ОФС.1.2.4.0006.15 Бактериальные эндотоксины. Эндотоксины

По своей химической структуре эндотоксины являются сложным комплексом, состоящим из нетоксичного белка и фосфолипидополисахарида, который выдерживает нагревание до 80-100° С. Эндотоксины менее ядовиты, чем экзотоксины, и не обладают специфическим действием на организм человека. Вне зависимости от того, какому из микробов принадлежит эндотоксин, действие его на организм сходно и проявляется картиной общего отравления.

Отравление организма больных эндотоксинами имеет место при большинстве инфекционных заболеваний.

При этом происходит поражение сосудистой системы со спазмом мелких сосудов и образованием в них тромбов. Развивается кислородное голодание тканей. Наблюдается нарушение функций центральной нервной системы, сердца, почек и ряда других жизненно важных органов. Эндотоксины вызывают также лихорадочную реакцию, местные воспалительные изменения и снижение количества лейкоцитов.

Крайне тяжелая степень отравления организма эндотоксинами известна в клинике под названием эндотоксического шока.

Такое состояние возникает в тех случаях, когда происходит быстрый распад в организме большого количества микробов и при этом освобождается сразу огромное количество эндотоксина. Разрушение микробов наступает или под воздействием защитных факторов организма или при лечебном применении таких препаратов, которые обладают; микробоцидным (т. е. убивающим микробы) действием, как, например, пенициллин или стрептомицин.

Циркуляция эндотоксина в общем кровотоке не приводит к образованию в организме скольконибудь значительных количеств антиэндотоксических антител, поэтому антиэндотоксический иммунитет является очень слабым.

Не удается получить достаточно эффективную антиэндотоксическую сыворотку и путем многократной иммунизации животных, так как эндотоксины являются плохими антигенами и отличаются к тому же антигенной разнородностью.

Поскольку и получить, и подобрать нужную лечебную сыворотку практически очень трудно, антиэндотоксические сыворотки не нашли широкого применения при лечении больных. При иммунизации животных бактериями вырабатываются антитела не против эндотоксинов, а против самих микробов, т. е. иммунитет имеет антимикробную направленность.

« Карантинные инфекции», Б.А. Мокров

Дерматовенерология , Национальное руководство , 2011, с.99-110

Кишечный эндотоксин и воспаление

М.Ю. Яковлев

Современный уровень научных знаний позволяет дать воспале­ нию следующее определение: «Воспаление - аварийный механизм иммунной защиты, направленный на распознавание, уничтожение и элиминацию чужеродных и собственных антигенов, носящий адаптивный и/или патогенный характер». Другими словами, вос­ паление - всегда деструктивный процесс, даже когда он жизненно необходим.

Междисциплинарное определение, сформулированное на III съезде Российского общества патологов, основано на учении И.И. Мечникова «О роли кишечного фактора в механизмах ста­ рения»; концепции Г. Селье «Общий адаптационный синдром» о первопричинности неспецифических факторов; «Клонально- селекционной теории иммунитета» Ф. Бернета и «Эндотоксиновой концепции физиологии и патологии человека».

Эти научные теории стимулировали клинические, молекуляр­ ные и генетические исследования, позволившие систематизировать ранее полученные данные о работе врожденного и адаптивного иммунитета, их взаимодействии между собой и инфекционными агентами. Знания об этом аспекте проблемы до недавнего времени были фрагментарными и не позволяли получить четких пред­ ставлений о механизмах регуляции иммунной системы кишечным эндотоксином на уровне целостного организма и участии общих «неспецифических» факторов в реализации и инициации воспа­ ления, поскольку без участия системного фактора невозможны и локальные его проявления.

Эндотоксин - термостабильный компонент наружной части клеточной мембраны всех грамотрицательных микроорганизмов, липополисахарид (ЛПС), состоящий из 3 частей: гидрофобного липида А - гликолипида Re -хемотипа , идентичного для эндоток­ синов всех грамотрицательных микроорганизмов; гидрофильного ядра и полисахарида, которые индивидуальны и позволяют вери­ фицировать грамотрицательные микроорганизмы с помощью серо­ логических методов исследования. Наличие гликолипида в моле­куле различных по происхождению ЛПС определяет общность их биологических свойств: пирогенного и противоопухолевого эффек­ тов, способности активировать дифференцировку клеток миелоцитарного ростка костного мозга и перекисное окисление липидов, стимулировать противовирусный и антибактериальный иммунитет,

индуцировать синдромы диссеминированного внутрисосудистого свертывания и полиорганной недостаточности.

Весь этот уникальный спектр биологической активности эндотоксинов до недавнего времени (до 1987-1988) рассматривали исключительно в формате сеп­ сиса и иных инфекционных заболеваний, в патогенезе которых предполагалась ведущая роль ЛПС экзогенных грамотрицательных бактерий. Участие кишечного эндотоксина в патогенезе «неинфекционной патологии», и тем более в физиологи­ческих процессах адаптации, не рассматривалось. Предполагалось, что в здоровом организме токсина (эндотоксина) не должно быть по определению. Такого же мне­ ния был и автор настоящей главы, пока при помощи высокоочищенных антител к Re -гликолипиду в мазках периферической крови практически здоровых пациентов не был обнаружен ЛПС, фиксированный на поверхности полиморфноядерных лейкоцитов.

Это позволило постулировать новое биологическое явление - системную эндотоксинемию и предположить важную роль кишечного ЛПС в регуляции активности иммунитета и инициации воспаления. Сначала были разработаны новые методы исследования, установлен диапазон нормативных («физиоло­гических») показателей концентрации эндотоксина в сыворотке и количества ЛПС-позитивных полиморфноядерных лейкоцитов в периферической крови условно здоровых волонтеров; затем установлен факт участия избытка ЛПС в патогенезе различных заболеваний, впоследствии названный «эндотоксиновой агрессией»; и, наконец, были идентифицированы рецепторы врожденного имму­ нитета - TLR 4, взаимодействующие с ЛПС и определяющие активность иммун­ ной системы. Таким образом, был верифицирован один из основных элементов ранее постулированной системной эндотоксинемии , определились молекулярные механизмы иммунорегулирующего действия кишечного ЛПС, реализуемого, как и предполагалась ранее, при непосредственном участии гипоталамо-гипофизарно- адреналовой системы. Стресс (физический, психоэмоциональный , иной этио­логии) обусловливает дополнительный сброс по портокавальным анастомозам «богатой» кишечным эндотоксином портальной крови, минуя печень, в общий кровоток. В состоянии относительного покоя, т.е. при отсутствии стрессорных воздействий, больше 95% портальной крови поступает в печень, где весь ЛПС элиминируется системой фиксированных макрофагов. Печень - наиболее «нуж дающийся» в эндотоксинах орган, поскольку при их взаимодействии с TLR 4 в макрофагах индуцируется синтез наиболее важных провоспалительных цитоки-нов , обеспечивающих базовый физиологический тонус противоопухолевого, анти­ бактериального и противовирусного иммунитета 1 . Не потребленный печенью ЛПС с желчью возвращается в кишечник, но, вероятнее всего, уже без полисахаридной части. Часть эндотоксина (меньше 5%) поступает с портальной кровью в общую гемоциркуляцию и поддерживает в состоянии физиологического тонуса все иммунокомпетентные органы (костный мозг, тимус и др.) и клетки (антигенпрезентирующие , полиморфноядерные лейкоциты, лимфоциты и др.). Таким образом, системная эндотоксинемия выполняет крайне важную функцию по обеспечению физиологического тонуса иммунной системы. При экстраординарных ситуациях (испуг, страх, оргазм, физическая нагрузка), всегда сопровождаемых стрессом, иммуностимулирующее действие эндотоксинемии усиливается, поскольку возрас­тает концентрация кишечного ЛПС в общем кровотоке. Очевидно, поэтому физио­ логические концентрации эндотоксинов колеблются в весьма широком диапазоне (от близкой к нулю до 1,0 EU / ml ) и имеют неуклонную тенденцию к увеличению с возрастом. В очень редких случаях ЛПС в сыворотке выявить не удается (вернее, его концентрация составляет меньше 0,0001 EU / ml ). Для этих пациентов харак­ терно значительное снижение основных показателей иммунного статуса. Однако существует также феномен эндотоксиновой толерантности - отсутствие харак­ терной пирогенной реакции при достаточно высоких (значительно превышающих верхнюю границу нормы) концентрациях эндотоксинов в крови. Для реализации биологических свойств эндотоксина (в частности, для взаимодействия ЛПС с TLR 4) необходимы липопротеины высокой плотности (ЛПВП) ЛПС-связывающий про­ теин (белок острой фазы, синтезируемый печенью), передающий эндотоксины рецептору CD 14, и некоторые другие белковые молекулы и кофакторы . Дефицит одного или нескольких вышеперечисленных факторов, большинство из которых синтезируется в печени, может служить причиной иммунодефицитных состояний, чаще всего возникающих при использовании противовоспалительных лекарствен­ных средств у больных с печеночной недостаточностью и пациентов с концентра­ цией ЛПС в общем кровотоке ниже 0,0001 EU / ml .

