Изменение знака неравенства. Числовые неравенства и их свойства

Линейными называются неравенства левая и правая часть которых представляет собой линейные функции относительно неизвестной величины. К ним относятся, например, неравенства:

2х-1 -х+3; 7х 0;

5 >4 - 6x 9- x < x + 5 .

1) Строгие неравенства: ax +b>0 либо ax + b<0

2) Нестрогие неравенства: ax +b≤0 либо ax + b 0

Разберем такое задание . Одна из сторон параллелограмма составляет 7см. Какой должна быть длина другой стороны, чтобы периметр параллелограмма был больше 44 см?

Пусть искомая сторона составит х см. В таком случае периметр параллелограмма будет представлен (14 + 2х) см. Неравенство 14 + 2х > 44 является математической моделью задачи о периметре параллелограмма. Если в этом неравенстве заменить переменную х на, например, число 16, то получим верное числовое неравенство 14 + 32 > 44. В таком случае говорят, что число 16 является решением неравенства 14 + 2х > 44.

Решением неравенства называют значение переменной, которое обращает его в верное числовое неравенство.

Следовательно, каждое из чисел 15,1; 20;73 выступают решением неравенства 14 + 2х > 44, а число 10, например, не является его решением.

Решить неравенство означает установить все его решения или доказать, что решений не существует.

Формулировка решения неравенства сходна с формулировкой корня уравнения. И все же не принято обозначать «корень неравенства».

Свойства числовых равенств помогали нам решать уравнения. Точно так же свойства числовых неравенств помогут решать неравенства.

Решая уравнение, мы меняем его другим, более простым уравнением, но равнозначным заданному. По схожей схеме находят ответ и неравенства. При смене уравнения на равнозначное ему уравнение пользуются теоремой о перенесении слагаемых из одной части уравнения в противоположную и об умножении обеих частей уравнения на одно и то же отличное от нуля число. При решении неравенства есть существенное различие его с уравнением, которое заключается в том, что всякое решение уравнения можно проверить просто подстановкой в исходное уравнение. В неравенствах такой способ отсутствует, так как бесчисленное множество решений подставить в исходное неравенство не представляется возможным. Поэтому есть важное понятие, вот эти стрелочки <=> - это знак эквивалентных, или равносильных, преобразований. Преобразование называются равносильными, или эквивалентными , если они не изменяет множества решений.

Сходные правила решения неравенств.

Если какое-либо слагаемое переместить из одной части неравенства в другую, заменив при этом его знак на противоположный, то получим неравенство, эквивалентное данному.

Если обе части неравенства умножить (разделить) на одно и то же положительное число, то получим неравенство, эквивалентное данному.

Если обе части неравенства умножить (разделить) на одно и то же отрицательное число, заменив при этом знак неравенства на противоположный, то получим неравенство, эквивалентное данному.

Используя эти правила вычислим нижеследующие неравенства.

1) Разберем неравенство 2x - 5 > 9 .

Это линейное неравенство , найдем его решение и обсудим основные понятия.

2x - 5 > 9 <=> 2x > 14 (5 перенесли в левую часть с противоположным знаком), далее поделили все на 2 и имеем x > 7 . Нанесем множество решений на ось x

Нами получен положительно направленный луч. Отметим множество решений либо в виде неравенства x > 7 , либо в виде интервала х(7; ∞). А что выступает частным решением этого неравенства? Например, x = 10 - это частное решение этого неравенства, x = 12 - это тоже частное решение этого неравенства.

Частных решений много, но наша задача - найти все решения. А решений, как правило, бесчисленное множество.

Разберем пример 2:

2) Решить неравенство 4a - 11 > a + 13 .

Решим его: а переместим в одну сторону, 11 переместим в другую сторону, получим 3a < 24, и в результате после деления обеих частей на 3 неравенство имеет вид a<8 .

4a - 11 > a + 13 <=> 3a < 24 <=> a < 8 .

Тоже отобразим множество a < 8 , но уже на оси а .

Ответ либо пишем в виде неравенства a < 8, либо а (-∞;8), 8 не включается.

Что нужно знать о значках неравенств? Неравенства со значком больше (> ), или меньше (< ) называются строгими. Со значками больше или равно (), меньше или равно () называются нестрогими. Значок не равно () стоит особняком, но решать примеры с таким значком тоже приходится постоянно. И мы порешаем.)

