Свойства параллельных прямых и плоскостей в пространстве. Параллельные прямая и плоскость, признак и условия параллельности прямой и плоскости

Начальная геометрия изучает понятия и соотношение объектов. Без четкого обоснования нельзя ориентироваться в прикладной области. Признак параллельности прямой и плоскости – первый шаг в геометрию пространства. Овладение начальными категориями позволит приблизиться к увлекательному миру точности, логики, ясности.

Вконтакте

Соотношение объектов: возможные варианты

Стереометрия – инструмент познания мира. Она рассматривает отношение объектов друг к другу, учит вычислять расстояния без линейки. Успешная практика требует овладеть основными понятиями.

Имеется поверхность а и линия l. Есть три случая соотношения объектов. Их определяют точки пересечения. Легко запомнить:

  • 0 точек — параллельны;
  • 1 точка — взаимно пересекаются;
  • бесконечно много — прямая лежит в плоскости.

Легко описать признак параллельности объектов. На поверхности а существует линия с || l, то l || а.

Простое заявление требует доказательства. Пусть поверхность проведена через линии: l || c. В Ω а = с. Пусть l имеет с а общую точку. Она должна лежать на с. Это противоречит условию: l || c. Тогда l параллельна плоскости a. Начальное положение верно.

Важно ! В пространстве существует хотя бы одна линия || плоской поверхности. Это созвучно утверждению начальной геометрии (планиметрии).

Простая мысль: а принадлежит больше одной точки l, значит прямая l целиком принадлежит а.

a || l только в случае отсутствия единственной точки пересечения.

Это логичное определение параллельности прямой и плоскости.

Легко найти практическое применение положения. Как доказать, что одна прямая параллельна плоскости?

Достаточно использовать исследованный признак.

Что полезно знать

Для грамотного решения задач требуется изучить дополнительные расположения предметов. Основа — признак параллельности прямой и плоскости. Его применение облегчит понимание других элементов. Геометрия пространства рассматривает частные случаи.

Пересечения в стереометрии

Объекты прежние: плоская поверхность а, линии с, l. Как они соседствуют? С || l. L пересекает а. Легко понять: с обязательно пересечет а. Эта мысль — лемма о пересечении плоскости параллельными прямыми.

Поле деятельности расширяется. К исследуемым объектам добавляется поверхность в. Ей принадлежит l. В исходных объектах ничего не меняется: l || а. Опять получается просто: в случае пересечения плоскостей общая линия d || l. Сразу вытекает понятие: какие две плоскости называются пересекающимися. Те, которые имеют общую прямую.

Какие теоремы требуется изучить

Главные понятия отношения предметов приводят к описанию основных утверждений. Они требуют развернутого доказательства. Первая: теоремы о параллельности одной прямой и плоскости. Рассматриваются разные случаи.

  1. Объекты: поверхности P, Q, R, прямые АB, CD. Условие: P||Q, R их пересекает. Естественно, АB||CD.
  1. Предметы исследования: линии AB, CD, A1B1, C1D1. AB пересекается с CD в одной плоскости, A1B1 — с C1D1 в другой. AB||A1B1, CD||C1D1. Вывод: поверхности, включающие пересекающиеся попарно параллельные линии, ||.

Возникает новое понятие. Скрещивающиеся прямые сами не параллельны, хотя лежат в параллельных плоскостях. Это C1D1 и АВ, А1В1 и CD. Это явление широко применяется в практической стереометрии.

Естественное заявление: через одну из скрещивающихся линий реально проходит единственная параллельная указанной плоскость.

  1. Дальше легко прийти к теореме о следе. Это третье из утверждений о параллельности прямой и поверхности. Есть прямая l. Она || а. l принадлежит в. В Ω а = d. Единственно возможный вариант: d || l.

Важно! Прямая и плоскость называются || при отсутствии общих объектов — точек.

Свойства параллельности и их доказательства

Легко прийти к понятию расположения плоских поверхностей:

  • пустое множество общих точек (называются параллельными);
  • пересекаются по прямой.