1 Н аверное, именно поэтому гнотобионтные животные практически беззащитны перед инфекция­ ми и значительно чаще подвержены онкологическим заболеваниям. «Безмикробные » животные лишены иммуностимулирующего эффекта кишечного ЛПС, так как не имеют грамотрицательной микрофлоры. (Примет, авт.)

Для более целостного понимания излагаемого материала мы сочли целесо­ образным кратко изложить основополагающие принципы работы иммунной системы и взаимодействия врожденного и адаптивного иммунитета.

Врожденный иммунитет обусловлен активностью нескольких сотен заро­ дышевых генов, обеспечивающих синтез соответствующего числа рецепторов. Именно они участвуют в борьбе с инфекцией в первые 3-5 сут (до формирования клонов лимфоцитов и нарабатывания пула специфических антител) за счет акти­вации комплемента, действия антимикробных пептидов и активности фагоцитов. Кроме того, врожденный иммунитет «организует» работу адаптивного, в частно­ сти, за счет взаимодействия ЛПС с TLR 4 2 и образования главных провоспалитель-ных цитокинов , обеспечивающих реализацию специфического иммунного ответа. Таким образом, эволюционно более древняя система врожденного иммунитета управляет более «молодой » адаптивной.

Адаптивный иммунитет во многом обеспечивается случайным процессом соматических мутаций лимфоцитов, в результате которых появляются рецепторы, способные распознать любой (даже синтетический) антиген, в том числе аутоантигены , антитела (AT ) к которым постоянно присутствуют в общем кровотоке. Количество таких рецепторов в физиологических условиях достигает астрономи­ ческих значений. Этот принцип организации адаптивного иммунитета позволяет обеспечить надежную систему защиты организма от инфекций и потенциально вредных мутаций, с одной стороны, а с другой - несет в себе большую опасность аутоиммунного повреждения. Принципиально важным представляется тот факт, что в регуляции данного процесса участвует врожденный иммунитет, активность которого, в свою очередь, во многом определяются концентрацией ЛПС в общем кровотоке.

Врожденный и адаптивный иммунитет работают в тандеме, что можно про­иллюстрировать на примере фагоцитов, которые также активируются кишечным эндотоксином. Самая многочисленная популяция иммунокомпетентных клеток находится на пике взаимодействия врожденного и адаптивного иммунитета в силу наличия на своей поверхности Fc -рецепторов, которые способны акцептировать

все AT , а значит специфически взаимодействовать с самыми различными анти­ генами, что позволяет характеризовать нейтрофил как фагоцит мультиспецифического действия, который ранее скрывался под термином «неспецифичность ».

В физиологических условиях 5-7% циркулирующих лейкоцитов несут на своей поверхности ЛПС, и приблизительно такое же количество фагоцитов способ­ ны связывать эндотоксины in vitro . При взаимодействии с ЛПС фагоцитарный потенциал нейтрофилов и их адгезивная активность возрастают. Они покидают сосудистое русло, а затем и организм (в составе экскретов: кала, мочи, пота и др.), выполняют защитную функцию «пограничников-камикадзе» в строме органов и тканей, непосредственно соприкасающихся с внешней средой.

Таким образом, системная эндотоксинемия (СЭЕ) - механизм регуля­ ции активности иммунитета кишечным ЛПС при непосредственном уча­ стии гипоталамо-гипофизарно-адреналовой системы. Стресс, являющийся атрибутом самой жизни, с одной стороны обеспечивает вброс в общий кровоток дополнительной порции универсального иммуностимулятора , а с другой - ниве­ лирует мощный провоспалительный эффект его избытка повышенным синтезом глюкокортикоидов (рис. 8-1). Этим достигается весьма нестабильное состояние под названием «сбалансированный иммунный статус», который в условиях доста­ точно продолжительного периода адаптации (длительного стресса) может быть нарушен. Увеличение концентрации кишечного ЛПС в общем кровотоке может превысить физиологически допустимые значения (они сугубо индивидуальны и имеют возрастные особенности) и служить единственной причиной инициации локальной воспалительной реакции (или ее обострения) и синдрома системного воспалительного ответа, с большей или меньшей выраженностью всегда сопро­вождающего воспаление (повышение температуры тела, концентрации белков острой фазы, СОЭ; лейкоцитоз и др.).а даптации организма к постоянно изменяющимся условиям внешней и внутренней среды принимает непосредственное участие в регуляции активности иммунитета и инициации воспаления, опосредованно - в увеличении концентрации кишечного эндотоксина в общем кровотоке. Таким образом, стресс может быть единственной причиной развития эндотоксиновой агрессии и, как следствие, - воспаления.

Рис. 8-1. Системная эндотоксинемия - сбалансированный иммунный статус .

Рис. 8-2. Эндотоксиновая агрессия как причина развития воспаления.



Эндотоксиновая агрессия - патологический процесс, обусловленный избыт­ ком ЛПС кишечного и/или иного происхождения в общем кровотоке, имеющий свои клинико-лабораторные проявления, является «предболезнью» или уни­ версальным общим фактором патогенеза заболеваний и синдромов, который манифестируется той или иной нозологической формой заболевания в силу кон­ ституциональной и/или приобретенной предрасположенности 3 . Этот универсаль­ ный эффект эндотоксиновой агрессии реализуется как минимум тремя путями: индукцией аутоиммунных реакций (в силу особенностей адаптивного иммуни­тета), формированием гиперергического иммунного фона и аутоагрессивностью лейкоцитов. Причины развития эндотоксиновой агрессии очень разнообразны: наиболее частая - стресс, а также любые патологические процессы, приводящие к повышению проницаемости кишечного барьера (пищевые отравления и острые кишечные инфекции, алкогольный эксцесс и дисбактериоз , непривычно жирная и острая пища, острые вирусные инфекции, шок и др.), портальная гипертензия и заболевания печени, хроническая и острая почечная недостаточность (поскольку именно почки служат основным ЛПС-выводящим органом). Наиболее наглядно механизм провоспалительного действия в весьма упрощенном виде (рис. 8-2) можно представить на примере длительного стресса (психоэмоциональная пере­грузка, депрессии, гипер - и гипотермия, запредельная физическая нагрузка и др.).