Сам значок не оказывает особого влияния на процесс решения. А вот в конце решения, при выборе окончательного ответа, смысл значка проявляется в полную силу! Что мы и увидим ниже, на примерах. Есть там свои приколы...

Неравенства, как и равенства, бывают верные и неверные. Здесь всё просто, без фокусов. Скажем, 5 > 2 - верное неравенство. 5 < 2 - неверное.

Такая подготовка работает для неравенств любого вида и проста до ужаса.) Нужно, всего лишь, правильно выполнять два (всего два!) элементарных действия. Эти действия знакомы всем. Но, что характерно, косяки в этих действиях - и есть основная ошибка в решении неравенств, да... Стало быть, надо повторить эти действия. Называются эти действия вот как:

Тождественные преобразования неравенств.

Тождественные преобразования неравенств очень похожи на тождественные преобразования уравнений. Собственно, в этом и есть основная проблема. Отличия проскакивают мимо головы и... приехали.) Поэтому я особо выделю эти отличия. Итак, первое тождественное преобразование неравенств:

1. К обеим частям неравенства можно прибавить (отнять) одно и то же число, или выражение. Любое. Знак неравенства от этого не изменится.

На практике это правило применяется как перенос членов из левой части неравенства в правую (и наоборот) со сменой знака. Со сменой знака члена, а не неравенства! Правило один в один совпадает с правилом для уравнений. А вот следующие тождественные преобразования в неравенствах существенно отличается от таковых в уравнениях. Поэтому я выделяю их красным цветом:

2. Обе части неравенства можно умножить (разделить) на одно и то же положительное число. На любое положительное не изменится.

3. Обе части неравенства можно умножить (разделить) на одно и то же отрицательное число. На любое отрицательное число. Знак неравенства от этого изменится на противоположный.

Вы помните (надеюсь...), что уравнение можно умножать/делить на что попало. И на любое число, и на выражение с иксом. Лишь бы не на ноль. Ему, уравнению, от этого ни жарко, ни холодно.) Не меняется оно. А вот неравенства более чувствительны к умножению/делению.

Наглядный пример на долгую память. Напишем неравенство, не вызывающее сомнений:

5 > 2

Умножим обе части на +3, получим:

15 > 6

Возражения есть? Возражений нет.) А если умножим обе части исходного неравенства на -3, получим:

15 > -6

А это уже откровенная ложь.) Полное враньё! Обман народа! Но стоит изменить знак неравенства на противоположный, как всё становится на свои места:

15 < -6

Про враньё и обман - это я не просто так ругаюсь.) "Забыл сменить знак неравенства..." - это главная ошибка в решении неравенств. Это пустяковое и несложное правило стольких людей ушибло! Которые забыли...) Вот и ругаюсь. Может, запомнится...)

Особо внимательные заметят, что неравенство нельзя умножать на выражение с иксом. Респект внимательным!) А почему нельзя? Ответ простой. Мы же не знаем знак этого выражения с иксом. Оно может быть положительное, отрицательное... Стало быть, мы не знаем, какой знак неравенства ставить после умножения. Менять его, или нет? Неизвестно. Разумеется, это ограничение (запрет умножения/деления неравенства на выражение с иксом) можно обойти. Если очень надо будет. Но это тема для других уроков.

Вот и все тождественные преобразования неравенств. Ещё раз напомню, что они работают для любых неравенств. А теперь можно переходить к конкретным видам.

Линейные неравенства. Решение, примеры.

Линейными неравенствами называются неравенства, в которых икс находится в первой степени и нет деления на икс. Типа:

х+3 > 5х-5

Как решаются такие неравенства? Они решаются очень просто! А именно: с помощью сводим самое замороченное линейное неравенство прямо к ответу. Вот и всё решение. Главные моменты решения я буду выделять. Во избежание дурацких ошибок.)

Решаем это неравенство:

х+3 > 5х-5

Решаем точно так же, как и линейное уравнение. С единственным отличием:

Внимательно следим за знаком неравенства!

Первый шаг самый обычный. С иксами - влево, без иксов - вправо... Это первое тождественное преобразование, простое и безотказное.) Только знаки у переносимых членов не забываем менять.