В стереометрии находят применение свойства параллельности. Любая пространственная картинка имеет поверхности и линии. Для успешного решения задач требуется изучить основные теоремы:

  • Исследуемые объекты: a || b; c Ω b = l, c Ω a = m. Вывод: l ||m. Предположение требует доказательства. Расположение l и m одно из двух: пересекаются или параллельны. Но во втором случае поверхности не имеют общих точек. Тогда l || m. Утверждение доказано. Следует запомнить: если прямая лежит в плоскости, то они имеют более одной точки пересечения.
  • Имеются поверхность а, точка А не принадлежит а. Тогда существует только одна поверхность b || a, проходящая через А. Доказать положение просто. Пусть l Ω m; l, m принадлежат а. Через каждую из них и А строится плоскость. Она пересекает а. В ней существует линия, проходящая через А и || а. В точке А они являются пересекающимися. Они образуют единственную поверхность b || a.
  • Существуют скрещивающиеся прямые l и m. Тогда имеются || поверхности а и b, которым принадлежат l и m. Логично поступить так: на l и m выбрать произвольные точки. Провести m1 || m, l1 || l. Пересекающиеся линия попарно || => a || b. Положение доказано.

Знание свойств параллельности одной прямой и плоскости позволит умело применять их на практике. Простые и логичные доказательства помогут ориентироваться в увлекательном мире стереометрии.

Плоскости: оценка параллельности

Описать понятие просто. Вопрос: что значит, одна прямая и плоскость параллельны, решен. Исследование начальных категорий геометрии пространства привело к более сложному утверждению.

При решении прикладных задач применяется признак параллельности. Простое описание: пусть l Ω m, l1 Ω m1, l, m принадлежат а, l1, m1 – b. При этом l || l1, m || m1. Тогда a || b.

Без применения математических символов: плоскости называются параллельными, если проведены через пересекающиеся попарно параллельные прямые.

Стереометрия рассматривает свойства параллельных плоскостей . Их описывают теоремы:

Исследуемые объекты: a || b, a Ω c = l, b Ω c = m. Тогда l || m. Очевидно доказательство. и Прямые лежат в одной плоскости, если они || или пересекаются. Следует применить утверждение о параллельности прямой и поверхности. Тогда становится очевидно: пересекаться l и m не могут. Остается единственное – l || m.

Определение параллельных прямых и их свойства в пространстве такие же, как и на плоскости (см. п. 11).

Вместе с тем в пространстве возможен еще один случай расположения прямых - скрещивающиеся прямые. Прямые, которые не пересекаются и не лежат в одной плоскости, называются скрещивающимися.

На рисунке 121 изображен макет жилой комнаты. Вы видите, что прямые, которым принадлежат отрезки АВ и ВС и являются скрещивающимися.

Углом между скрещивающимися прямыми называется угол между пересекающимися параллельными им прямыми. Этот угол не зависит от того, какие взяты пересекающиеся прямые.

Градусная мера угла между параллельными прямыми считается равной нулю.

Общим перпендикуляром двух скрещивающихся прямых называется отрезок с концами на этих прямых, являющийся перпендикуляром к каждой из них. Можно доказать, что две скрещивающиеся прямые имеют общий перпендикуляр, и притом только один. Он является общим перпендикуляром параллельных плоскостей, проходящих через эти прямые.

Расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра. Оно равно расстоянию между параллельными плоскостями, проходящими через эти прямые.

Таким образом, для нахождения расстояния между скрещивающимися прямыми а и b (рис. 122) нужно провести через каждую из этих прямых параллельные плоскости а и . Расстояние между этими плоскостями и будет расстоянием между скрещивающимися прямыми а и b. На рисунке 122 этим расстоянием является, например, расстояние АВ.

Пример. Прямые а и b параллельны, а прямые с и d скрещиваются. Может ли каждая из прямых а и пересекать обе прямые

Решение. Прямые а и b лежат в одной плоскости, и поэтому любая прямая, пересекающая каждую из них, лежит в той же плоскости. Следовательно, если бы каждая из прямых а, b пересекала обе прямые с и d, то прямые лежали бы в одной плоскости с прямыми а и b, а этого быть не может, так как прямые скрещиваются.

42. Параллельность прямой и плоскости.

Прямая и плоскость называются параллельными, если они не пересекаются, т. е. не имеют общих точек. Если прямая а параллельна плоскости а, то пишут: .

На рисунке 123 изображена прямая а, параллельная плоскости а.

Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости (признак параллельности прямой и плоскости).