3 Введению этого термина предшествовали многолетние исследования многих отечественных и зарубежных ученых, среди которых создание доступных для клинической практики методов определения интегральных показателей концентрации ЛПС и активности антиэндотоксинового иммунитета, определение нормативных показателей. Именно поэтому в данной главе мы ограни­чимся лишь наиболее важными из них. (Примет, авт.)

Стрессиндуцированный провоспалительный эффект эндотоксинов в опреде­ ленной степени купируется противоположным действием глюкокортикоидов . Для синтеза этих гормонов используется холестерин, поступающий в корковый слой надпочечников исключительно в комплексе с липопротеинами высокой плотности (ЛПВП), сродство которых к ЛПС значительно выше, чем к холестерину. Именно поэтому избыток эндотоксинов обусловливает дефицит ЛПВП, который частично блокирует синтез глюкокортикоидов и приводит к усилению провоспалительного эффекта. В результате развивается гиперхолестеринемия и увеличивается «атеро-генный индекс», что долгие годы ошибочно считалось проявлением нарушения липидного обмена и основой развития атеросклероза. В настоящее время мало у кого возникают сомнения в отношении воспалительной природы атеросклероза, в частности роли «эндотелиальной дисфункции» в его инициации (эндотелиальная дисфункция, в свою очередь, индуцируется эндотоксиновой агрессией, что было предсказано еще в 1987 г.). Весьма убедительно эту концепцию подтверждает снижение концентрации «атерогенных » фракций липопротеинов (низкой и очень низкой плотности) при уменьшении уровня содержания ЛПС (<1,0 EU / ml ) в сыво­ ротке крови.

Эндотоксины имеются только у грамотрицательных бактерий. Они представлены липополисахаридами и связанными с ними белками. Особенность эндотоксинов в том, что они термостабильны и высвобождаются из бактериальных клеток после их разрушения. Эндотоксины, в отличие от экзотоксинов, не обладают специфичностью действия. Их токсичность и пирогенность обусловлены липидом А, входящим в состав ЛПС и имеющим сходную структуру у разных грамотрицательных бактерий. Пирогенное действие эндотоксинов не связано с их непосредственным действием на терморегулирующие центры головного мозга. Они индуцируют выброс какого-то пирогенного вещества из полиморфно-ядерных лейкоцитов. Эндотоксины являются воспалитель­ными агентами; они увеличивают проницаемость капилляров и оказывают разруша­ющее действие на клетки. Их воспалительное и пирогенное действие неспецифично. Многообразие проявлений отравления эндотоксином обусловлено не только самим ЛПС, но и высвобождением многочисленных биологически активных соединений, синтез которых он индуцирует в организме человека и животных (гистамин, серотонин, простагландины, лейкотриены и др., всего более 20). Эти вещества и обусловливают нарушения в различных органах и тканях.

Все три компонента ЛПС - липид А, ядро полисахарида и его боковая цепочка из повторяющихся cахаров - обладают выраженными антигенными свойствами. ЛПС стимулирует синтез интерферонов, активизирует систему комплемента по классическому пути, оказывает митогенное действие на лимфоциты, а также аллер­генное действие. Его токсические свойства, в отличие от экзотоксинов, не снимают­ся при обработке формалином, и ЛПС не превращается в анатоксин.

Экзотоксины. Их продуцируют как грамположительные, так и грамотрицатель­ные бактерии. У грамположительных бактерий экзотоксины активно секретируются через ЦМ и клеточную стенку в окружающую среду с использованием специальных секретирующих систем. У грамотрицательных бактерий (холерный вибрион, токсигенные кишечные палочки, сальмонеллы) некоторые экзотоксины (энтеротоксины) синтезируются только при определенных условиях непосредственно в инфициро­ванном организме и нередко сохраняются в цитоплазме, освобождаясь из клетки только после ее разрушения.

Все известные бактериальные экзотоксины - белки, среди них есть термола­бильные и термостабильные. С белковой природой экзотоксинов связаны их основ­ные свойства: они обладают высокой силой действия (самые сильные токсины в природе - микробного происхождения), высокой избирательностью и связанной с ней специфичностью действия (картина столбняка у лабораторных животных оди­накова, как при заражении их возбудителем, так и его экзотоксином), которое они проявляют после некоторого латентного периода. Экзотоксины являются сильными антигенами, а некоторые - даже суперантигенами. Они индуцируют образование в организме антител, т. е. антитоксинов, которые нейтрализуют их действие. При обра­ботке формалином экзотоксины обезвреживаются и превращаются в анатоксины. Анатоксины лишены токсических свойств, но сохраняют свою способность индуциро­вать синтез антитоксинов, поэтому широко используются для создания искусственно­го иммунитета против дифтерии, столбняка, ботулизма и других заболеваний.

Термин «пироген» происходит от греческого “pyreto” – лихорадка. Пирогенами называют вещества, способные вызывать повышение температуры тела. Пирогенную реакцию способны вызывать вещества самой различной природы и разного происхождения. К пирогенам можно отнести грамотрицательные бактерии и их токсины, грамположительные бактерии и их токсины, вирусы и продукты их жизнедеятельности, а также стероиды и пр. В области контроля качества инъекционных лекарственных средств практическое значение имеют бактериальные эндотоксины, которые являются фрагментами внешней стенки грамотрицательных бактерий.

Грамотрицательные бактерии обладают двуслойной клеточной стенкой, которая окружает цитоплазматическую мембрану. Первый слой - очень тонкая (толщиной 1 нм) нелипидная мембрана, состоящая из пептидогликана. Его называют также гликопептидом или мукопептидом. Это сложный матрикс, содержащий полисахаридные цепи, связанные друг с другом поперечными сшивками из коротких пептидных цепей. Второй слой клеточной стенки - липидная мембрана толщиной 7,5 нм. Именно на этой внешней мембране и расположены эндотоксины (липополисахариды). Молекулы эндотоксина обеспечивают структурную целостность, отвечают за многие физиологические функции, в том числе определяют патогенные и антигенные свойства бактерий. Структурно молекула эндотоксина делится на три части – Липид А , Кор и О-специфическую цепь .