Знак неравенства сохраняется:

х-5х > -5-3

Приводим подобные.

Знак неравенства сохраняется:

> -8

Осталось применить последнее тождественное преобразование: разделить обе части на -4.

Делим на отрицательное число.

Знак неравенства изменится на противоположный:

х < 2

Это ответ.

Так решаются все линейные неравенства.

Внимание! Точка 2 рисуется белой, т.е. незакрашенной. Пустой внутри. Это означает, что она в ответ не входит! Я её специально такой здоровой нарисовал. Такая точка (пустая, а не здоровая!)) в математике называется выколотой точкой.

Остальные числа на оси отмечать можно, но не нужно. Посторонние числа, не относящиеся к нашему неравенству, могут и запутать, да... Нужно только помнить, что увеличение чисел идёт по стрелке, т.е. числа 3, 4, 5, и т.д. находятся правее двойки, а числа 1, 0, -1 и т.д. - левее.

Неравенство х < 2 - строгое. Икс строго меньше двух. Если возникают сомнения, проверка простая. Подставляем сомнительное число в неравенство и размышляем: "Два меньше двух? Нет, конечно!" Именно так. Неравенство 2 < 2 неверное. Не годится двойка в ответ.

А единичка годится? Конечно. Меньше же... И ноль годится, и -17, и 0,34... Да все числа, которые меньше двух - годятся! И даже 1,9999.... Хоть чуть чуть, да меньше!

Вот и отметим все эти числа на числовой оси. Как? Тут бывают варианты. Вариант первый - штриховка. Наводим мышку на рисунок (или касаемся картинки на планшете) и видим, что заштрихована область всех иксов, подходящих под условие х < 2 . Вот и всё.

Второй вариант рассмотрим на втором примере:

х ≥ -0,5

Рисуем ось, отмечаем число -0,5. Вот так:

Заметили разницу?) Ну да, трудно не заметить... Эта точка - чёрная! Закрашенная. Это означает, что -0,5 входит в ответ. Здесь, кстати, проверка и смутить может кого-нибудь. Подставляем:

-0,5 ≥ -0,5

Как так? -0,5 никак не больше -0,5! А значок больше имеется...

Ничего страшного. В нестрогом неравенстве годится всё, что подходит под значок. И равно годится, и больше годится. Следовательно, -0,5 в ответ включается.

Итак, -0,5 мы отметили на оси, осталось ещё отметить все числа, которые больше -0,5. На этот раз я отмечаю область подходящих значений икса дужкой (от слова дуга ), а не штриховкой. Наводим курсор на рисунок и видим эту дужку.

Особой разницы между штриховкой и дужками нет. Делайте, как учитель сказал. Если учителя нет - рисуйте дужки. В более сложных заданиях штриховка менее наглядна. Запутаться можно.

Вот так рисуются линейные неравенства на оси. Переходим к следующей особенности неравенств.

Запись ответа для неравенств.

В уравнениях было хорошо.) Нашли икс, да и записали ответ, например: х=3. В неравенствах существуют две формы записи ответов. Одна - в виде окончательного неравенства. Хороша для простых случаев. Например:

х < 2.

Это полноценный ответ.

Иногда требуется записать то же самое, но в другой форме, через числовые промежутки. Тогда запись начинает выглядеть очень научно):

х ∈ (-∞; 2)

Под значком скрывается слово "принадлежит".

Читается запись так: икс принадлежит промежутку от минус бесконечности до двух не включая . Вполне логично. Икс может быть любым числом из всех возможных чисел от минус бесконечности до двух. Двойкой икс быть не может, о чём нам и говорит слово "не включая".

А где это в ответе видно, что "не включая" ? Этот факт отмечается в ответе круглой скобкой сразу после двойки. Если бы двойка включалась, скобка была бы квадратной. Вот такой: ]. В следующем примере такая скобка используется.

Запишем ответ: х ≥ -0,5 через промежутки:

х ∈ [-0,5; +∞)

Читается: икс принадлежит промежутку от минус 0,5, включая, до плюс бесконечности.

Бесконечность не может включаться никогда. Это не число, это символ. Поэтому в подобных записях бесконечность всегда соседствует с круглой скобкой.