Эта теорема позволяет в конкретной ситуации доказать, что прямая и плоскость являются параллельными. На рисунке 124 изображена прямая b, параллельная прямой а, лежащей в плоскости а, т. е. по прямая b параллельна плоскости а, т. е.

Пример. Через вершину прямого угла С прямоугольного треугольника ABC параллельно гипотенузе на расстоянии 10 см от нее проведена плоскость. Проекции катетов на эту плоскость равны 30 и 50 см. Найти проекцию гипотенузы на ту же плоскость.

Решение. Из прямоугольных треугольников BBVC и (рис. 125) находим:

Из треугольника ABC находим:

Проекция гипотенузы АВ на плоскость а равна . Так как АВ параллельна плоскости а, то Итак, .

43. Параллельные плоскости.

Две плоскости называются параллельными. если они не пересекаются.

Две плоскости параллельны» если одна на них параллельна двум пересекающимся прямым, лежащим в другой плоскости (признак параллельности двух плоскостей).

На рисунке 126 плоскость а параллельна пересекающимся прямым а и b, лежащим в плоскости , тогда по эти плоскости параллельны.

Через точку вне данной плоскости можно провести плоскость, параллельную данной, и притом только одну.

Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны.

На рисунке 127 изображены две параллельные плоскости , а плоскость у их пересекает по прямым а и b. Тогда по теореме 2.7 можно утверждать, что прямые а и b параллельны.

Отрезки параллельных прямых, заключенные между двумя параллельными плоскостями, равны.

По Т.2.8 отрезки АВ и изображенные на рисунке 128, равны, так как

Пусть данные плоскости пересекаются. Проведем плоскость, перпендикулярную прямой их пересечения. Она пересекает данные плоскости по двум прямым. Угол между этими прямыми называется углом между данными плоскостями (рис. 129). Определяемый так угол между плоскостями не зависит от выбора секущей плоскости.

Курс геометрии широк, объемен и многогранен: он включает в себя множество различных тем, правил, теорем и полезных знаний. Можно представить, что все в нашем мире состоит из простого, даже наиболее сложное. Точки, прямые, плоскости - все это есть и в вашей жизни. И они поддаются имеющимся в мире законам о соотношении объектов в пространстве. Чтобы доказать это, можно попытаться доказать параллельность прямых и плоскостей.

Прямая - это линия, которая соединяет две точки по кратчайшей траектории, не заканчиваясь и длясь с обоих сторон в бесконечность. Плоскость - это поверхность, образующаяся при кинематическом движении образующей прямой линии по направляющей. Другими словами, если две любые прямые имеют точку пересечения в пространстве, они могут лежать и в одной плоскости. Однако как выразить и прямых, если этих данных недостаточно для подобного утверждения?

Главное условие параллельности прямой и плоскости - чтобы они не имели общих точек. В отличие от прямых, которые могут при отсутствии общих точек являться не параллельными, а расходящимися, плоскость двухмерна, что исключает такое понятие, как расходящиеся прямые. Если данное условие параллельности не соблюдено - значит, прямая пересекает данную плоскость в какой-то одной точке либо лежит в ней полностью.

Что же показывает нам условие параллельности прямой и плоскости нагляднее всего? То, что в любой точке пространства расстояние между параллельными прямой и плоскостью будет константой. При существовании хоть малейшего, в миллиардные доли градуса, уклона прямая рано или поздно пересечет плоскость за счет обоюдной бесконечности. Именно поэтому параллельность прямой и плоскости возможна только при соблюдении этого правила, иначе главное ее условие - отсутствие общих точек - соблюдено не будет.

Что можно добавить, рассказывая про параллельность прямых и плоскостей? То, что если одна из параллельных прямых принадлежит плоскости, то вторая или параллельна плоскости, или тоже принадлежит ей. Как это доказать? Параллельность прямой и плоскости, заключающей в себе прямую, параллельную данной, доказывается очень просто. не имеют общих точек - стало быть, они не пересекаются. А если прямая не пересекается с плоскостью в одной точке - значит, она или параллельна, или лежит на плоскости. Это еще раз доказывает параллельность прямой и плоскости, не имеющих точек пересечения.

