, теряется. Оба типа нехваток можно идентифицировать по характеру конъюгации гомологичных хромосом в мейозе. В случае концевой делеции один гомолог оказывается короче другого. При внутренней нехватке нормальный гомолог образует петлю против утраченного участка гомолога.

Нехватки приводят к утрате части генетической информации, поэтому они вредны для организма. Степень вредности зависит от размера утраченного участка и его генного состава. Гомозиготы по нехваткам редко бывают жизнеспособны. У низших организмов эффект нехваток менее ощутим, чем у высших. Бактериофаги могут терять значительную часть своего генома, замещая утраченный участок чужеродной ДНК, и при этом сохраняют функциональную активность. У высших даже гетерозиготность по нехваткам имеет свои пределы. Так, у дрозофилы утрата одним из гомологов участка, включающего более 50 дисков, имеет летальный эффект, несмотря на то, что второй гомолог нормален.

У человека с нехватками связан ряд наследственных заболеваний: тяжелая форма лейкемии (21-я хромосома), синдром кошачьего крика у новорожденных (5-я хромосома) и др.

Нехватки можно использовать для генетического картирования путем установления связи между утратой специфического участка хромосомы и морфологическими особенностями особи.

Дупликацией называют удвоение любого участка хромосомы нормального хромосомного набора. Как правило, дупликации приводят к усилению признака, который контролируется геном, локализованным в этом участке. Например, удвоение у дрозофилы гена Bar , вызывающего редукцию числа глазных фасеток, приводит к дальнейшему уменьшению их количества.

Дупликации легко выявляются цитологически по нарушению структурного рисунка гигантских хромосом, а генетически их можно выявить по отсутствию рецессивного фенотипа при скрещивании.

Инверсия — поворот участка на 180° — изменяет порядок расположения генов в хромосоме. Это очень распространенный вид хромосомных мутаций. Особенно много их обнаружено в геномах дрозофилы, хирономуса, традесканций. Различают два типа инверсий: парацентрические и перицентрические. Первые затрагивают только одно плечо хромосомы, не касаясь центромерного участка и не изменяя форму хромосом. Перицентрические инверсии захватывают район центромеры, включающий участки обоих плеч хромосом, и поэтому они могут значительно изменить форму хромосомы (если разрывы произойдут на разном расстоянии от центромеры).

В профазе мейоза гетерозиготную инверсию можно обнаружить по характерной петле, с помощью которой восстанавливается комплементарность нормального и инвертированного участков двух гомологов. Если в районе инверсии происходит одинарный перекрест, то он приводит к образованию аномальных хромосом: дицентрика (с двумя центромерами) и ацентрика (без центромеры). Если же инвертированный участок имеет значительную протяженность, то может осуществляться двойной кроссинговер, в результате которого образуются жизнеспособные продукты. При наличии двойных инверсий в одном участке хромосомы кроссинговер вообще подавляется, в связи с чем их называют “запирателями перекреста” и обозначают буквой С. Эту особенность инверсий используют при генетическом анализе, например при учете частоты мутаций (методы количественного учета мутаций Г. Меллера).

Межхромосомные перестройки — транслокации, если они имеют характер взаимного обмена участками между негомологичными хромосомами, носят название реципрокных . Если же разрыв затрагивает одну хромосому и оторвавшийся участок прикрепляется к другой хромосоме, то это — нереципрокная транслокация . Образующиеся хромосомы будут нормально функционировать при клеточном делении, если у каждой их них будет одна центромера. Гетерозиготность по транслокациям сильно изменяет процесс конъюгации в мейозе, т.к. гомологичное притяжение испытывают не две хромосомы, а четыре. Вместо бивалентов образуются квадриваленты, которые могут иметь различную конфигурацию в виде крестов, колец и др. Их неправильное расхождение часто приводит к образованию нежизнеспособных гамет.