Такая форма записи удобна для сложных ответов, состоящих из нескольких промежутков. Но - именно для окончательных ответов. В промежуточных результатах, где предполагается дальнейшее решение, лучше использовать обычную форму, в виде простого неравенства. Мы с этим в соответствующих темах разберёмся.

Популярные задания с неравенствами.

Сами по себе линейные неравенства просты. Поэтому, частенько, задания усложняются. Так, чтобы подумать надо было. Это, если с непривычки, не очень приятно.) Но полезно. Покажу примеры таких заданий. Не для того, чтобы вы их выучили, это лишнее. А для того, чтобы не боялись при встрече с подобными примерами. Чуть подумать - и всё просто!)

1. Найдите любые два решения неравенства 3х - 3 < 0

Если не очень понятно, что делать, вспоминаем главное правило математики:

Не знаешь, что нужно - делай, что можно!)

х < 1

И что? Да ничего особенного. Что нас просят? Нас просят найти два конкретных числа, которые являются решением неравенства. Т.е. подходят под ответ. Два любых числа. Собственно, это и смущает.) Подходит парочка 0 и 0,5. Парочка -3 и -8. Да этих парочек бесконечное множество! Какой ответ правильный?!

Отвечаю: все! Любая парочка чисел, каждое из которых меньше единицы, будет правильным ответом. Пишите, какую хотите. Едем дальше.

2. Решить неравенство:

4х - 3 0

Задания в таком виде встречаются редко. Но, как вспомогательные неравенства, при нахождении ОДЗ, например, или при нахождении области определения функции, - встречаются сплошь и рядом. Такое линейное неравенство можно решать как обычное линейное уравнение. Только везде, кроме знака "=" (равно ) ставить знак "" (не равно ). Так к ответу и подойдёте, со знаком неравенства:

х 0,75

В более сложных примерах, лучше поступать по-другому. Сделать из неравенства равенство. Вот так:

4х - 3 = 0

Спокойно решить его, как учили, и получить ответ:

х = 0,75

Главное, в самом конце, при записи окончательного ответа, не забыть, что мы нашли икс, который даёт равенство. А нам нужно - неравенство. Стало быть, этот икс нам как раз и не нужен.) И надо записать его с правильным значком:

х 0,75

При таком подходе получается меньше ошибок. У тех, кто уравнения на автомате решает. А тем, кто уравнения не решает, неравенства, собственно, ни к чему...) Ещё пример популярного задания:

3. Найти наименьшее целое решение неравенства:

3(х - 1) < 5х + 9

Сначала просто решаем неравенство. Ракрываем скобки, переносим, приводим подобные... Получаем:

х > - 6

Не так получилось!? А за знаками следили!? И за знаками членов, и за знаком неравенства...

Опять соображаем. Нам нужно найти конкретное число, подходящее и под ответ, и под условие "наименьшее целое". Если сразу не осеняет, можно просто взять любое число и прикинуть. Два больше минус шести? Конечно! А есть подходящее число поменьше? Разумеется. Например, ноль больше -6. А ещё меньше? Нам же самое маленькое из возможных надо! Минус три больше минус шести! Уже можно уловить закономерность и перестать тупо перебирать числа, правда?)

Берём число поближе к -6. Например, -5. Ответ выполняется, -5 > - 6. Можно найти ещё число, меньше -5, но больше -6? Можно, например -5,5... Стоп! Нам сказано целое решение! Не катит -5,5! А минус шесть? Э-э-э! Неравенство строгое, минус 6 никак не меньше минус 6!

Стало быть, правильный ответ: -5.

Надеюсь, с выбором значения из общего решения всё понятно. Ещё пример:

4. Решить неравенство:

7 < 3х+1 < 13

Во как! Такое выражение называется тройным неравенством. Строго говоря, это сокращённая запись системы неравенств. Но решать такие тройные неравенства всё равно приходится в некоторых заданиях... Оно решается безо всяких систем. По тем же тождественным преобразованиям.

Надо упростить, довести это неравенство до чистого икса. Но... Что куда переносить!? Вот тут самое время вспомнить, что перенос влево-вправо, это сокращённая форма первого тождественного преобразования.

