Норма количества ликвора в боковых желудочках таблица. Система циркуляции спинномозговой жидкости

Уважаемая Алена!

Жидкость, о которой идет речь, называется ликвором. Ликвор окружает головной мозг, защищая нервные ткани от повреждений и инфекции, а также помогает вывести продукты обмена, которые могут быть токсичны для головного мозга. Ликвор наполняет четыре желудочка мозга, сообщающиеся друг с другом. Собственно, и образуется жидкость в сосудистых сплетениях желудочков, а затем, омыв оболочки мозга, снова всасывается в кровь. Ликвор должен свободно перемещаться по всей системе, компенсируя повышение внутричерепного давления. Если отток ликвора нарушен, то возникает так называемое ликворное (спинномозговое) давление.

Нормы объема ликвора

В норме у новорожденных и детей до 1 года объем цереброспинальной жидкости составляет около 15 - 20 мл. Объем ликвора может увеличиваться в случае нарушений выработки, циркуляции и оттока жидкости. В этом случае развивается гидроцефалия, или водянка мозга.

Определить точный объем ликвора по УЗИ головного мозга, которое в плановом порядке проводится сразу после рождения малыша и в первый месяц его жизни, невозможно, однако это исследование позволят оценить размеры желудочков, которые при данной патологии расширяются. Данные по нормам приведены в таблице.

Если у ребенка от рождения окружность головы превышает окружность груди более чем на 2 см, это уже является основанием для обследования малыша на предмет гидроцефалии. В этом случае особенно важно не пропускать ежемесячные визиты к врачу-педиатру, где проводится замер объемов тела. Окружность головы в первые 3 месяца жизни младенца не должна увеличиваться более, чем на 2 см в месяц. К 1 году жизни объем головы должен быть меньше объема грудной клетки на 1 см.

Обследование детей на гидроцефалию

Для подтверждения диагноза этого тяжкого заболевания малышу назначается комплексное обследование:

  1. УЗИ головного мозга, или нейросонография. Это исследование возможно в период, пока открыты роднички на голове у ребенка. УЗИ позволяет оценить размеры желудочков мозга, обнаружить возможные новообразования или кровоизлияния, пороки развития центральной нервной системы. Определить внутричерепное давление по УЗИ невозможно! Такое исследование безопасно для малыша и может проводиться многократно по необходимости.
  2. МРТ и КТ. Данные исследования проводятся по показаниям и помогают определить толщину оболочек головного мозга и степень расширения желудочков.
  3. Электроэнцефалография. Помогает установить возможные нарушения мозговой активности вследствие скопления лишней жидкости.

Другие методы исследования головного мозга (радиоизотопное сканирование, ангиография), которые возможно применить по отношению ко взрослым, у детей не применяются. Если диагноз подтвержден, ребенку, скорее всего, понадобится коррекция объема ликвора. Чаще всего она проводится с помощью вентрикуло-перитонеального шунтирования - операции, в ходе которой по силиконовым катетерам ликвор отводится из желудочков в брюшную полость, правое предсердие или спинномозговой канал. Вовремя выполненная операция дает ребенку высокие шансы на нормальную жизнь наравне со всеми другими детьми.

С уважением, Ксения.


Одна из причин возникновения головной боли и других мозговых нарушений, кроется в нарушении циркуляции ликвора. Ликвор является цереброспинальной (ЦСЖ) или спинномозговой жидкостью (СМЖ), которая составляет собой постоянную внутреннюю среду желудочков , путей, по которым проходит ликвор и субарахноидального пространства мозга.

Ликвор, часто являющийся незаметным звеном человеческого организма, осуществляет ряд важных функций:

  • Поддержание постоянства внутренней среды организма
  • Контроль за обменными процессами центральной нервной системы (ЦНС) и тканей мозга
  • Механическая опора для мозга
  • Регуляция деятельности артериовенозной сети посредством стабилизации внутричерепного давления и
  • Нормализация уровня осмотического и онкотического давления
  • Бактерицидное действие против чужеродных агентов, посредством содержания в своем составе Т- и В –лимфоцитов, иммуноглобулинов, ответственных за иммунитет

Сосудистое сплетение, располагающееся в мозговых желудочках, является отправной точкой для выработки ликвора. Цереброспинальная жидкость проходит из боковых желудочков мозга сквозь отверстие Монро в третий желудочек.

