Правда ли что скрестили свинью и человека. У попа была химера

К такому выводу вполне можно прийти после успешного смелого эксперимента, который специалисты провели в КНР. Его главная цель – опробование возможностей по выращиванию органов для трансплантации их человеку.

Китайские учёные скрестили свинью с приматами. Таким образом, им, фактически удалось то, что ранее считалось невероятным. Следовательно, совершенно не исключается и то, что в далёкое время химеры, действительно, существовали.

Группе специалистов удалось скрещивание клеток свиньи и приматов. Согласно последней поступившей информации, двум поросятам удалось родиться живыми. Однако, их смерть после этого наступила на протяжении всего одной недели.

Главным в данном эксперименте является то, что ранее никогда в истории не рождались полностью доношенные химеры. Это может стать значительным шагом в обеспечении человечества органами для необходимых трансплантаций.

Однако, судя по всему, достижение этой цели является ещё очень нескорым делом.

Китайские учёные сначала занялись модифицированием клеток обезьян для продуцирования специфического флуоресцентного белка. Это позволило специалистам отслеживание генетических клеток их потомства.

Затем, они занялись извлечением эмбриональных стволовых клеток из модифицированных. Это было сделано для их введения в эмбрионы свиньи через пять дней после того, как произошло её оплодотворение.

Сообщается, что всего свиноматкам специалисты ввели больше, чем четыре тысячи полученных таким образом эмбрионов.

В итоге, свиньи-самки произвели на свет десять поросят. У двоих из них были оба типа клеток. Фактически, они являлись самыми настоящими химерами.

В итоге, исследователи отмечают, что у появившихся на свет химер часть тканей и, в том числе, ткани сердца, печени, селезенки, легких и кожи состояли из обезьянних клеток. Впрочем, их соотношение было достаточно низким.

Также китайская наука пока затрудняется дать ответ на то, в чём же на самом деле заключалась причина неожиданной смерти новорожденных и вполне выношенных поросят.

Однако, отмечается и то, что в то же самое время умерли и другие поросята, рождённые в ходе эксперимента и не являвшиеся химерами. Учёные склонны предполагать, что причина этого заключаться в особых процессах, связанных с ЭКО.

Давно известно, что данный метод у животных работает не столь качественно, как у людей. Однако, не взирая на это, специалисты собираются продолжить свой смелый эксперимент.

При этом они предполагают использовать гораздо большее количество обезьянних клеток. Очередная попытка будет иметь своей целью создание полностью здоровых и жизнеспособных животных.

Главная задача заключается в том, что бы у них один из органов полностью состоял из клеток приматов. Тогда это будет настоящий прорыв в возможностях трансплантации.

1. Первое скрещивание подобного типа было успешно проведено в лаборатории Шанхая в 2003 году. Команда ученых использовала генетический материал человека и кролика . Зародыши развились до этапа формирования стволовых клеток, чего и добивались ученые: такой материал требовался для того, чтобы в перспективе выращивать человеческие органы. Это не первый случай, когда ученые решались на подобные эксперименты. Исследователи из США пытались провести похожий опыт гораздо раньше, но их эксперимент не увенчался успехом.

2. Некоторые исследователи утверждают, что в далеком 1967 году китайские ученые уже проводили опыты по созданию пугающего гибрида. Целью экспериментов было оплодотворение самки шимпанзе человеческой спермой. Однако в планы ученых вмешалась разгоревшаяся в Китае культурная революция, и проект был приостановлен. И это к лучшему: потенциальная жизнь такого существа обречена на пожизненное заключение в стенах экспериментальных лабораторий.


3. Клиника Мэйо в Миннесоте использовала генетический материал человека и успешно создала первую гибридную свинью . Цель эксперимента — изучить, как будут взаимодействовать клетки человека и свиньи. В результате ученые вывели новое животное, которое, впрочем, ничем внешне не отличалось от своих собратьев. Но группа крови была уникальной: в природе ничего подобного еще не было.