При гомозиготных транслокациях хромосомы ведут себя как нормальные, при этом образуются новые группы сцепления. Если они сохраняются отбором, то возникают новые хромосомные расы. Таким образом, транслокации могут быть эффективным фактором видообразования, как это имеет место у некоторых видов животных (скорпионы, тараканы) и растений (дурман, пион, энотера). У вида Paeonia californica в транслокационный процесс вовлечены все хромосомы, и в мейозе образуется единый конъюгационный комплекс: 5 пар хромосом образуют кольцо (конъюгация “конец в конец”).

Наследственные изменения генетического материала теперь называют мутациями. Мутации - внезапные изменения генетического материала, приводящие к изменению тех или иных признаков организмов.

Мутации по месту их возникновения :

Генеративные - возникшие в половых клетках. Они не влияют на признаки данного организма, а проявляются только в следующем поколении.

Соматические - возникающие в соматических клетках. Эти мутации проявляются у данного организма и не передаются потомству при половом размножении (черное пятно на фоне коричневой окраски шерсти у каракулевых овец). Сохранить соматические мутации можно только путем бесполого размножения (прежде всего вегетативного).

Мутации по адаптивному значению :

Полезные - повышающие жизнеспособность особей.

Вредные :

летальные - вызывающие гибель особей;

полулетальные - снижающие жизнеспособность особи (у мужчин рецессивный ген гемофилии носит полулетальный характер, а гомозиготные женщины оказываются нежизнеспособными).

Нейтральные - не влияющие на жизнеспособность особей.

Эта классификация весьма условна, так как одна и та же мутация в одних условиях может быть полезной, а в других - вредной.

Мутации по характеру проявления:

доминантные , которые могут делать обладателей этих мутаций нежизнеспособными и вызывать ихгибель на ранних этапах онтогенеза (если мутации являются вредными);

рецессивные - мутации, не проявляющиеся у гетерозигот, поэтому длительное время сохраняющиеся в популяции и образующие резерв наследственной изменчивости (при изменении условий среды обитания носители таких мутаций могут получить преимущество в борьбе за существование).

Мутации по степени фенотипического проявления:

крупные - хорошо заметные мутации, сильно изменяющие фенотип (махровость у цветков);

малые - мутации, практически не дающие фенотипического проявления (незначительное удлинение остей у колоса).

Мутации по изменению состояния гена:

прямые - переход гена от дикого типа к новому состоянию 1 ;

обратные - переход гена от мутантного состояния к дикому типу.

Мутации по характеру их появления:

спонтанные - мутации, возникшие естественным путем под действием факторов среды обитания;

индуцированные - мутации, искусственно вызванные действием мутагенных факторов.

Мутации по характеру изменения генотипа:

    Генные – мутации, выражающиеся в изменении структуры отдельных участков ДНК

    Хромосомные – мутации, характеризующиеся изменением структуры отдельных хромосом.

    Геномные – мутации, характеризующиеся изменением числа хромосом

Мутации по месту их проявления:

    1. Хромосомные

      Точковые - Генная мутация , представляющая собой замену (в результате транзиции или трансверсии), вставку или потерю одного нуклеотида.

      Геномные

  1. Цитоплазменныемутации, связанные с мутациями неядерных генов находящихся в митохондриальной ДНК и ДНК пластид - хлоропластов.

20. Генные мутации, механизмы возникновения. Понятие о генных болезнях.

Генные мутации возникают в результате ошибок репликации, рекомбинации, репарации ген материала. Они появляются внезапно; они наследственны, ненаправленны; мутировать может любой генный локус, вызывая изменения как незначительных, так и жизненно важных признаков; одни и те же мутации могут возникать повторно.

Чаще всего генные мутации происходят в результате:

    замены одного или нескольких нуклеотидов на другие;

    вставки нуклеотидов;

    потери нуклеотидов;

    удвоения нуклеотидов;

    изменения порядка чередования нуклеотидов.