Сильвиев водопровод служит мостом для перехода ликвора в четвертый желудочек мозга. Пройдя еще несколько анатомических образований, таких как отверстие Мажанди и Люшка, мозжечково-мозговая цистерна, Сильвиева борозда, попадает в подпаутинное или субарахноидальное пространство. Эта щель располагается между паутинной и мягкой оболочкой головного мозга.

Выработка ликвора соответствует скорости примерно 0,37 мл/мин или 20 мл/ч вне зависимости от показателей внутричерепного давления. Общие цифры объёма цереброспинальной жидкости в полостной системе черепа и позвоночника у новорождённого ребенка составляют 15-20 мл, ребёнок, возрастом один год, имеет 35 мл, а взрослый человек около 140-150 мл.

В течение 24 часов, ликвор полностью обновляется от 4 до 6 раз, в связи с чем его продукция составляет в среднем около 600-900 мл.

Высокая скорость образования ликвора соответствует и высокой скорости его впитывания мозгом. Поглощение СМЖ происходит с помощью пахионовых грануляций – ворсин паутинной оболочки мозга. Давление внутри черепа определяет судьбу ликвора – при сниженном, его поглощение останавливается, а при повышенном, наоборот, увеличивается.

Помимо давления, поглощение ликвора зависит и от состояния самих ворсин паутинной оболочки. Их сдавление, закупорка протоков вследствие инфекционных процессов, ведет к прекращению поступления ликвора, нарушая его циркуляцию и вызывая патологические состояния в мозге.

Ликворные пространства мозга

Первые сведения о ликворной системе связаны с именем Галена. Великий римский врач первым описал оболочки и желудочки головного мозга, а также сам ликвор, который он принял за некий животный дух. Вновь вызвала интерес ликворная система головного мозга лишь спустя многие столетия.

Учеными Монро и Мажанди принадлежат описания отверстий, описывающих ход ЦСЖ, получивших их имя. Отечественные ученые, также приложили руку к вкладу знаний в понятие о ликворной системе – Нагель, Пашкевич, Арендт. В науке появилось понятие ликворных пространств – полостей, заполненных ликворной жидкостью. К таким пространствам относят:

  • Субарахноидальное – щелевидная полость между оболочками головного мозга – паутинной и мягкой. Выделяют краниальное и спинальное пространства. В зависимости от прилежания части паутинной оболочки к головному или спинному мозгу. Головное краниальное пространство содержит около 30 мл ликвора, а спинальное около 80-90 мл
  • Пространства Вирхова- Робена или периваскулярные пространства – вокругсосудистая область , которая имеет в своем составе часть паутинной оболочки
  • Вентрикулярные пространства представлены полостью желудочков. Нарушения ликвородинамики, связанные с желудочковыми пространствами, характеризуют понятием моноветрикулярного, бивентрикулярного, тривентрикулярного
  • тетравентрикулярного в зависимости от количества поврежденных желудочков;
  • Цистерны головного мозга – пространства в виде расширений субарахноидальной и мягкой оболочки

Пространства, пути, а также продуцирующие ликвор клетки объединяются понятием ликворной системы. Нарушение любого ее звена может стать причиной расстройств ликвородинамики или ликвороциркуляции.

Ликвородинамические расстройства и их причины

Возникающие ликвородинамические нарушения в головном мозге относят к таким состояниям в организме, при которых нарушается образование, циркуляция и утилизация СМЖ. Расстройства могут протекать в виде гипертензивного и гипотензивного нарушения, с характерными интенсивными головными болями. К причинным факторам ликвородинамических нарушений относят врожденные и приобретенные.

Среди врожденных расстройств основными считают:

  • Мальформацию Арнольда-Киари, которая сопровождается нарушением оттока ликвора
  • Мальформацию Денди-Уокера, причиной которой является дисбаланс в продукции ликвора между боковым и третьем и четвертым мозговым желудочком
  • Стеноз водопровода мозга первичного или вторичного генеза, который ведет к его сужению, в результате чего создается препятствие для прохождения ЦСЖ;
  • Агенезию мозолистого тела
  • Генетические расстройства Х-хромосомы
  • Энцефалоцеле – черепно-мозговую грыжу, которая ведет к сдавлению структур мозга и нарушает движение ликвора
  • Порэнцефалические кисты, которые ведут к гидроцефалии – водняке головного мозга, затрудняющий ток ликворной жидкости