О-специфическая цепь Кор Липид А
Липид А состоит из дисахарида, фосфата и жирных кислот. Жирные кислоты, входящие в состав Липида А, могут быть насыщенными и ненасыщенными. Наиболее часто в состав Липида А входят кислоты: пальмитиновая, лауриновая, глутаминовая, меристиновая. Участок Липида А является наиболее константным участком молекулы ЛПС, и его строение схоже у многих бактерий.
О-специфическая цепь липополисахаридов построена из повторяющихся олигосахаридов. Наиболее распространенными сахарами, входящими в состав О-специфической цепи, являются глюкоза, галактоза, рамноза. Этот участок молекулы придает ей гидрофильные свойства, благодаря которым ЛПС хорошо растворимы в воде. Полисахаридная часть является наиболее вариабельной частью молекулы ЛПC. Часто этот фрагмент молекулы называют О-антигеном, так как именно он отвечает за антигенную активность грамотрицательных бактерий.
Кор - центральная часть молекулы, связывающая О-антиген с Липидом А. Формально структура кора подразделяется на внешнюю и внутреннюю части. В состав внутренней части кора обычно входят остатки L-глицеро-О-манногептозы и 2-кето-3-дезоксиоктоновой кислоты (КДО). КДО содержит 8 атомов углерода и в природе практически нигде больше не встречается.
Кроме липополисахаридов в состав внешней стенки грамотрицательных бактерий входят и белки (внешняя мембрана на ¾ состоит из ЛПС, и только ¼ приходится на белковые компоненты). Эти белки вместе с ЛПС образуют белково-липополисахаридные комплексы разного размера и молекулярной массы. Именно эти комплексы и называются бактериальными эндотоксинами. Очищенные препараты, которые используются в качестве стандартов, лишены пептидных фрагментов и представляют собой чистый препарат липополисахарида. Тем не менее, термин «бактериальные эндотоксины» применяется с равным успехом и к естественным эндотоксинам, оказавшимся в растворе в результате разрушения бактерий, и к чистым препаратам ЛПС.
На внешней стенке одной грамотрицательной бактерии может содержаться до 3,5 млн. молекул ЛПС. После ее гибели все они оказываются в растворе. Эндотоксины грамотрицательных бактерий остаются биологически активными молекулами и после гибели бактерий. Молекула эндотоксина температуростабильна и легко выдерживает цикл стерилизации в автоклаве. Малые размеры молекул эндотоксинов позволяют им легко проходить через мембраны, используемые для стерилизации растворов (0,22 мкм). Поэтому эндотоксины могут присутствовать в готовых лекарственных формах, даже произведенных в асептических условиях и прошедших финишную стерилизацию.
Бактериальные эндотоксины являются исключительно активными (сильными) пирогенами. Для развития лихорадочного приступа достаточно присутствия бактериальных эндотоксинов в инфузионном растворе в концентрации 1 нг/мл (около 10 ЕЭ/мл). Другие пирогены менее активны, и для развития пирогенного ответа их концентрация должна быть в 100-1000 раз больше. Обычно термины «пирогены» и «эндотоксины» употребляются как синонимы и, хотя не все пирогены являются эндотоксинами, наиболее значимыми являются именно эндотоксины грамотрицательных бактерий.

Токсические вещества, синтезируемые бактериями, по химической природе относятся к белкам (экзотоксины) и ЛПС (эндотоксины) – локализуются в стенке Б!! и освобождаются только после их разрушения.

Эндотоксины. К ним относятся липополисахариды (ЛПС), которые содержатся в клеточной стенке грамотрицательных бак­терий. Токсические свойства определяются всей молекулой ЛПС , а не отдельными ее частями: ПС или липидом А. Хорошо изучены эндотоксины энтеробактерий (эшерихии, шигеллы и сальмонеллы, бруцеллы, туляремийные бактерии).

ЛПС (эндотоксины) в отличие от экзотоксинов более устойчивы к повышенной t°С, менее ядовиты и малоспецифичны. При введении в Ò подопытных Ж!! вызывают примерно одинаковую реакцию, независимую от того, из каких гр– Б!! они выделены. При ВВЕДЕНИИ БОЛЬШИХ ДОЗ наблюдается угнетение фагоцитоза, явления токсикоза, слабость, одышка, расстройством кишечника (диарея), падением деятель­ности и ↓ t°С тела. При введении НЕБОЛЬШИХ ДОЗ – обратный эффект: стимуляция фагоцитоза, t°С тела.

У ЛЮДЕЙ поступление эндотоксинов в кровяное русло приво­дит к лихорадке в результате их действия на клетки крови (гранулоциты, моноциты), из которых выделяются эндогенные пирогены. Возникает ранняя лейкопения , которая сменяется вторичным лейкоцитозом . Усиливается гликолиз Þ может возникнуть гипо­гликемия. Также развивается гипотония (по­ступление в кровь количества серотонина и кининов), нарушается кровоснабжение органов и ацидоз.

ЛПС активирует фракцию С3 комплемента по АЛЬТЕРНАТИВНОМУ ПУТИ Þ ↓ его содержания в сыворотке и накопление биологически активных фракций (С3а, С3b, С5а и др.). Большие количества поступившего в кровь эндоток­сина приводят к ТОКСИКО-СЕПТИЧЕСКОМУ ШОКУ.

ЛПС – сравнительно слабый иммуноген. Сыворотка крови животных, иммунизированных чистым эндотоксином, не облада­ет высокой антитоксической активностью Þ не способна полно­стью нейтрализовать его ядовитые свойства.

Некоторые бактерии одновременно образуют как белковые токсины, так и эндотоксины, например кишечная палочка и др.

8. Генетические аспекты патогенности.?(некорректный ответ)

АНТИГЕНЫ БАКТЕРИЙ

Каждый мкÒ содержит несколько АГ. Чем сложнее его структура, тем больше АГ. У мкÒ различают ГРУППОСПЕЦИФИЧЕСКИЕ АГ (встречаются у разных видов одного и того же рода или семейства), ВИДОСПЕЦИФИЧЕСКИЕ (у различных представителей одного вида) и ТИПОСПЕЦИФИЧЕСКИЕ (ВАРИАНТНЫЕ) АГ (у разных вариантов в пределах одного и того же вида → се­ровары). Среди бактериальных антигенов различают Н, О, К и др.



Жгутиковые Н-АГ – белок флагеллин, разрушается при нагре­вании, но после обработки фенолом сохраняет свои антигенные свойства.

Соматический О-АГ – ЛПС # стенки гр–. Детерминантными группами являются концевые повторяющиеся звенья ПС цепей, присое­диненные к основной части. Состав сахаров в детерминантных группах и их число, у разных бактерий неодинаковы. Чаще всего в них содержатся гексозы и аминосахара. О-АГ термостабилен, сохраняется при кипячении в течение 1-2 ч, не разрушается после обработки формалином и этанолом.

К-АГ (капсульные) – хорошо изучены у эшерихий и сальмонелл. Как и О-АГ свя­заны с ЛПС # стенки и капсулой, но в отличие от О-АГ содержат в основном кислые ПС (уроновые кислоты). По чувствительности к температуре К-АГ подразделяют на А- (выдерживает кипячение более 2ч), В- (недолгое нагревание до 60°С) и L-АГ (термолабильны). К-АГ располагаются более поверхностно Þ для выявления О-АГ необходимо предварительно разрушить капсулу, что достигается кипячением культур.

К капсульным анти­генам относится так называемый Vi-АГ (обнаружен у брюшнотифозных и некоторых др энтеробактерий, обла­дающих высокой вирулентностью).



ПС капсульные АГ (часто типоспецифические) есть у пневмококков, клебсиелл и других бактерий, образующих выра­женную капсулу. У сибиреязвенных бацилл К–АГ состоит из полипептидов.

Токсины (если они являются растворимыми белками) и ферменты – облада­ют полноценными АГ.