Типы генных мутаций:

    Точковые – потеря, вставка, замена нуклеотида;

    Динамическая мутация - нарастание числа повторных триплетов в гене (атаксия Фридрейха);

    Дупликация – удвоение фрагментов ДНК;

    Инверсия – поворот фрагмента ДНК размером от 2х нуклеотидов;

    Инсерсия - перемещение фрагментов ДНК;

    Летальная мутация – приводит к гибели

    Миссенс мутация – возникает кодон, соответствующий другой аминокислоте (серповидно-клеточная анемия);

    Нонсенс-мутация – мутация, с заменой нуклеотида в кодирующей части гена, приводящая к образованию стоп-кодона;

    Регуляторная мутация - Изменения в 5" или 3" нетранслируемых областях гена нарушают его экспрессию;

    Сплайсинговые мутации – точечные заменяя нуклеотидов на границе экзон-интрон, при этом происходит блокирование сплайсинга.

Генные болезни – болезни, возникающие в результате генных мутаций. Например, болезнь серповидно-клеточной анемии, с. спленомегалии,

Мутации на генном уровне являются молекулярными, не видимыми в световом микроскопе структурными изменениями ДНК. К ним относят любые трансформации дезоксирибонуклеиновой кислоты, вне зависимости от их влияния на жизнеспособность и локализации. Некоторые виды генных мутаций не оказывают никакого воздействия на функции и структуру соответствующего полипептида (белка). Однако большая часть таких трансформаций провоцирует синтез дефектного соединения, утратившего способность выполнять свои задачи. Далее рассмотрим генные и хромосомные мутации более подробно.

Характеристика трансформаций

Наиболее распространенными патологиями, которые провоцируют генные мутации человека, являются нейрофиброматоз, адрено-генитальный синдром, муковисцидоз, фенилкетонурия. В этот список можно также включить гемохроматоз, миопатии Дюшенна-Беккера и прочие. Это далеко не все примеры генных мутаций. Их клиническими признаками выступают обычно нарушения метаболизма (обменного процесса). Генные мутации могут состоять в:

  • Замене в кодоне основания. Такое явление именуют миссенс-мутацией. При этом в кодирующей части происходит замена нуклеотида, что, в свою очередь, приводит к смене аминокислоты в белке.
  • Изменении кодона таким образом, что приостанавливается считывание информации. Этот процесс называют нонсенсмутацией. При замене нуклеотида в данном случае происходит формирование стоп-кодона и прекращение трансляции.
  • Нарушении считывания, сдвиге рамки. Этот процесс именуют "фреймшифтом". При молекулярном изменении ДНК трансформируются триплеты в ходе трансляции полипептидной цепочки.

Классификация

В соответствии с типом молекулярной трансформации существуют следующие генные мутации:

  • Дупликация. В этом случае происходит повторное дублирование либо удвоение фрагмента ДНК от 1 нуклеотида до генов.
  • Делеция. В этом случае имеет место утрата фрагмента ДНК от нуклеотида до гена.
  • Инверсия. В этом случае отмечается поворот на 180 град. участка ДНК. Его размер может быть как в два нуклеотида, так и в целый фрагмент, состоящий из нескольких генов.
  • Инсерция. В этом случае происходит вставка участков ДНК от нуклеотида до гена.

Молекулярные трансформации, захватывающие от 1 до нескольких звеньев, рассматриваются как точечные изменения.

Отличительные черты

Генные мутации имеют ряд особенностей. В первую очередь следует отметить их способность переходить по наследству. Кроме того, мутации могут спровоцировать трансформацию генетических сведений. Некоторые из изменений могут быть отнесены к так называемым нейтральным. Такие генные мутации не провоцируют каких-либо нарушений в фенотипе. Так, благодаря врожденности кода одна и та же аминокислота может кодироваться двумя триплетами, имеющими отличия только по 1 основанию. Вместе с тем определенный ген может мутировать (трансформироваться) в несколько разных состояний. Именно такого рода изменения провоцируют большую часть наследственных патологий. Если приводить примеры генных мутаций, то можно обратиться к группам крови. Так, у элемента, контролирующего их системы АВ0, присутствует три аллеля: В, А и 0. Их сочетание определяют группы крови. Относящаяся к системе АВ0 считается классическим проявлением трансформации нормальных признаков у людей.