В геометрии есть также теорема, которая утверждает, что если существуют две плоскости и прямая линия, перпендикулярна им обеим, то плоскости параллельны. Схожая теорема утверждает, что если две прямые бывают перпендикулярны одной любой плоскости, они обязательно будут параллельны друг другу. Верна ли и доказуема ли параллельность прямых и плоскостей, выраженная данными теоремами?

Оказывается, это так. Прямая, перпендикулярная плоскости, всегда будет строго перпендикулярна любой прямой, которая пролегает в данной плоскости и также имеет с другой прямой точку пересечения. Если прямая имеет подобные пересечения с несколькими плоскостями и во всех случаях является им перпендикулярной - значит, все данные плоскости параллельны друг другу. Наглядным примером может служить детская пирамидка: ее ось будет искомой перпендикулярной прямой, а кольца пирамидки - плоскостями.

Стало быть, доказать параллельность прямой и плоскости достаточно легко. Эти знания получаются школьниками при изучении азов геометрии и во многом определяют дальнейшее усвоение материала. Если уметь грамотно пользоваться полученными в начале обучения знаниями, можно будет оперировать куда большим количеством формул и пропускать ненужные логические связки между ними. Главное - это понимание основ. Если же его нет - то изучение геометрии можно сравнить со строительством без фундамента. Именно поэтому данная тема требует пристального внимания и досконального исследования.

Статья рассматривает понятия параллельность прямой и плоскости.Будут рассмотрены основные определения и приведены примеры. Рассмотрим признак параллельности прямой к плоскости с необходимыми и достаточными условиями параллельности, подробно решим примеры заданий.

Yandex.RTB R-A-339285-1 Определение 1

Прямая и плоскость называются параллельными , если не имеют общих точек, то есть не пересекаются.

Параллельность обозначается « ∥ ». Если в задании по условию прямая a и плоскость α параллельны, тогда обозначение имеет вид a ∥ α . Рассмотрим рисунок, приведенный ниже.

Считается, что прямая a , параллельная плоскости α и плоскость α , параллельная прямой a , равнозначные, то есть прямая и плоскость параллельны друг другу в любом случае.

Параллельность прямой и плоскости – признак и условия параллельности

Не всегда очевидно, что прямая и плоскость параллельны. Зачастую это нужно доказать. Необходимо использовать достаточное условие, которое даст гарантию на параллельность. Такой признак имеет название признака параллельности прямой и плоскости.Предварительно рекомендуется изучить определение параллельных прямых.

Теорема 1

Если заданная прямая a , не лежащая в плоскости α , параллельна прямой b , которая принадлежит плоскости α , тогда прямая a параллельна плоскости α .

Рассмотрим теорему, используемую для установки параллельности прямой с плоскостью.

Теорема 2

Если одна из двух параллельных прямых параллельна плоскости, то другая прямая лежит в этой плоскости либо параллельна ей.

Подробное доказательство рассмотрено в учебнике 10 - 11 класса по геометрии. Необходимым и достаточным условием параллельности прямой с плоскостью возможно при наличии определения направляющего вектора прямой и нормального вектора плоскости.

Теорема 3

Для параллельности прямой a , не принадлежащей плоскости α , и данной плоскости необходимым и достаточным условием является перпендикулярность направляющего вектора прямой с нормальным вектором заданной плоскости.

Условие применимо, когда необходимо доказать параллельность в прямоугольной системе координат трехмерного пространства. Рассмотрим подробное доказательство.

Доказательство

Допустим, прямая а в систему координат О х у задается каноническими уравнениями прямой в пространстве, которые имеют вид x - x 1 a x = y - y 1 a y = z - z 1 a z или параметрическими уравнениями прямой в пространстве x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , плоскостью α с общими уравнениями плоскости A x + B y + C z + D = 0 .

Отсюда a → = (a x , a y , a z) является направляющим вектором с координатами прямой а, n → = (A , B , C) - нормальным вектором заданной плоскости альфа.

Чтобы доказать перпендикулярность n → = (A , B , C) и a → = (a x , a y , a z) , нужно использовать понятие скалярного произведения. То есть при произведении a → , n → = a x · A + a y · B + a z · C результат должен быть равен нулю из условия перпендикулярности векторов.