4. В 2009 году российские и белорусские генетики совместно модифицировали коз для производства грудного молока человека. В перспективе трансгенные козы помогут создавать лекарственные средства и продукты питания из нового молока, по составу близкого к человеческому. Вскоре после этого команда китайских ученых использовала целое стадо крупного рогатого скота для похожих экспериментов. Цель состояла в том, чтобы получить возможность конвейерного производства грудного человеческого молока. Появится ли диковинка в супермаркетах — узнаем в ближайшем будущем.


5. Одна из самых больших идей в мире биотехнологий сегодня — это возможность выращивания животных с человеческими органами , которые могли бы быть донорами для больных по всему миру. Однако во многих странах столь не гуманное отношение к живым существам порицается. Профессор Хиромицу Накаучи покинул Японию и переехал в США, чтобы работать над подобным проектом. Пока ученым удалось вырастить мышиные органы в теле крысы. Тем не менее, это прогресс, и Накаучи настаивает, что с каждым днем ​команда ученых все ближе подходит к заветной цели.


6. В 2010 году в Институте биологических исследований Salk создали мышь с печенью, практически идентичной человеческой . С помощью этого эксперимента ученые изучали малярию и гепатиты В, С, которыми могут болеть лишь человек и шимпанзе. Эксперименты на родственных человеку животных вызывают бурную реакцию общественности, а мыши с человеческими органами позволяют ученым избежать эту проблему. Ученые полагают, что их исследования приведут к новым прорывам в медицине.


7. В 2007 году в Йельском университете провели терапию с помощью трансплантации стволовых клеток человека. В результате обезьяны, страдавшие болезнью Паркинсона , смогли ходить, есть и двигаться лучше, чем это было раньше. Однако с этической точки зрения эксперимент вызывает множество непростых вопросов. Человеческие клетки «мигрировали» в мозг обезьян, фактически изменив особенности функционирования головного мозга. Такие опыты неизбежно заставляют ученых задуматься: где пролегает та грань, после которой вмешательство в чужой организм приводит к изменению самой его сущности?


Международной группе ученых под руководством испанца Хуана Бальмонте, известного своими работами в области стволовых клеток, удалось создать эмбрионы химер человека и свиньи, которые в будущем могут стать источником донорских органов. Другая команда исследователей вылечила врожденную глухоту у мышей с помощью вирусов. рассказывает об успехах генной инженерии, связанных с медициной.

Создание генетически модифицированных организмов - не единственное, чем может порадовать человечество генная инженерия. Биотехнологии позволяют не только менять гены для улучшения сельскохозяйственных растений и животных, но и лечить ранее неизлечимые заболевания. По иронии судьбы, для этого ученые используют вечных врагов человека - вирусов. Последние применяются для создания векторов, доставляющих ДНК в нужные клетки. Еще одно направление, которое может напугать не слишком сведущих в науке людей, - создание эмбрионов химер, сочетающих в себе клетки человека и других организмов. Однако то, что поначалу кажется зловещим, на самом деле окажется удобным способом создания органов.

Почки или легкие, которые были получены с помощью выращивания химерных эмбрионов, будут подходить для трансплантации нуждающимся в них людям. Те же, кто боится восстания мутантов, должны подумать, что реальная польза от этой технологии превосходит смутные опасения фантастов-пессимистов.

Изображение: Nakauchi et al. / The University of Tokyo

Чтобы развеять страхи, нужно понять, что и как делают ученые, создающие химер. Основной материал, с которым работают исследователи, - стволовые клетки, которые обладают плюрипотентностью - способностью превращаться в другие клетки организма (нервные, жировые, мышечные и так далее) за исключением плаценты и желточного мешка. Их внедряют в зародыши других организмов, после чего эмбрион развивается дальше.

Свинолюди

Именно таким образом международной группе ученых из США, Испании и Японии удалось создать химеры свинья-человек, крыса-мышь и корова-человек. Они сообщили об этом в статье, опубликованной в журнале Cell и ставшей первым документом, подтверждающей успешную «химеризацию» далеких в родственном отношении видов.