АГ ВИРУСОВ. АГ простых вирионов связаны с их нуклеокапсидами, по хим составу это рибонуклеопротеиды или дезоксирибонуклеопротеиды. Они растворимы Þ обозна­чаются как S-антигены (solutio - раствор). У сложных вирусов одни АГ связаны с нуклеокапсидом, другие – с гликопротеидами суперкапсидной оболочки. Мно­гие вирионы содержат особые поверхностные V-АГ – гемагглютинин (выявляется в реакции ГА или гемадсорбции, РТГА) и фермент нейраминидазу.

Вирусные антигены м.б. группоспецифическими или типоспецифическими, эти различия учитываются при иден­тификации вирусов.

Гетерогенные АГ (гетероантигены) – это общие АГ, обнаруженные у представителей различных видов микроорганиз­мов, животных и растений.

АГ Ò ЧКА И Ж!!

Белковые АГ Ж!! х-ся выраженной видовой специфичностью, на основании этого можно судить о родстве различ­ных видов животных и растений. Белковые АГ тканей и ## Ж!! обладают так­же органной и тканевой специфичностью → изучения клеточной диф­ференцировки и опухолевого роста.

Опухолевые антигены. В результате злокачественной транс­формации нормальных ## в опухолевые в них начинают проявляться специфические АГ, отсут­ствующие в нормальных ##. Выявляют специфические опухолевые Т-АГ (tumor – опухоль) → иммунологические методы ранней диагностики различных опухолей человека.

Аутоантигены. Собственные АГ Ò, которые в норме не проявляют своих АГ свойств, вызывают в определенных условиях образование антител (аутоантител), назы­ваются аутоАГ. В эмбриональном периоде формируется естественная иммунологическая толерантность организма к аутоАГ, которая обычно сохраняется на протяжении всей жизни. Утрата естественной толерантности → аутоиммунные заболе­вания.

Изоантигены. Это антигены, по которым отдельные индиви­дуумы или группы особей одного вида различаются между собой: система АВО, резус и др.

9. Антиген.

Антигены разделены на полные (иммуногенные) , всегда проявляющие иммуногенные и антигенные свойства, и неполные (гаптены) , не способные самостоятельно вызывать иммунный ответ.

Гаптены обладают антигенностью, что обусловливает их специфичность, способность избирательно взаимодействовать с антителами или рецепторами лимфоцитов, определяться иммунологическими реакциями. Гаптены могут стать иммуногенными при связывании с иммуногенным носителем (например, белком), т.е. становятся полными.

За специфичность антигена отвечает гаптенная часть, за иммуногенность- носитель (чаще белок).

Иммуногенность зависит от ряда причин (молекулярного веса, подвижности молекул антигена, формы, структуры, способности к изменению). Существенное значение имеет степень гетерогенности антигена, т.е. чужеродность для данного вида (макроорганизма), степени эволюционной дивергенции молекул, уникальности и необычности структуры. Чужеродность определяется также молекулярной массой, размерами и строением биополимера, его макромолекулярностью и жесткостью структуры. Белки и другие высокомолекулярные вещества с более высоким молекулярным весом наиболее иммуногенны. Большое значение имеет жесткость структуры, что связано с наличием ароматических колец в составе аминокислотных последовательностей. Последовательность аминокислот в полипептидных цепочках- генетически детерминированный признак.

Антигенность белков является проявлением их чужеродности, а ее специфичность зависит от аминокислотной последовательности белков, вторичной, третичной и четвертичной (т.е. от общей конформации белковой молекулы) структуры, от поверхностно расположенных детерминантных групп и концевых аминокислотных остатков. Коллоидное состояние и растворимость- обязательные свойства антигенов.

Специфичность антигенов зависит от особых участков молекул белков и полисахаридов, называемых эпитопами. Эпитопы или антигенные детерминанты- фрагменты молекул антигена, вызывающие иммунный ответ и определяющие его специфичность. Антигенные детерминанты избирательно реагируют с антителами или антиген- распознающими рецепторами клетки.

Структура многих антигенных детерминант известна. У белков это обычно фрагменты из 8- 20 выступающих на поверхности аминокислотных остатков, у полисахаридов- выступающие О- боковые дезоксисахаридные цепи в составе ЛПС, у вируса гриппа- гемагглютинин, у вируса иммунодефицита человека- мембранный гликопептид.

Эпитопы качественно могут отличаться, к каждому могут образовываться “свои” антитела. Антигены, содержащие одну антигенную детерминанту, называют моновалентными, ряд эпитопов- поливалентными. Полимерные антигены содержат в большом количестве идентичные эпитопы (флагеллины, ЛПС).

Основные типы антигенной специфичности (зависят от специфичности эпитопов).

1.Видовая - характерна для всех особей одного вида (общие эпитопы).

2.Групповая - внутри вида (изоантигены, которые характерны для отдельных групп). Пример- группы крови (АВО и др.).

3.Гетероспецифичность - наличие общих антигенных детерминант у организмов различных таксономических групп. Имеются перекрестно- реагирующие антигены у бактерий и тканей макроорганизма.

а. Антиген Форсмана- типичный перекрестно- реагирующий антиген, выявлен в эритроцитах кошек, собак, овец, почке морской свинки.

б.Rh- система эритроцитов. У человека Rh- антигены агглютинируют антитела к эритроцитам обезьян Macacus rhesus, т.е. являются перекрестными.

в. Известны общие антигенные детерминанты эритроцитов человека и палочки чумы, вирусов оспы и гриппа.

г. Еще пример- белок А стрептококка и ткани миокарда (клапанный аппарат).

Подобная антигенная мимикрия обманывает иммунную систему, защищает от ее воздействия микроорганизмы. Наличие перекрестных антигенов способно блокировать системы, распознающие чужеродные структуры.

4.Патологическая. При различных патологических изменениях тканей происходят изменения химических соединений, что может изменять нормальную антигенную специфичность. Появляются “ожоговые”, “лучевые”, “раковые” антигены с измененной видовой специфичностью. Существует понятие аутоантигенов - веществ организма, к которым могут возникать иммунные реакции (так называемые аутоиммунные реакции) , направленные против определенных тканей организма. Чаще всего это относится к органам и тканям, в норме не подвергающихся воздействию иммунной системы в связи с наличием барьеров (мозг, хрусталик, паращитовидные железы и др.).

5.Стадиоспецифичность . Имеются антигены, характерные для определенных стадий развития, связанные с морфогенезом. Альфа- фетопротеин характерен для эмбрионального развития, синтез во взрослом состоянии резко увеличивается при раковых заболеваниях печени.

АГ – вещества любого происхождения, которые рас­познаются ## иммунной системы Ò реципиента как генетически чужеродные и вызывают различные формы им­мунного ответа. Каждый АГ имеет 4 СВОЙСТВА­: антигенность, иммуногенность, специфичность и чужеродность.

ИММУНОГЕННОСТЬ – способность АГ индуцировать в Ò реципиента иммунный ответ (образование АТ, формирование гиперчувствительности, иммунологической памяти и толерантности).

АНТИГЕННОСТЬ – способность АГ взаимодействовать с продуктами иммунных реакций (например, с АТ).

Хим природа. АГ – природные или синтетические биополимеры с высокой Мг (белки и полипептиды, ПС (если их Мг не менее 600000), НК и липиды. При денатурации (нагревание, обработка крепкими кислотами или щелочами) белки утрачивают свои АГ свойст­ва. Проявление антигенного действия связано с катаболическим разрушением АГ. Например, полипептиды из L-АК, являются антигенными, а из D-АК нет, т.к. они сравнительно медленно и не полностью разрушаются ферментами организма.