Значит, что необходимым и достаточным условием параллельности прямой и плоскости запишется так a → , n → = a x · A + a y · B + a z · C . Отсюда a → = (a x , a y , a z) является направляющим вектором прямой a с координатами, а n → = (A , B , C) - нормальным вектором плоскости α .

Пример 1

Определить, параллельны ли прямая x = 1 + 2 · λ y = - 2 + 3 · λ z = 2 - 4 · λ с плоскостью x + 6 y + 5 z + 4 = 0 .

Решение

Получаем, что предоставленная прямая не принадлежит плоскости, так как координаты прямой M (1 , - 2 , 2) не подходят. При подстановке получаем, что 1 + 6 · (- 2) + 5 · 2 + 4 = 0 ⇔ 3 = 0 .

Необходимо проверить на выполнимость необходимое и достаточное условие параллельности прямой и плоскости. Получим, что координаты направляющего вектора прямой x = 1 + 2 · λ y = - 2 + 3 · λ z = 2 - 4 · λ имеют значения a → = (2 , 3 , - 4) .

Нормальным вектором для плоскости x + 6 y + 5 z + 4 = 0 считается n → = (1 , 6 , 5) . Перейдем к вычислению скалярного произведения векторов a → и n → . Получим, что a → , n → = 2 · 1 + 3 · 6 + (- 4) · 5 = 0 .

Значит, перпендикулярность векторов a → и n → очевидна. Отсюда следует, что прямая с плоскостью являются параллельными.

Ответ: прямая с плоскостью параллельны.

Пример 2

Определить параллельность прямой А В в координатной плоскости О у z , когда даны координаты A (2 , 3 , 0) , B (4 , - 1 , - 7) .

Решение

По условию видно, что точка A (2 , 3 , 0) не лежит на оси О х, так как значение x не равно 0 .

Для плоскости O x z вектор с координатами i → = (1 , 0 , 0) считается нормальным вектором данной плоскости. Обозначим направляющий вектор прямой A B как A B → . Теперь при помощи координат начала и конца рассчитаем координаты вектора A B . Получим, что A B → = (2 , - 4 , - 7) . Необходимо выполнить проверку на выполнимость необходимого и достаточного условия векторов A B → = (2 , - 4 , - 7) и i → = (1 , 0 , 0) , чтобы определить их перпендикулярность.

Запишем A B → , i → = 2 · 1 + (- 4) · 0 + (- 7) · 0 = 2 ≠ 0 .

Отсюда следует, что прямая А В с координатной плоскостью О y z не являются параллельными.

Ответ: не параллельны.

Не всегда заданное условие способствует легкому определению доказательства параллельности прямой и плоскости. Появляется необходимость в проверке принадлежности прямой a плоскости α . Существует еще одно достаточное условие, при помощи которого доказывается параллельность.

При заданной прямой a с помощью уравнения двух пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 , плоскостью α - общим уравнением плоскости A x + B y + C z + D = 0 .

Теорема 4

Необходимым и достаточным условием для параллельности прямой a и плоскости α яляется отсутствие решений системы линейных уравнений, имеющей вид A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 .

Доказательство

Из определения следует, что прямая a с плоскостью α не должна иметь общих точек, то есть не пересекаться, только в этом случае они будут считаться параллельными. Значит, система координат О х у z не должна иметь точек, принадлежащих ей и удовлетворяющих всем уравнениям:

A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 , а также уравнению плоскости A x + B y + C z + D = 0 .

Следовательно, система уравнений, имеющая вид A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 , называется несовместной.

Верно обратное: при отсутствии решений системы A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 не существует точек в О х у z , удовлетворяющих всем заданным уравнениям одновременно. Получаем, что нет такой точки с координатами, которая могла бы сразу быть решениями всех уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 и уравнения A x + B y + C z + D = 0 . Значит, имеем параллельность прямой и плоскости, так как отсутствуют их точки пересечения.

Система уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 не имеет решения, когда ранг основной матрицы меньше ранга расширенной. Это проверяется теоремой Кронекера-Капелли для решения линейных уравнений. Можно применять метод Гаусса для определения ее несовместимости.

Пример 3

Доказать, что прямая x - 1 = y + 2 - 1 = z 3 параллельна плоскости 6 x - 5 y + 1 3 z - 2 3 = 0 .