Основной проблемой является то, что мало внести плюрипотентные клетки в эмбрион и ждать, что получится что-то путное. Вместо этого может получиться организм с катастрофическими нарушениями в развитии, включая образование тератом . Нужно выключить гены в зародышах-реципиентах таким образом, чтобы они не смогли сформировать специфические ткани. В этом случае внедренные стволовые клетки берут на себя задачу по выращиванию недостающего органа.

Сначала ученые ввели стволовые клетки крыс в мышиные эмбрионы на стадии бластоцисты, когда плод представляет собой шар из нескольких десятков клеток. Этот метод называется комплементацией эмбриона (embryo complementation). Целью эксперимента было выяснить, какие факторы играют ведущую роль в межвидовом химеризме. Зародыши были перенесены в тело самок мыши, после чего развились в живых химер, одна из которых дожила до двухлетнего возраста.

Гены в эмбрионах выключались с помощью технологии CRISPR/Cas9, которая вносит разрывы в специфичные участки ДНК. Например, исследователи при тестировании используемого ими подхода блокировали активность гена, который играет важную роль в формировании поджелудочной железы. Родившиеся мыши в результате умирали, однако при внедрении плюрипотентных клеток крыс в эмбрионы недостающий орган развивался. Также ученые отключали ген Nkx2.5, без которого эмбрионы страдали от серьезных пороков развития сердца и оказывались недоразвитыми. Химеризация помогла зародышам достичь нормального роста, однако получить живых химер так и не удалось.

Фото: Juan Carlos Izpisua Belmonte / Salk Institute for Biological Studies

Исследование полученных крыс-мышей показало, что различные мышиные ткани содержали разную долю клеток крыс. Когда ученые попытались внести крысиные клетки в бластоцисты свиней, а затем провели генетический анализ четырехнедельных эмбрионов, они не обнаружили ДНК грызунов. Это говорит о том, что не все животные подходят для химеризации друг с другом, и успешное прививание стволовых клеток одних эмбрионам других может зависеть от генетических, морфологических или анатомических факторов.

Главной же целью ученых было создание химеры человека и свиньи, чтобы проследить, как человеческие ткани будут развиваться внутри зародыша нежвачного парнокопытного животного. Они использовали бластоцисты свиньи и с помощью лазерного луча проделали микроскопические отверстия для последующей инъекции различных групп плюрипотентных клеток, которые выращивались в различных условиях. Затем эмбрионы пересаживались в свиноматок, где успешно развивались. Отслеживание динамики человеческого материала проводилось при помощи флуоресцентного белка, на производство которого были запрограммированы человеческие стволовые клетки.

В итоге в свином эмбрионе были сформированы клетки, являющиеся предшественниками различного вида тканей, в том числе сердца, печени и нервной системы. Гибридам свиньи и человека позволили развиваться в течение трех-четырех недель, после чего уничтожили их по этическим соображениям.

Глухие мыши

Американские ученые из Бостона недавно смогли вернуть слух мышам, страдающим от редкого генетического расстройства функций внутреннего уха. Для этого они использовали биологическую систему доставки генов (вектор) на основе обезвреженных вирусов. Исследователи модифицировали аденоассоциированный вирус, который заражает людей, однако не вызывает заболеваний.

Инфекционный агент способен проникать в волосковые клетки - рецепторы слуховой системы и вестибулярного аппарата у животных. Биотехнологи использовали вектор для ремонта дефектного гена Ush1c в клетках только что родившихся живых мышей. Эта мутация вызывает глухоту, слепоту и нарушения равновесия. В результате у животных улучшился слух, что позволило им различать даже тихие звуки.

Генная инженерия, таким образом, - не способ создания угрожающих человечеству мутантов. Это постоянно улучшающийся набор методов и средств по улучшению жизни и здоровья людей, особенно тех, кто сильно в этом нуждается. Поскольку создание химер и генная терапия не так просты в осуществлении и порой требуют хитроумных решений, развитие биотехнологий происходит не так быстро, как хотелось бы. Однако ежегодно публикуются десятки научных работ, которые углубляют и обогащают наши знания и умения.