Чужеродность (гетерогенность) – наиболее выражена при иммунизации Ò бел­ками др вида. Исключение – белки со специализированными функциями (ферменты, гормоны, гемоглобин), но при частичном изменении их структуры они могут приобретать антигенность.

Антигенность зависит также от ви­да иммунизированного животного, способа введения, дозы, скорости разрушения АГ в Ò реципиента. Антигенные свойства одних АГ лучше проявляются при вве­дении их перорально, других – внутрикожно, третьих – внутри­мышечно.

Антигенность при введении АГ с адъювантами (гидроксид или фосфат алюминия, масляная эмульсия, ЛПС грамотрицательных бактерий). Механизм действия адъювантов – создаётся депо АГ, сти­мулирует фагоцитоз, митогенное действе на лимфоциты.

СПЕЦИФИЧНОСТЬ – определяется особенностями поверхностной структуры антиге­нов – наличием эпитопов – детерминантных групп на поверхности макромолекулы-носителя. Эпитопы очень разнообразны за счет разл комбинаций АК на поверх­ности белка, несколько АК образуют эпитоп. На поверхности АГ обычно располагается несколько эпито­пов, что обусловливает ПОЛИВАЛЕНТНОСТЬ АГ, если 1 эпитоп – МОНОВАЛЕНТНЫЙ, если несколько одинаковых – ПОЛИМЕРНЫЙ. При отделении эпитопа от молекулы-носителя он утрачивает свои АГ свой­ства, но может реагировать с гомологичными АТ. Изменяя эпитоп, можно искусствен­но модифицировать специфичность АГ.

ПОЛНЫЕ АГ обладают всеми этими свойствами. Неполные АГ (ГАПТЕНЫ), не иммуногенны, но в комплексе с белками-носителями они становятся полными.

10. Антитела.

Антитела - специфические белки гамма- глобулиновой природы, образующиеся в организме в ответ на антигенную стимуляцию и способные специфически взаимодействовать с антигеном (in vivo, in vitro). В соответствии с международной классификацией совокупность сывороточных белков, обладающих свойствами антител, называют иммуноглобулинами .

Уникальность антител заключается в том, что они способны специфически взаимодействовать только с тем антигеном, который вызвал их образование.

Иммуноглобулины (Ig) разделены в зависимости от локализации на три группы:

Сывороточные (в крови);

Секреторные (в секретах- содержимом желудочно- кишечного тракта, слезном секрете, слюне, особенно- в грудном молоке) обеспечивают местный иммунитет (иммунитет слизистых);

Поверхностные (на поверхности иммунокомпетентных клеток, особенно В- лимфоцитов).

Любая молекула антител имеет сходное строение (Y- образную форму) и состоит из двух тяжелых (Н) и двух легких (L) цепей, связанных дисульфидными мостиками. Каждая молекула антител имеет два одинаковых антигенсвязывающих фрагмента Fab (fragment antigen binding), определяющих антительную специфичность, и один Fc (fragment constant) фрагмент, который не связывает антиген, но обладает эффекторными биологическими функциями. Он взаимодействует со “своим” рецептором в мембране различных типов клеток (макрофаг, тучная клетка, нейтрофил).

Концевые участки легких и тяжелых цепей молекулы иммуноглобулина вариабельны по составу (аминокислотным последовательностям) и обозначаются как VL и VH области. В их составе выделяют гипервариабельные участки, которые определяют структуру активного центра антител (антигенсвязывающий центр или паратоп). Именно с ним взаимодействует антигенная детерминанта (эпитоп) антигена. Антигенсвязывающий центр антител комплементарен эпитопу антигена по принципу “ключ - замок” и образован гипервариабельными областями L- и Н- цепей. Антитело свяжется антигеном (ключ попадет в замок) только в том случае, если детерминантная группа антигена полностью вместится в щель активного центра антител.

Легкие и тяжелые цепи состоят из отдельных блоков- доменов . В легких (L) цепях - два домена- один вариабельный (V) и один константный (C), в тяжелых (H) цепях- один V и 3 или 4 (в зависимости от класса иммуноглобулина) C домена.

Существуют легкие цепи двух типов- каппа и лямбда, они встречаются в различных пропорциях в составе различных (всех) классов иммуноглобулинов.

Выявлено пять классов тяжелых цепей- альфа (с двумя подклассами), гамма (с четырьмя подклассами), эксилон, мю и дельта. Соответственно обозначению тяжелой цепи обозначается и класс молекул иммуноглобулинов- А, G, E, M и D.

Именно константные области тяжелых цепей, различаясь по аминокислотному составу у различных классов иммуноглобулинов, в конечном результате и определяют специфические свойства иммуноглобулинов каждого класса.

Известно пять классов иммуноглобулинов, отличающихся по строению тяжелых цепей, молекулярной массе, физико- химическим и биологическим характеристикам: IgG, IgM, IgA, IgE, IgD. В составе IgG выделяют 4 подкласса (IgG1, IgG2, IgG3, IgG4), в составе IgA- два подкласса (IgA1, IgA2).

Структурной единицей антител является мономер , состоящий из двух легких и двух тяжелых цепей. Мономерами являются IgG, IgA (сывороточный), IgD и IgE. IgM- пентамер (полимерный Ig). У полимерных иммуноглобулинов имеется дополнительная j (joint) полипептидная цепь, которая объединяет (полимеризует) отдельные субъединицы (в составе пентамера IgM, ди- и тримера секреторного IgA).

Основные биологические характеристики антител.

1. Специфичность - способность взаимодействия с определенным (своим) антигеном (соответствие эпитопа антигена и активного центра антител).

2 . Валентность- количество способных реагировать с антигеном активных центров (это связано с молекулярной организацией- моно- или полимер). Иммуноглобулины могут быть двухвалентными (IgG) или поливалентными (пентамер IgM имеет 10 активных центров). Двух- и более валентные антитела навывают полными антителами . Неполные антитела имеют только один участвующий во взаимодействии с антигеном активный центр (блокирующий эффект на иммунологические реакции, например, на агглютинационные тесты). Их выявляют в антиглобулиновой пробе Кумбса, реакции угнетения связывания комплемента.

3. Афинность - прочность связи между эпитопом антигена и активным центром антител, зависит от их пространственного соответствия.

4. Авидность - интегральная характеристика силы связи между антигеном и антителами, с учетом взаимодействия всех активных центров антител с эпитопами. Поскольку антигены часто поливалентны, связь между отдельными молекулами антигена осуществляется с помощью нескольких антител.

5. Гетерогенность - обусловлена антигенными свойствами антител, наличием у них трех видов антигенных детерминант:

- изотипические - принадлежность антител к определенному классу иммуноглобулинов;

- аллотипические- обусловлены аллельными различиями иммуноглобулинов, кодируемых соответствующими аллелями Ig гена;

- идиотипические- отражают индивидуальные особенности иммуноглобулина, определяемые характеристиками активных центров молекул антител. Даже тогда, когда антитела к конкретному антигену относятся к одному классу, субклассу и даже аллотипу, они характеризуются специфическими отличиями друг от друга (идиотипом ). Это зависит от особенностей строения V- участков H- и L- цепей, множества различных вариантов их аминокислотных последовательностей.