Решение

Для решения данного примера следует переходить от канонического уравнения прямой к виду уравнения двух пересекающихся плоскостей. Запишем это так:

x - 1 = y + 2 - 1 = z 3 ⇔ - 1 · x = - 1 · (y + 2) 3 · x = - 1 · z 3 · (y + 2) = - 1 · z ⇔ x - y - 2 = 0 3 x + z = 0

Чтобы доказать параллельность заданной прямой x - y - 2 = 0 3 x + z = 0 с плоскостью 6 x - 5 y + 1 3 z - 2 3 = 0 , необходимо уравнения преобразовать в систему уравнений x - y - 2 = 0 3 x + z = 0 6 x - 5 y + 1 3 z - 2 3 = 0 .

Видим, что она не решаема, значит прибегнем к методу Гаусса.

Расписав уравнения, получаем, что 1 - 1 0 2 3 0 1 0 6 - 5 1 3 2 3 ~ 1 - 1 0 2 0 3 1 - 6 0 1 1 3 - 11 1 3 ~ 1 - 1 0 2 0 3 1 - 6 0 0 0 - 9 1 3 .

Отсюда делаем вывод, что система уравнений является несовместной, так как прямая и плоскость не пересекаются, то есть не имеют общих точек.

Делаем вывод, что прямая x - 1 = y + 2 - 1 = z 3 и плоскость 6 x - 5 y + 1 3 z - 2 3 = 0 параллельны, так как было выполнено необходимое и достаточное условие для параллельности плоскости с заданной прямой.

Ответ: прямая и плоскость параллельны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Прямая и плоскость называются параллельными, если они не имеют общих точек. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой

1.Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.

2.Если одна из двух параллельных прямых параллельна данной плоскости, а другая прямая имеет с плоскостью общую точку, то эта прямая лежит в данной плоскости. плоскости, то она параллельна самой плоскости.

Случаи взаимного расположения прямой и плоскости: а) прямая лежит в плоскости;

б) прямая и плоскость имеют только одну общую точку;в) прямая и плоскость не имеют ни одной общей точки.

2.Определение натуральной величины отрезка прямой общего положения способом прямоугольного треугольника.

Натуральная величина (н.в.) отрезка АВ прямой общего положения является гипотенузой прямоугольного треугольника АВК. В этом треугольнике катет АК параллелен плоскости проекций π1 и равен горизонтальной проекции отрезка A"B". Катет BK равен разности расстояний точек A и B от плоскости π1.

В общем случае для определения натуральной величины отрезка прямой необходимо построить гипотенузу прямоугольного треугольника, одним катетом которого является горизонтальная (фронтальная) проекция отрезка, другим катетом - отрезок, равный по величине алгебраической разности координат Z (Y) крайних точек отрезка.

Из прямоугольного треугольника находят угол α - угол наклона прямой к горизонтальной плоскости проекций.

Для определения угла наклона прямой к фронтальной плоскости проекций необходимо выполнить аналогичные построения на фронтальной проекции отрезка.

3.Главные линии плоскости (горизонталь, фронталь).

Горизонталь плоскости Р – прямая, которая лежит в этой плоскости и параллельна горизонтальной плоскости. Горизонталь как прямая, параллельная горизонтальной плоскости, имеет фронтальную проекцию ѓ, параллельную оси х.

Фронталь плоскости Р – прямая, которая лежит в этой плоскости и параллельна фронтальной плоскости.

Фронталь является прямой, параллельной фронтальной плоскости, и ее горизонтальная проекцияф параллельна оси х.

4.Взаимное положение прямых в пространстве. Определение видимости по конкурирующим точкам. Две прямые в пространстве могут иметь различное расположение: А)пересекаться (лежать в одной плоскости). Частный случай пересечения – под прямым углом;Б)могут быть параллельными (лежать в одной плоскости);В)совпадать – частный случай параллельности;Г)скрещиваться (лежать в разных плоскостях и не пересекаться).

Точки, у которых проекции на П1 совпадают, называют конкурирующими по отношению к плоскости П1, а точки, у которых проекции на П2 совпадают, называют конкурирующими по отношению к плоскости П2.

Точки К и L конкурирующие по отношению к плоскости П1, так как на плоскости П1 точки К и L проецируются в одну точку: К1 = L1.

Точка К выше точки L, т.к. К2 выше точки L2, потому К1 на П1 видима.