Однако кое-что похожее на революцию в медицинской науке действительно произошло. В конце января научный журнал Cell напечатал статью молекулярного биолога Хуана Карлоса Исписуа Бельмонте, который руководит лабораторией в калифорнийском Институте Солка (США), и 38 его соавторов. Статья рассказывает, как ученым удалось создать жизнеспособные эмбрионы, состоящие из смеси свиных и человеческих клеток.

Кто они

Если бы этим существам дали родиться (а биологи не стали так делать не в последнюю очередь по этическим причинам), их нельзя было бы формально приписать ни к одному биологическому виду. Такие организмы называют химерами. У химер, которых мы знаем по средневековым миниатюрам, к телу льва прилагаются орлиные крылья, а к козлиным копытам змеиное жало. Кто помнит мышь с человеческой ушной раковиной на спине — результат громкого эксперимента 20-летней давности, легко допустит, что от биологов можно ждать и не такого. Но в этом смысле новые существа из лаборатории Бельмонте вряд ли имели шанс хоть кого-нибудь удивить: после рождения они выглядели бы самыми обычными поросятами. Просто некоторые клетки их тела — примерно одна тысячная доля процента — содержала бы чистую человеческую ДНК. И этим поросята выгодно отличались бы от ушастой мыши 1997 года, которая была скорее экспериментом по пластической хирургии и ни одной человеческой клетки не имела.

По свежим оценкам, всего у человека 30-40 трлн клеток, и примерно столько же у свиньи. Тысячная доля процента от такой астрономической цифры — это много или мало? Чтобы зачать ребенка, достаточно всего одной клетки. Поэтому в теории свинья-химера могла бы стать родителем человеческому младенцу.

Донор без мотоцикла

Врачи видят в свиньях не потенциальных родственников, а потенциальных доноров — для трансплантации их органов людям. Только в США за год пересаживают 27 тыс. почек, легких, сердец и кишечников. И во всех 27 тыс. случаев хирурги имеют дело с органами живых или мертвых людей. Но кто в здравом уме решится попросить, чтобы ему на место собственного отказывающего сердца пересадили взятое у свиньи, когда процедура с обычным, человеческим, отлажена и отлично работает? Те, до кого не дойдет очередь на пересадку: 118 тыс. человек записаны в США в так называемый лист ожидания. По статистике, примерно 22 из них умрут сегодня (и столько же — завтра, и столько же — в ближайшее воскресенье), не дождавшись своей трансплантации.

Доноров-людей слишком мало — и дело даже не в том, что добровольцы большая редкость. (В отличие от США в России по закону потенциальным донором считается всякий, кто не запретил изымать свои органы явно. Спрашивать согласия у родственников закон не требует.) Всего три человека из тысячи, приводит британские данные журнал New Scientist, умирают в обстоятельствах, которые делают их органы годными для пересадки. Цифры, очевидно, меняются от страны к стране — они зависят и от того, как быстро приезжает скорая на место ДТП или перестрелки, в результате которых появляются самые многообещающие доноры, и от того, как много поблизости центров трансплантологии, где органами сумеют распорядиться правильно. Наконец, нужно еще за несколько часов найти и подготовить к операции пациента из «листа ожидания» — тут действуют намного более жесткие правила совместимости, чем для переливания крови с ее четырьмя разными группами.

Клетки, которые меньше всего подвержены отторжению, — наши собственные. Что если использовать животных как инкубаторы для почек и поджелудочных желез, выращенных из человеческих клеток (а в идеале — из клеток ровно того пациента, которому орган пересадят)? Решить задачу в лоб мешает все та же проблема с отторжением: для готовой иммунной системы взрослой свиньи клетки человека не менее чужие, чем для нас — свиные.

Значит, действовать надо как-то иначе.