Среди приобретенных причин, выделяют:

Уже в период 18-20 недели беременности можно судить о состоянии ликворной системы малыша. УЗИ на этом сроке позволяет определить наличие или отсутствие патологии мозга плода. Ликвородинамические нарушения подразделяют на несколько видов в зависимости от:

  • Течения заболевания на острую и хроническую фазу
  • Стадии протекания болезни на – прогрессирующую форму, которая сочетает в себе быстрое развитие отклонений и нарастание внутричерепного давления. Компенсированную форму со стабильным внутричерепным давлением, но расширенной мозговой желудочковой системой. И субкомпенсированную, которая характеризуется нестабильным состоянием, приводящем при незначительных провокациях к ликвородинамическим кризам
  • Местоположения СМЖ в мозговой полости - внутрижелудочковые, причиной которых служит застой ликвора внутри желудочков мозга, субарахноидальные, встречающие затруднение тока ЦСЖ в паутинной оболочке мозга и смешанные, сочетающие в себе несколько разных точек нарушенного тока ликвора
  • Уровня давления ликвора на – гипертензивный вид, нормотензивный – при оптимальных показателях, но имеющихся причинных факторах нарушений ликвородинамики и гипотензивный, сопровождающийся пониженным давлением внутри черепа

Симптомы и диагностика ликвородинамических нарушений

В зависимости от возраста больного с нарушениями ликвородинамики, симптоматическая отличаться. Новорожденные малыши в возрасте до одного года страдают:

  • Частыми и обильными срыгиваниями
  • Вялотекущим зарастанием родничков. Повышенное внутричерепное давление приводит вместо зарастания, к набуханию и интенсивной пульсации большого и малого родничков
  • Быстрым ростом головы, приобретением неестественной вытянутой формы;
  • Спонтанным плачем без видимой , который ведет к вялости и слабости ребенка, его сонливости
  • Подергиванием конечностей, тремором подбородка, непроизвольными вздрагиваниями
  • Выраженной сосудистой сетью в переносице ребенка, на височной области, его шее и вверху груди, проявляющаяся в напряженном состоянии малыша при плаче, попытке поднять головку или сесть
  • Двигательными расстройствами в виде спастических параличей и парезов, чаще нижних параплегий и реже гемиплегий с повышением мышечного тонуса и сухожильных рефлексов
  • Поздним началом функционирования держательной способности головки, сидения и ходьбы
  • Сходящимся или расходящимся косоглазием, вследствие блока глазодвигательного нерва

Дети в возрасте больше года, начинают сталкиваться с такими симптомами, как:

  • Повышенное внутричерепное давление, которое ведет к приступам интенсивной головной боли, чаще утренней, в сопровождении тошноты или рвоты, которые не приносят облегчение
  • Быстро сменяющаяся апатия и беспокойство
  • Координационный дисбаланс в движениях, походке и речи в виде ее отсутствия или затрудненного произношения
  • Снижение зрительных функций с горизонтальным нистагмом, в результате чего детки не могут взглянуть вверх
  • «Качающаяся голова куклы»
  • Нарушения интеллектуального развития, которые могут иметь минимальную или глобальную выраженность. Дети могут не понимать смысла произнесенных ими слов. При высоком уровне интеллекта дети словоохотливы, склонны к поверхностному юмору, неуместному использованию громких фраз, вследствие затруднения в понимании значении слов и механическом повторении легко запоминающегося. Такие дети имеют повышенную внушаемость, лишены инициативы, нестабильны в настроении, часто находятся в состоянии эйфории, которая легко может смениться гневом или агрессией
  • Эндокринные нарушения с ожирением, задержкой полового развития
  • Судорожный синдром, который с годами становится все более выраженным

Взрослые люди чаще переносят ликвородинамические нарушения в гипертензивной форме, которая проявляется в виде:

  • Высоких цифр давления
  • Сильных головных болей
  • Периодических головокружений
  • Тошноты и рвоты, которые сопутствуют головной боли и не приносят больному облегчения
  • Сердечного дисбаланса

Среди диагностических исследований при нарушениях в ликвородинамике, выделяют такие как:

  • Исследование глазного дна офтальмологом
  • МРТ (магнитно-резонансная томография) и КТ () – методы, позволяющие получить точное и четкое изображение любой структуры
  • Радионуклеидная цистернография, основанная на исследовании цистерн мозга, заполненных ликвором посредством меченых частиц, которые можно отследить
  • Нейросонография (НСГ) – безопасное, безболезненное, не занимающее много времени исследование, дающее представление о картине желудочков мозга и ликворных пространствах.