А полная форма звучит вот как: К обеим частям уравнения (неравенства) можно прибавить/отнять любое число, или выражение.

Здесь три части. Вот и будем применять тождественные преобразования ко всем трём частям!

Итак, избавимся от единички в средней части неравенства. Отнимем от всей средней части единичку. Чтобы неравенство не изменилось, отнимем единичку и от оставшихся двух частей. Вот так:

7 -1< 3х+1-1< 13-1

6 < < 12

Уже лучше, правда?) Осталось разделить все три части на тройку:

2 < х < 4

Вот и всё. Это ответ. Икс может любым числом от двойки (не включая) до четвёрки (не включая). Этот ответ тоже записывается через промежутки, такие записи будут в квадратных неравенствах. Там они - самое обычное дело.

В конце урока повторю самое главное. Успех в решении линейных неравенств зависит от умения преобразовывать и упрощать линейные уравнения. Если при этом следить за знаком неравенства, проблем не будет. Чего я вам и желаю. Отсутствия проблем.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.


Неравенства в математике играют заметную роль. В школе в основном мы имеем дело с числовыми неравенствами , с определения которых мы начнем эту статью. А дальше перечислим и обоснуем свойства числовых неравенств , на которых базируются все принципы работы с неравенствами.

Сразу отметим, что многие свойства числовых неравенств аналогичны . Поэтому, излагать материал будем по такой же схеме: формулируем свойство, приводим его обоснование и примеры, после чего переходим к следующему свойству.

Навигация по странице.

Числовые неравенства: определение, примеры

Когда мы вводили понятие неравенства, то заметили, что неравенства часто определяют по виду их записи. Так неравенствами мы назвали имеющие смысл алгебраические выражения, содержащие знаки не равно ≠, меньше <, больше >, меньше или равно ≤ или больше или равно ≥. На основе приведенного определения удобно дать определение числового неравенства:

Встреча с числовыми неравенствами происходит на уроках математики в первом классе сразу после знакомства с первыми натуральными числами от 1 до 9 , и знакомства с операцией сравнения. Правда, там их называют просто неравенствами, опуская определение «числовые». Для наглядности не помешает привести пару примеров простейших числовых неравенств из того этапа их изучения: 1<2 , 5+2>3 .

А дальше от натуральных чисел знания распространяются на другие виды чисел (целые, рациональные, действительные числа), изучаются правила их сравнения, и это значительно расширяет видовое разнообразие числовых неравенств: −5>−72 , 3>−0,275·(7−5,6) , .

Свойства числовых неравенств

На практике работать с неравенствами позволяет ряд свойств числовых неравенств . Они вытекают из введенного нами понятия неравенства. По отношению к числам это понятие задается следующим утверждением, которое можно считать определением отношений «меньше» и «больше» на множестве чисел (его часто называют разностным определением неравенства):

Определение.

  • число a больше числа b тогда и только тогда, когда разность a−b является положительным числом;
  • число a меньше числа b тогда и только тогда, когда разность a−b – отрицательное число;
  • число a равно числу b тогда и только тогда, когда разность a−b равна нулю.

Это определение можно переделать в определение отношений «меньше или равно» и «больше или равно». Вот его формулировка:

Определение.

  • число a больше или равно числу b тогда и только тогда, когда a−b – неотрицательное число;
  • число a меньше или равно числу b тогда и только тогда, когда a−b – неположительное число.

Данные определения мы будем использовать при доказательстве свойств числовых неравенств, к обзору которых мы и переходим.

Основные свойства

Обзор начнем с трех основных свойств неравенств. Почему они основные? Потому, что они являются отражением свойств неравенств в самом общем смысле, а не только по отношению к числовым неравенствам.

Числовым неравенствам, записанным с использованием знаков < и >, характерно:

Что касается числовых неравенств, записанных при помощи знаков нестрогих неравенства ≤ и ≥, то они обладают свойством рефлексивности (а не антирефлексивности), так как неравенства a≤a и a≥a включают в себя случай равенства a=a . Также им свойственны антисимметричность и транзитивность.