Рассечь и склеить

Представьте, что у вас на глазах двух человек одновременно рассекли напополам — скажем, боевым лазером из плохого фантастического кино. Потом соединили половинку одного с половинкой другого, и склеенные половинки прожили бы потом целую жизнь как ни в чем не бывало. Вариант еще парадоксальней: взяли двух худых, прижали друг к другу — и получили одного толстяка. Если обоим людям еще не исполнилось четыре дня с момента зачатия, ничего невозможного тут нет. На этой стадии будущий организм представляет собой шар из одинаковых клеток. «Удаляете внешний защитный слой из неживой материи и физически соединяете эмбрионы», — объясняла в одном из интервью профессор Колумбийского университета (США) Вирджиния Папаиоанну, как ученые с 1960-х производят на свет мышей-химер с полным набором генов двух особей одновременно. Соприкоснувшись, два эмбриона просто образуют новый шар побольше — почти как встретившиеся в воздухе мыльные пузыри. Иммунной системы, которая могла бы этому помешать, у шара из клеток еще нет — как, впрочем, и всех других систем: они разовьются намного позже.

Более тонкое вмешательство — добавить в зародыш чужой биоматериал, когда его клетки уже разделятся на разные сорта. На стадии бластоцисты зародыш — что у мыши, что у человека — представляет собой полый шар с небольшой порцией клеток, запертой внутри. Только этой внутренней порции предстоит стать будущими легкими, печенью, почками, мозгом, кожей и другими деталями взрослого организма, а вся внешняя превратится в плаценту, которая не переживет роды. Биологи предпочитают внедрять чужие клетки именно на этой стадии.

Нельзя сказать, чтобы этот сценарий в чистом виде открывал захватывающие возможности для трансплантологов. Необходимость в донорских органах возникает обычно позже — когда человек из возраста зародыша уже вышел. Как скрестить его с другим зародышем? Взять такие клетки взрослого организма, которые не обзавелись четкой миссией (как клетки мозга или печени) и не потеряли свойственную клеткам зародыша способность превращаться во что угодно. Их называют стволовыми клетками, но в организме они большая редкость. В 2012 году Нобелевскую премию по медицине присудили японскому ученому Синъе Яманаке за то, что он придумал способ превращать обычные клетки организма в стволовые — забывать свою предысторию и «впадать в детство». Полное название — индуцированные (потому что это их заставили поменяться) плюрипотентные (то есть «способные на все» — на любое превращение) стволовые клетки. Ими исследователи химер и пользуются.

Можно ли так скомбинировать зародыши разных видов — например, крысы и мыши? Именно это впервые сделала при помощи стволовых клеток в 2010 году команда Тосихиро Кобаяси из университета Токио — а американская группа, опубликовавшая свои результаты через семь лет, довела метод до совершенства. Как убедиться, что вы на самом деле вывели химеру? Взять за основу обреченные на смерть эмбрионы со специально испорченной ДНК. С помощью недавно изобретенного «генного скальпеля» CRISPR-Cas9, метода точечной редактуры ДНК, ученые выводили из строя гены, ответственные за рост поджелудочной железы или сердца. С таким дефектом шансов выжить (и даже родиться живым) нет. Но потом в эмбрион внедряли стволовые клетки крысы. И если мышонок-химера все-таки появлялся на свет — ученые могли быть уверены, что внутри у него бьется крысиное сердце.

Но самый удивительный результат касался желчного пузыря. У крыс его нет, а у мышей есть. Но химеры, у которых ответственные за этот орган мышиные гены были выведены из строя, все равно рождались с исправным желчным пузырем — из крысиных клеток. Мышиные клетки каким-то образом подсказывали крысиным правильный контекст, и те, поддавшись влиянию, образовывали орган, невозможный у крысы.

Ближе к свиньям, чем к крысам

Скрестить таким образом свинью и крысу не получилось — потому что эти организмы слишком сильно непохожи друг на друга. Разная длительность беременности и разные размеры органов предполагают, что клетки запрограммированы делиться в разном темпе. Наконец, сможет ли крошечное крысиное сердце у химеры гонять кровь через огромную свиную печень?