Понятие о поликлональных и моноклональных антителах будет дано в следующих разделах.

Характеристика основных классов иммуноглобулинов.

Ig G. Мономеры, включают четыре субкласса. Концентрация в крови- от 8 до 17 г/л, период полураспада- около 3- 4 недель. Это основной класс иммуноглобулинов, защищающих организм от бактерий, токсинов и вирусов. В наибольшем количестве IgG- антитела вырабатываются на стадии выздоровления после инфекционного заболевания (поздние или 7S антитела), при вторичном иммунном ответе. IgG1 и IgG4 специфически (через Fab- фрагменты) связывают возбудителей (опсонизация) , благодаря Fc- фрагментам IgG взаимодействуют с Fc- рецепторам фагоцитов, способствуя фагоцитозу и лизису микроорганизмов. IgG способны нейтрализовать бактериальные экзотоксины, связывать комплемент. Только IgG способны транспортироваться через плаценту от матери к плоду (проходить через плацентарный барьер) и обеспечивать защиту материнскими антителами плода и новорожденного. В отличие от IgM- антител, IgG- антитела относятся к категории поздних- появляются позже и более длительно выявляются в крови.

IgM. Молекула этого иммуноглобулина представляет собой полимерный Ig из пяти субъединиц, соединенных дисульфидными связями и дополнительной J- цепью, имеет 10 антиген- связывающих центров. Филогенетически это наиболее древний иммуноглобулин. IgM- наиболее ранний класс антител, образующихся при первичном попадании антигена в организм. Наличие IgM- антител к соответствующему возбудителю свидетельствует о свежем инфицировании (текущем инфекционном процессе). Антитела к антигенам грамотрицательных бактерий, жгутиковым антигенам- преимущественно IgM- антитела. IgM- основной класс иммуноглобулинов, синтезируемых у новорожденных и младенцев. IgM у новорожденных- это показатель внутриутробного заражения (краснуха, ЦМВ, токсоплазмоз и другие внутриутробные инфекции), поскольку материнские IgM через плаценту не проходят. Концентрация IgM в крови ниже, чем IgG- 0,5- 2,0 г/л, период полураспада- около недели. IgM способны агглютинировать бактерии, нейтрализовать вирусы, активировать комплемент, активизировать фагоцитоз, связывать эндотоксины грамотрицательных бактерий. IgM обладают большей, чем IgG авидностью (10 активных центров), аффинность (сродство к антигену) меньше, чем у IgG.

IgA. Выделяют сывороточные IgA (мономер) и секреторные IgA (IgAs). Сывороточные IgA составляют 1,4- 4,2 г/л. Секреторные IgAs находятся в слюне, пищеварительных соках, секрете слизистой носа, в молозиве. Они являются первой линией защиты слизистых, обеспечивая их местный иммунитет. IgAs состоят из Ig мономера, J-цепи и гликопротеина (секреторного компонента). Выделяют два изотипа- IgA1 преобладает в сыворотке, субкласс IgA2 - в экстраваскулярных секретах.

Секреторный компонент вырабатывается эпителиальными клетками слизистых оболочек и присоединяется к молекуле IgA в момент прохождения последней через эпителиальные клетки. Секреторный компонент повышает устойчивость молекул IgAs к действию протеолитических ферментов. Основная роль IgA- обеспечение местного иммунитета слизистых. Они препятствуют прикреплению бактерий к слизистым, обеспечивают транспорт полимерных иммунных комплексов с IgA, нейтрализуют энтеротоксин, активируют фагоцитоз и систему комплемента.

IgE . Представляет мономер, в сыворотке крови находится в низких концентрациях. Основная роль- своими Fc- фрагментами прикрепляется к тучным клеткам (мастоцитам) и базофилам и опосредует реакции гиперчувствительности немедленного типа. К IgE относятся “антитела аллергии”- реагины. Уровень IgE повышается при аллергических состояниях, гельминтозах. Антигенсвязывающие Fab- фрагменты молекулы IgE специфически взаимодействует с антигеном (аллергеном), сформировавшийся иммунный комплекс взаимодействует с рецепторами Fc- фрагментов IgE, встроенных в клеточную мембрану базофила или тучной клетки. Это является сигналом для выделения гистамина, других биологически активных веществ и развертывания острой аллергической реакции.

IgD. Мономеры IgD обнаруживают на поверхности развивающихся В- лимфоцитов, в сыворотке находятся в крайне низких концентрациях. Их биологическая роль точно не установлена. Полагают, что IgD участвуют в дифференциации В-клеток, способствуют развитию антиидиотипического ответа, участвуют в аутоиммунных процессах.

С целью определения концентраций иммуноглобулинов отдельных классов применяют несколько методов, чаще используют метод радиальной иммунодиффузии в геле (по Манчини)- разновидность реакции преципитации и ИФА.

Определение антител различных классов имеет важное значение для диагностики инфекционных заболеваний. Обнаружение антител к антигенам микроорганизмов в сыворотках крови- важный критерий при постановке диагноза- серологический метод диагностики. Антитела класса IgM появляются в остром периоде заболевания и относительно быстро исчезают, антитела класса IgG выявляются в более поздние сроки и более длительно (иногда- годами) сохраняются в сыворотках крови переболевших, их в этом случае называют анамнестическими антителами.

Выделяют понятия: титр антител, диагностический титр, исследования парных сывороток. Наибольшее значение имеет выявление IgM- антител и четырехкратное повышение титров антител (или сероконверсия - антитела выявляют во второй пробе при отрицательных результатах с первой сывороткой крови) при исследовании парных - взятых в динамике инфекционного процесса с интервалом в несколько дней- недель проб.

Реакции взаимодействия антител с возбудителями и их антигенами (реакция “антиген- антитело”) проявляется в виде ряда феноменов- агглютинации, преципитации, нейтрализации, лизиса, связывания комплемента, опсонизации, цитотоксичности и могут быть выявлены различными серологическими реакциями.

Динамика выработки антител. Первичный и вторичный иммунный ответ.

Первичный ответ- при первичном контакте с возбудителем (антигеном), вторичный- при повторном контакте. Основные отличия:

Продолжительность скрытого периода (больше- при первичном);

Скорость нарастания антител (быстрее- при вторичном);

Количество синтезируемых антител (больше- при повторном контакте);

Последовательность синтеза антител различных классов (при первичном более длительно преобладают IgM, при вторичном- быстро синтезируются и преобладают IgG- антитела).

Вторичный иммунный ответ обусловлен формированием клеток иммунной памяти. Пример вторичного иммунного ответа- встреча с возбудителем после вакцинации.

Роль антител в формировании иммунитета.

Антитела имеют важное значение в формировании приобретенного постинфекционного и поствакцинального иммунитета.

1. Связываясь с токсинами, антитела нейтрализуют их, обеспечивая антитоксический иммунитет.

2. Блокируя рецепторы вирусов, антитела препятствуют адсорбции вирусов на клетках, участвуют в противовирусном иммунитете.

3. Комплекс антиген- антитело запускает классический путь активации комплемента с его эффекторными функциями (лизис бактерий, опсонизация, воспаление, стимуляция макрофагов).

4. Антитела принимают участие в опсонизации бактерий, способствуя более эффективному фагоцитозу.

5. Антитела способствуют выведению из организма (с мочой, желчью) растворимых антигенов в виде циркулирующих иммунных комплексов.