Итак, числовые неравенства, записанные при помощи знаков ≤ и ≥, обладают свойствами:

  • рефлексивности a≥a и a≤a – верные неравенства;
  • антисимметричности, если a≤b , то b≥a , и если a≥b , то b≤a .
  • транзитивности, если a≤b и b≤c , то a≤c , а также, если a≥b и b≥c , то a≥c .

Их доказательство очень похоже на уже приведенные, поэтому не будем на них останавливаться, а перейдем к другим важным свойствам числовых неравенств.

Другие важные свойства числовых неравенств

Дополним основные свойства числовых неравенств еще серией результатов, имеющих большое практическое значение. На них основаны методы оценки значений выражений, на них базируются принципы решения неравенств и т.п. Поэтому целесообразно хорошо разобраться с ними.

В этом пункте свойства неравенств будем формулировать только для одного знака строгого неравенства, но стоит иметь в виду, что аналогичные свойства будут справедливы и для противоположного ему знака, а также для знаков нестрогих неравенств. Поясним это на примере. Ниже мы сформулируем и докажем такое свойство неравенств: если a

  • если a>b , то a+c>b+c ;
  • если a≤b , то a+c≤b+c ;
  • если a≥b , то a+c≥b+c .

Для удобства представим свойства числовых неравенств в виде списка, при это будем давать соответствующее утверждение, записывать его формально с помощью букв, приводить доказательство, после чего показывать примеры использования. А в конце статьи сведем все свойства числовых неравенств в таблицу. Поехали!

    Прибавление (или вычитание) любого числа к обеим частям верного числового неравенства дает верное числовое неравенство. Другими словами, если числа a и b таковы, что a

    Для доказательства составим разность левой и правой частей последнего числового неравенства, и покажем, что она отрицательна при условии a(a+c)−(b+c)=a+c−b−c=a−b . Так как по условию a

    На доказательстве этого свойства числовых неравенств для вычитания числа c не останавливаемся, так как на множестве действительных чисел вычитание можно заменить прибавлением −c .

    Например, если к обеим частям верного числового неравенства 7>3 прибавить число 15 , то получится верное числовое неравенство 7+15>3+15 , что то же самое, 22>18 .

    Если обе части верного числового неравенства умножить (или разделить) на одно и то же положительное число c, то получится верное числовое неравенство. Если обе части неравенства умножить (или разделить) на отрицательное число c , и изменить знак неравенства на противоположный, то получится верное неравенство. В буквенном виде: если для чисел a и b выполняется неравенство ab·c.

    Доказательство. Начнем со случая, когда c>0 . Составим разность левой и правой частей доказываемого числового неравенства: a·c−b·c=(a−b)·c . Так как по условию a0 , то произведение (a−b)·c будет отрицательным числом как произведение отрицательного числа a−b на положительное число c (что следует из ). Следовательно, a·c−b·c<0 , откуда a·c

    На доказательстве рассмотренного свойства для деления обеих частей верного числового неравенства на одно и то же число c не останавливаемся, так как деление всегда можно заменить умножением на 1/c .

    Покажем пример применения разобранного свойства на конкретных числах. Например, можно обе части верного числового неравенства 4<6 умножить на положительное число 0,5 , что дает верное числовое неравенство −4·0,5<6·0,5 , откуда −2<3 . А если обе части верного числового неравенства −8≤12 разделить на отрицательное число −4 , и изменить знак неравенства ≤ на противоположный ≥, то получится верное числовое неравенство −8:(−4)≥12:(−4) , откуда 2≥−3 .

    Из только что разобранного свойства умножения обеих частей числового равенства на число следуют два практически ценных результата. Так их и сформулируем в виде следствий.

    Все разобранные выше в этом пункте свойства объединяет то, что сначала дано верное числовое неравенство, и из него посредствам некоторых манипуляций с частями неравенства и знаком получается другое верное числовое неравенство. Сейчас мы приведем блок свойств, в которых изначально дано не одно, а несколько верных числовых неравенств, а новый результат получается из их совместного использования после сложения или умножения их частей.

    Если для чисел a , b , c и d справедливы неравенства a

    Докажем, что (a+c)−(b+d) – отрицательное число, этим будет доказано, что a+c

    По индукции это свойство распространяется на почленное сложение трех, четырех, и, вообще, любого конечного числа числовых неравенств. Так, если для чисел a 1 , a 2 , …, a n и b 1 , b 2 , …, b n справедливы неравенства a 1 a 1 +a 2 +…+a n .