А вот с людьми такой трудности нет: мы к свиньям намного ближе — прежде всего по размеру органов. Поэтому свиньи (и мини-пиги как отдельный вариант) всегда были кандидатами № 1 для ксенотрансплантации. Параллельно с выращиванием человеческих клеток в свином теле биологи рассматривают и другие возможности — например, просто взять и скрыть от человеческого иммунитета те белки на поверхности свиных клеток, которые вызывают самую острую реакцию. Такие исследования ведутся давно, поэтому свинья как кандидат на пересадку органов — не новость.

Новый эксперимент показал, что возможность есть, и она никакая не умозрительная — и даже не невероятная случайность. 2075 эмбрионов подсадили свиньям, и 186 из них достигли достаточной, по мнению ученых, зрелости. Человеческие клетки метили специальной меткой в ДНК, которая заставляет их вырабатывать флуоресцентный белок — и 17 зрелых, здоровых эмбрионов уверенно светились в ультрафиолете, доказывая ученым, что они совершенно точно химеры.

От этого момента до органов в живом инкубаторе — годы, говорят исследователи. И дело не только в том, что доля человеческих клеток в организме химеры слишком маленькая. Увидеть, как они растут и что происходит с клетками во взрослом организме, ученым было бы сложно в любом случае.

Мы к свиньям намного ближе — прежде всего по размеру органов. Поэтому свиньи всегда были кандидатами № 1 для ксенотрансплантации

Химеры мыши и крысы, выведенные раньше, прожили полноценную мышиную жизнь в два года. Нет поводов думать, что у химер человека и свиньи были бы серьезные проблемы со здоровьем, мешающие достигнуть зрелости. Родиться на свет им помешали не биологические проблемы, а этические. Причем настолько серьезные, что команда из Института Солка вынуждена была проводить исследование на частные деньги, потому что правила Национального института здоровья США — аналога Минздрава, который финансирует бóльшую часть биомедицинских исследований в стране, — запрещают тратить деньги на любые опыты с внедрением стволовых клеток человека в эмбрионы животных.

Что неэтичного в появлении на свет свиньи с человеческой селезенкой? Наша неуверенность в результатах такого эксперимента. Пропорции клеток во взрослом эмбрионе — не те, какие были у зародыша. И если свиные клетки будут преобладать в соотношении миллион к одному — это не так страшно, как если человеческие возьмут верх. И на свет появится существо, больше похожее на человека, чем на поросенка, с человеческим мозгом, но с уродствами, вызванными обстоятельствами эксперимента. Чтобы медики могли спасать людей, нужно, похоже, в том числе более точное определение человека — и более точный ответ на вопрос, откуда люди берутся.

Эмбрион—гибрид человека и свиньи. Биологи из США, Японии и Испании ввели стволовые клетки человека в яйцеклетку свиньи. Выращенный в утробе животного эмбрион ученые назвали химерой — в честь существа из античной мифологии. В перспективе эти исследования позволят ученым выращивать органы для трансплантации и изучать природу генетических заболеваний. Для того, чтобы исследования продвинулись дальше, ученые должны не только доказать эффективность опытов, но и их этичность.

В чем суть эксперимента

Группа американских ученых из калифорнийского Института биологических исследований Солка ввели человеческие стволовые клетки в эмбрион свиньи на ранней стадии развития и поместили его в утробу животного. Спустя месяц стволовые клетки развились в зародыши с зачатками человеческих тканей: сердца, печени и нейронов.

Из 2075 пересаженных эмбрионов до 28-дневной стадии развились 186. Полученные эмбрионы были «крайне нестабильными», признают ученые, но пока это самый успешный гибрид человека. Ученые пишут, что полученная химера — важнейший шаг к созданию эмбрионов животных с функционирующими человеческими органами.