Геномные трансформации

Эти трансформации имеют свою классификацию. В категорию геномных мутаций относят изменения в плоидности не измененных структурно хромосом и анеуплоидии. Такие трансформации определяются специальными методами. Анеуплоидия представляет собой изменение (увеличение - трисомию, уменьшение - моносомию) количества хромосом диплоидного набора, некратное гаплоидному. При кратном увеличении числа говорят о полиплоидии. Они и большая часть анеуплоидий у людей считаются летальными изменениями. Среди наиболее распространенных геномных мутаций выделяют:

  • Моносомию. В этом случае присутствует только одна из 2 гомологичных хромосом. На фоне такой трансформации здоровое эмбриональное развитие невозможно по любой из аутосом. В качестве единственной совместимой с жизнью выступает моносомия по хромосоме Х. Она провоцирует синдром Шерешевского-Тернера.
  • Трисомия. В данном случае в кариотипе выявляется три гомологичных элемента. Примеры таких генных мутаций: синдромы Дауна, Эдвардса, Патау.

Провоцирующий фактор

Причиной, по которой развивается анеуплоидия, считается нерасхождение хромосом в процессе клеточного деления на фоне формирования половых клеток либо утрата элементов вследствие анафазного отставания, в то время как при движении к полюсу гомологичное звено может отстать от негомологичного. Понятие "нерасхождение" указывает на отсутствие разделения хроматид либо хромосом в митозе либо мейозе. Это нарушение может привести к мозаицизму. В этом случае одна клеточная линия будет нормальной, а другая - моносомной.

Нерасхождение при мейозе

Такое явление считается наиболее частым. Те хромосомы, которые должны в норме делиться при мейозе, остаются соединенными. В анафазе они отходят к одному клеточному полюсу. В результате формируется 2 гаметы. В одной из них присутствует добавочная хромосома, а в другой не достает элемента. В процессе оплодотворения нормальной клетки с лишним звеном развивается трисомия, гаметы с недостающим компонентом - моносомия. При формировании моносомной зиготы по какому-нибудь аутосомному элементу развитие прекращается на начальных этапах.

Хромосомные мутации

Эти трансформации представляют собой структурные изменения элементов. Как правило, они визуализируются в световой микроскоп. В хромосомные мутации обычно вовлекается от десятков до сотен генов. Это провоцирует изменения в нормальном диплоидном наборе. Как правило, такие аберрации не вызывают трансформации последовательности в ДНК. Однако при изменении количества генных копий развивается генетический дисбаланс из-за недостатка либо переизбытка материала. Существует две большие категории данных трансформаций. В частности, выделяют внутри- и межхромосомные мутации.

Влияние среды

Люди эволюционировали в качестве групп изолированных популяций. Они достаточно долго проживали в одинаковых условиях среды. Речь, в частности, идет о характере питания, климатогеографических характеристиках, культурных традициях, возбудителях патологий и прочем. Все это привело к закреплению специфических для каждой популяции сочетаний аллелей, являвшихся наиболее соответствующими для условий проживания. Однако вследствие интенсивного расширения ареала, миграций, переселения стали возникать ситуации, когда бывшие в одной среде полезные сочетания определенных генов в другой перестали обеспечивать нормальное функционирование ряда систем организма. В связи с этим часть наследственной изменчивости обуславливается неблагоприятным комплексом непатологических элементов. Таким образом, в качестве причины генных мутаций в данном случае выступают изменения внешней среды, условий проживания. Это, в свою очередь, стало основой для развития ряда наследственных заболеваний.

Естественный отбор

С течением времени эволюция протекала в более специфичных видах. Это также способствовало расширению наследственного разнообразия. Так, сохранялись те признаки, которые могли исчезать у животных, и наоборот, отметалось то, что оставалось у зверей. В ходе естественного отбора люди приобретали также и нежелательные признаки, которые имели прямое отношение к болезням. К примеру, у человека в процессе развития появились гены, способные определять чувствительность к полиомиелиту либо дифтерийному токсину. Став Homo sapiens, биологический вид людей в некотором роде "заплатил за свою разумность" накоплением и патологических трансформаций. Данное положение считается основой одной из базовых концепций учения о генных мутациях.