    Например, нам даны три верных числовых неравенства одного знака −5<−2 , −1<12 и 3<4 . Рассмотренное свойство числовых неравенств позволяет нам констатировать, что неравенство −5+(−1)+3<−2+12+4 – тоже верное.

    Можно почленно умножать числовые неравенства одного знака, обе части которых представлены положительными числами. В частности, для двух неравенств a

    Для доказательства можно умножить обе части неравенста a

    Указанное свойство справедливо и для умножения любого конечного числа верных числовых неравенств с положительными частями. То есть, если a 1 , a 2 , …, a n и b 1 , b 2 , …, b n – положительные числа, причем a 1 a 1 ·a 2 ·…·a n .

    Отдельно стоит заметить, что если в записи числовых неравенств содержатся неположительные числа, то их почленное умножение может приводить к неверным числовым неравенствам. Например, числовые неравенства 1<3 и −5<−4 – верные и одного знака, почленное умножение этих неравенств дает 1·(−5)<3·(−4) , что то же самое, −5<−12 , а это неверное неравенство.

    • Следствие. Почленное умножение одинаковых верных неравенств вида a

В заключение статьи, как и было обещано, соберем все изученные свойства в таблицу свойств числовых неравенств :

Список литературы.

  • Моро М. И. . Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.

Поле действительных чисел обладает свойством упорядоченности (п. 6, стр. 35): для любых чисел а, b имеет место одно и только одно из трех соотношений: или . При этом запись а > b означает, что разность положительна, а запись разность отрицательна. В отличие от поля действительных чисел, поле комплексных чисел не упорядочивается: для комплексных чисел понятия «больше» и «меньше» не определяются; поэтому в данной главе рассматриваются только действительные числа.

Соотношения назовем неравенствами, числа а и b - членами (или частями) неравенства, знаки > (больше) и Неравенства а > b и с > d называются неравенствами одинакового (или одного и того же) смысла; неравенства а > b и с Из определения неравенства сразу следует, что

1) любое положительное число больше нуля;

2) любое отрицательное число меньше нуля;

3) любое положительное число больше любого отрицательного числа;

4) из двух отрицательных чисел больше то, абсолютная величина которого меньше.

Все эти утверждения допускают простое геометрическое истолкование. Пусть положительное направление числовой оси идет вправо от начальной точки; тогда, каковы бы ни были знаки чисел, большее из них изображается точкой, лежащей правее точки, изображающей меньшее число.

Неравенства обладают следующими основными свойствами.

1. Несимметричность (необратимость): если , то , и обратно.

Действительно, если разность положительна, то разность отрицательна. Говорят, что при перестановке членов неравенства надо смысл неравенства изменить на противоположный.

2. Транзитивность: если , то . Действительно, из положительности разностей следует и положительность

Кроме знаков неравенства применяют также знаки неравенства и Они определяются следующим образом: запись означает, что либо либо Поэтому, например, можно писать , а также . Обычно неравенства, записанные с помощью знаков называют строгими неравенствами, а записанные с помощью знаков нестрогими неравенствами. Соответственно и сами знаки называют знаками строгого или нестрогого неравенства. Свойства 1 и 2, рассмотренные выше, верны и для нестрогих неравенств.

Рассмотрим теперь действия, которые можно производить над одним или несколькими неравенствами.

3. От прибавления к членам неравенства одного и того же числа смысл неравенства не изменяется.

Доказательство. Пусть даны неравенство и произвольное число . По определению разность положительна. Прибавим к этому числу два противоположных числа от чего оно не изменится, т. е.

Это равенство можно переписать так:

Из этого следует, что разность положительна, т. е. что

а это и надо было доказать.

На этом основана возможность перекоса любого члена неравенства из одной его части в другую с противоположным знаком. Например, из неравенства

следует, что

4. При умножении членов неравенства на одно и то же положительное число смысл неравенства не изменяется; при умножении членов неравенства на одно и то же отрицательное число смысл неравенства изменяется на противоположный.

Доказательство. Пусть тогда Если то так как произведение положительных чисел положительно. Раскрыв скобки в левой части последнего неравенства, получим , т. е. . Аналогичным образом рассматривается случай .