Источник: Cell Press

Конечная цель заключается в том, чтобы вырастить функциональные и готовые к трансплантации органы, проведенные эксперименты — первый шаг к этому, пишет WP со ссылкой на ученых из Калифорнии.

О результатах похожего исследования рассказывается в первом номере журнала Nature за 2017 год. Как следует из публикации, группе ученых из Японии и США удалось вырастить поджелудочную железу мыши внутри крысы, а затем пересадить вырабатывающий инсулин орган больным диабетом мышам, что не вызвало иммунного отторжения. Это стало первым подтверждением, что межвидовая трансплантация органов возможна, пишет Nature.

Зачем это нужно

Главная цель ученых — выращивание человеческих органов с помощью эмбрионов крупных животных. По данным американского Минздрава, каждый день в ожидании органов для трансплантации умирают 22 человека. Ученые давно пытались выращивать искусственные ткани вне человеческого тела, но органы, развивающиеся в чашке Петри (так называют емкость для выращивания микроорганизмов), сильно отличаются от выращенных внутри живого организма.

Технология выращивания искусственных органов, скорее всего, будет похожа на эксперимент с мышами и крысами, пишет The Washington Post. Крысы, которым в рамках описанных в Nature исследований подсаживались новые клетки, были генетически модифицированные. Они не могли вырастить собственную поджелудочную, поэтому стволовые клетки «заполняли свободное пространство». Часть появляющихся у крыс желез была пересажена больным мышам. После операции мыши жили со здоровым уровнем глюкозы в течение года — полжизни в человеческих масштабах, пишет WP.

Исследование доказало, что межвидовая трансплантация не только возможна, но и эффективна, прокомментировал результаты старший автор исследования Хиромицу Накаучи из Стэнфордского университета. Ученым таким же образом удалось «вырастить» сердце и глаза.

Какие сложности

Ученые из Калифорнии добились первых результатов спустя четыре года после начала исследований. По их словам, свиньи — идеальные животные для эксперимента. Их органы примерно такого же размера, однако они растут гораздо быстрее человеческих. В дальнейших исследованиях фактор времени должен стать главным, признаются исследователи.

«Пока количество человеческих клеток в полученном эмбрионе очень незначительное, а весь процесс проходит на ранней эмбриональной стадии, поэтому пока рано говорить о создании полноценной химеры», — прокомментировал результат коллег Накаучи. В полученных эмбрионах на 100 000 клеток свиньи приходилась только одна человеческая (эффективность 0,00001%). «Достаточно добиться эффективности от 0,1% до 1% клеток», — объяснил BBC один из авторов калифорнийского исследования.

После четырех недель развития ученые из Института Солка по этическим соображениям уничтожили полученные эмбрионы, чтобы предотвратить полноценное развитие химеры. «Мы лишь хотели ответить на вопрос, смогут ли человеческие клетки вообще приспоосбиться», — объяснил один из авторов.

Этические вопросы

В 2015 году Национальные институты здравоохранения США наложили мораторий на финансирование исследований, в рамках которых скрещиваются клетки человека и животных. Поскольку стволовые клетки могут развиться в любую человеческую ткань, в перспективе может быть создано животное с человеческим мозгом, считают некоторые биоэтики. Другие указывают на нарушение «символической границы» между человеком и животным, пишет WP.

Калифорнийские ученые считают, что страхи вокруг «химер» больше походят на мифы, чем на контролируемые эксперименты, но признают, что возможность рождения животного с человеческими клетками вызывает беспокойство.

В августе Национальные институты здравоохранения США допустили возвращение к финансированию исследований химер. Организация предлагает разрешить введение стволовых клеток людей в эмбрионы на ранней стадии развития крупных животных за исключением других приматов.

«Нам наконец-то удалось доказать, что такой подход к созданию органов возможен и безопасен. Надеюсь, люди поймут это. Многие считают, что это из раздела научной фантастики, но сейчас это становится реальностью», — прокомментировал возможное снятие запрета Накаучи.

Даниил Сотников

Фото на превью: кадр из фильма «Химера»

Фото в шапке: WikiCommons