IgG принадлежит наибольшая роль в антитоксическом иммунитете, IgM- в антимикробном иммунитете (фагоцитоз корпускулярных антигенов), особенно в отношении грамотрицательных бактерий, IgA- в противовирусном иммунитете (нейтрализация вирусов), IgAs- в местном иммунитете слизистых оболочек, IgE- в реакциях гиперчувствительности немедленного типа.

Ig (АТ) – белки плазмы крови, по хим составу – гликопротеиды, по электрофоретической подвижности – γ-глобулины.

СТРУКТУРА Ig

Белковая часть молекулы Ig состоит из 4 полипептидных цепей: 2 одинаковых тяжелых Н-цепей и 2 легких L-цепей (различаются по Мг). Каждая цепь состоит из вариабельной V- (начинается с N-конца, примерно 110АК = 1 домен ) и стабильной С-части (4-5 доменов) . Каждая пара легких и тяжелых цепей связана S-S мостиками , меж­ду их С-участками, обе тяжелые цепи также соединены друг с другом между их константными участками → шарнир . В пре­делах каждого домена поли­пептидная цепь уложена в виде петель. Петли в V-до­менах легкой и тяжелой цепи составляют гипервариабельный участок , который входит в состав антигенсвязывающего центра.

При гидролизе IgG протеолитическим ферментом папаином , легкие и тяжелые цепи распадаются на 3 фрагмента: два Fab- (Fragment antigen binding) и один Fc-фрагмент (Fragment cristalline). Свободные N-концы концы каждого Fab-фрагмента входят в состав V-доменов, формирующих антигенсвязывающий (активный) центр. Fc-фраг­мент имеет свободные С-концы, одинаковые у разных АТ, функции которых заключаются в фиксации и последующей активации системы комплемента по классическому пути после, в прикреплении иммуноглобулина G к Fc-рецепторам ## мембран и в прохождении IgG через плаценту. В области Fc-фрагментов антител локализуются участки (эпитопы ), определяющие индивидуальную, видовую, группо­вую, антигенную специфичность данного иммуноглобулина.

КЛАССЫ И ТИПЫ Ig:

в зависимости от структуры, свойств и антигенных особенностей их легких и тя­желых цепей.

Легкие цепи в молекулах Ig пред­ставлены двумя ИЗОТИПАМИ – ламбда (λ) и каппа (κ), которые различаются по химическому составу. Тяжелые цепи Ig подразделены на 5 изотипов (γ, μ, α, δ, ε), которые опреде­ляют их принадлежность к одному из 5 классов: G, M, A, D, Е соответственно. Они отличаются друг от друга физ-хим особенностями и биол свойствами.

Наряду с изотипическими вариантами Ig имеются аллотипические (АЛЛОТИПЫ), несущие индивидуаль­ные АГ генетические маркеры. Каждая плазма­тическая клетка продуцирует АТ одного аллотипа.

По различиям в АГ свойствах Ig делят на ИДИОТИПЫ. V-домены разных Ig можно различить и по их АГ свойствам (идиотипам). Накопление любых АТ, несущих в структуре своих активных центров новые для организма антигенные эпитопы (идиотипы), приводит к индукции иммунного ответа на них с образованием анти-АТ, получив­ших название антиидиотипических.

СВОЙСТВА Ig

Молекулы Ig разных классов построены из одних и тех же мономеров , имеющих по две тяжелых и по две легких цепи. К мономерам относятся иммуноглобулины G и Е, к пентамерам – IgM, a IgA могут быть представлены мономерами, димерами и тетрамерами. Мономеры соеди­нены между собой j-цепью (joining). Разные классы Ig отличаются друг от друга биол свойствами, в частности их способностью связывать гомологичные АГ. В реак­ции у мономеров IgG и IgE участвуют 2 антигенсвязывающих участка, при этом образуется сетевая струк­тура, которая выпадает в осадок. Суще­ствуют также моновалентныеАТ, у которых функционирует лишь один из 2 центров Þ без обра­зования сетевой структуры. Такие анти­тела называются неполными, они выявляются в сыво­ротке крови с помощью реакции Кумбса.

Иммуноглобулины характеризуются различной авидностью (скорость и прочность связыва­ния с молекулой АГ). Авидность зависит от класса Ig, содержащих разное количество мономеров. Наибольшая авидность у IgМ. Авидность АТ меняется в про­цессе иммунного ответа в связи с переходом от синтеза IgM к преимущественному синтезу IgG.

Разные классы Ig отличаются по способности проходить через плаценту, связывать и активи­ровать комплемент и др. За эти свойства отвечают отдельные домены Fc-фрагмента .

IgG составляют около 80% сывороточных Ig (12 г/л). Они обра­зуются на высоте первичного иммунного ответа и при повторном введении антигена (вторичный ответ). Обладают достаточно быстро связываются с АГ, особенно бактериальной природы. При связывании IgG с эпитопами АГ в области его Fc-фрагмента открывается участок, ответственный за фиксацию первой фракции системы комплемента, с последующей активацией системы комплемента по классическому пути. IgG является единственным классом антител, проникающим через плаценту в организм плода. Через некоторое время после рождения ребенка содержание его в сыворотке крови падает и достигает минимальной концентрации к 3–4 мес, после чего начинает возрастать за счет накопления собственных IgG, достигая нормы к 7-летнему возрасту. Из всех классов Ig в Ò больше всего синтезируется IgG. Около 48% IgG содержится в тканевой жидкости, в которую он диф­фундирует из крови.

IgM первыми начинают син­тезироваться в Ò плода и первыми появляются в сыво­ротке крови после иммунизации. Составляют около 13% сывороточных иммуноглобулинов (1 г/л). По Мг они значительно больше остальных Ig, т.к. состоят из 5 субъединиц. К IgM принадлежит большая часть изогемагглютининов (группы крови). Они не проходят через плаценту и обладают наиболее высокой авидностью. При взаимодействии с АГ in vitro вызывают их агглютинацию, преципитацию или связывание комплемента.

IgA встречаются в сыворотке крови и в секретах на поверхности слизистых оболочек. В сыво­ротке крови (после 10 лет) их 2,5 г/л. Сывороточный IgA синтезируется в плазматических клетках селезенки, лимфатических узлов и слизистых оболочек. Они не агглютинируют и не преципитируют АГ, не активируют комплемент.

SIgA отличают­ся от сывороточных наличием секреторного компонента (β-глобулин), свя­занного с 2 или 3 мономерами иммуноглобулина А. Секреторный компонент синтезируется клетками секреторного эпи­телия, а к IgA присоединяется при его прохождении через эпите­лиальные клетки. Играют существенную роль в местном им­мунитете, препятствуют адгезии мкÒ на эпителиальных клетках. В агрегированной форме активирует комплемент по альтернатив­ному пути.

Около 40 % общего IgA содержится в крови.

IgD До 75% содержится в крови (0,03 г/л). Не проходит через плаценту, не связывает комплемент. Функции не выяснены (предположительно – является одним из рецепторов предшественников В-лимфоцитов).

IgE – в крови 0,00025 г/л, синтезируется плазмати­ческими клетками в лимфати­ческих узлах, в слизистой оболочке ЖКТ. Их называют также РЕАГИНАМИ, т.к. они принимают участие в анафилактических реакциях, обладая выраженной цитофильностью.

11. Неспецифические факторы защиты.