Точно такой же вывод можно сделать и относительно деления частей неравенства на какое-либо отличное от нуля число, так как деление на число равносильно умножению на число а числа имеют одинаковые знаки.

5. Пусть члены неравенства положительны. Тогда при возведении его членов в одну и ту же положительную степень смысл неравенства не изменяется.

Доказательство. Пусть этом случае по свойству транзитивности и . Тогда в силу монотонного возрастания степенной функции при и положительном будем иметь

В частности, если где -натуральное число, то получим

т. е. при извлечении корня из обеих частей неравенства с положительными членами смысл неравенства не изменяется.

Пусть члены неравенства отрицательны. Тогда нетрудно доказать, что при возведении его членов в нечетную натуральную степень смысл неравенства не изменится, а при возведении в четную натуральную степень изменится на противоположный. Из неравенств с отрицательными членами можно также извлекать корень нечетной степени.

Пусть, далее, члены неравенства имеют разные знаки. Тогда при возведении его в нечетную степень смысл неравенства не изменится, а при возведении в четную степень о смысле получающегося неравенства ничего определенного в общем случае сказать нельзя. В самом деле, при возведении числа в нечетную степень знак числа сохраняется и поэтому смысл неравенства не изменяется. При возведении же неравенства в четную степень образуется неравенство с положительными членами, и его смысл будет зависеть от абсолютных величин членов исходного неравенства может получиться неравенство того же смысла, что и исходное, неравенство противоположного смысла и даже равенство!

Все сказанное о возведении неравенств в степень полезно проверить на следующем примере.

Пример 1. Возвести в указанную степень следующие неравенства, изменив в случае необходимости знак неравенства на противоположный или на знак равенства.

а) 3 > 2 в степень 4; б) в степень 3;

в) в степень 3; г) в степень 2;

д) в степень 5; е) в степень 4;

ж) 2 > -3 в степень 2; з) в степень 2,

6. От неравенства можно перейти к неравенству между если члены неравенства оба положительны или оба отрицательны, то между их обратными величинами имеется неравенство противоположного смысла:

Доказательство. Если а и b - одного знака, то их произведение положительно. Разделим на неравенство

т. е. , что и требовалось получить.

Если члены неравенства имеют противоположные знаки, то неравенство между их обратными величинами имеет тот же смысл, так как знаки обратных величин те же, что и знаки самих величин.

Пример 2. Проверить последнее свойство 6 на следующих неравенствах:

7. Логарифмирование неравенств можно производить лишь в случае, когда члены неравенств положительны (отрицательные числа и нуль логарифмов не имеют).

Пусть . Тогда при будет

а при будет

Правильность этих утверждений основана на монотонности логарифмической функции, которая возрастает, если основание и убывает при

Итак, при логарифмировании неравенства, состоящего из положительных членов, по основанию, большему единицы, образуется неравенство того же смысла, что и данное, а при логарифмировании его по положительному основанию, меньшему единицы, - неравенство противоположного смысла.

8. Если , то если , но , то .

Это сразу следует из свойств монотонности показательной функции (п. 42), которая возрастает в случае и убывает, если

При почленном сложении неравенств одного и того же смысла образуется неравенство того же смысла, что и данные.

Доказательство. Докажем это утверждение для двух неравенств, хотя оно верно для любого количества складываемых неравенств. Пусть даны неравенства

По определению числа будут положительными; тогда положительной оказывается и их сумма, т. е.

Группируя иначе слагаемые, получим

и, следовательно,

а это и надо было доказать.

Нельзя сказать Ничего определенного в общем случае о смысле неравенства, получающегося при сложении двух или нескольких неравенств разного смысла.

10. Если из одного неравенства почленно вычесть другое неравенство противоположного смысла, то образуется неравенство того же смысла, что и первое.

Доказательство. Пусть даны два неравенства разного смысла. Второе из них по свойству необратимости можно переписать так: d > с. Сложим теперь два неравенства одинакового смысла и получим неравенство

того же смысла. Из последнего находим

а это и надо было доказать.

Нельзя сказать ничего определенного в общем случае о смысле неравенства, получающегося при вычитании из одного неравенства другого неравенства того же смысла.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.