Ликвор — это спинномозговая жидкость со сложной физиологией, а также механизмами образования и резорбции.

Она является предметом изучения такой науки, как .

Единая гомеостатическая система контролирует спинномозговую жидкость, окружающую нервы и глиальные клетки в мозгу, и поддерживает относительное постоянство ее химического состава в сравнении с химическим составом крови.

Внутри мозга находятся три вида жидкости:

  1. кровь , которая циркулирует в обширной сети капилляров;
  2. ликвор — спинномозговая жидкость ;
  3. жидкость межклеточных пространств , которые имеют ширину около 20 нм и свободно открыты для диффузии некоторых ионов и крупных молекул. Это главные каналы, через которые питательные вещества достигают нейронов и глиальных клеток.

Гомеостатический контроль обеспечивается эндотелиальными клетками мозговых капилляров, эпителиальными клетками сосудистых сплетений и арахноидальными мембранами. Связь ликвора можно представить следующим образом (смотрите схему).

Связаны:

  • с кровью (непосредственно через сплетения, арахноидальную оболочку и т.д., а косвенно через и экстрацеллюлярную жидкость мозга);
  • с нейронами и глией (косвенно через внеклеточную жидкость, эпендиму и мягкую мозговую оболочку, а непосредственно - в некоторых местах, особенно в III желудочке).

Образование ликвора (спинномозговой жидкости)

Ликвор образуется в сосудистых сплетениях, эпендиме и мозговой паренхиме. У человека сосудистые сплетения составляют 60% внутренней поверхности мозга. В последние годы доказано, что основным местом возникновения спинномозговой жидкости являются сосудистые сплетения. Faivre в 1854 году первым высказал предположение, что сосудистые сплетения являются местом образования ликвора. Dandy и Cushing подтвердили это экспериментально. Dandy при удалении сосудистого сплетения в одном из боковых желудочков установил новое явление — гидроцефалию в желудочке с сохраненным сплетением. Schalterbrand и Putman наблюдали выделение флуоресцеина из сплетений после интравенозного введения этого препарата. Морфологическое строение сосудистых сплетений свидетельствует об их участии в образовании ликвора. Их можно сравнить со строением проксимальных частей канальцев нефрона, которые выделяют и абсорбируют различные вещества. Каждое сплетение представляет собой очень васкуляризированную ткань, которая проникает в соответствующий желудочек. Сосудистые сплетения происходят из мягкой оболочки мозга и кровеносных сосудов субарахноидального пространства. Ультраструктурное исследование показывает, что их поверхность состоит из большого количества соединенных между собой ворсинок, которые покрыты одним слоем кубических эпителиальных клеток. Они являются модифицированной эпендимой и расположены поверх тонкой стромы из коллагеновых волокон, фибробластов и кровеносных сосудов. Сосудистые элементы включают мелкие артерии, артериолы, большие венозные синусы и капилляры. Кровоток в сплетениях — 3 мл/(мин*г), то есть в 2 раза быстрее, чем в почках. Эндотелий капилляров сетчатый и отличается по структуре от эндотелия капилляров мозга в других местах. Эпителиальные ворсинчатые клетки занимают 65-95 % от общего объема клеток. Они имеют структуру секреторного эпителия и предназначены для трансцеллюлярного транспорта растворителя и растворенных веществ. Эпителиальные клетки большие, с большими центрально расположенными ядрами и сгруппированными микроворсинками на апикальной поверхности. В них собрано около 80-95 % от общего количества митохондрий, что обусловливает высокое потребление кислорода. Соседние хориоидальные эпителиальные клетки связаны между собой уплотненными контактами, в которых находятся поперечно расположенные клетки, заполняющие таким образом межклеточное пространство. Эти латеральные поверхности близко расположенных эпителиальных клеток с апикальной стороны соединяются между собой и образуют около каждой клетки «пояс». Образованные контакты ограничивают проникновение в ликвор крупных молекул (протеинов), но через них свободно проникают в межклеточные пространства молекулы небольших размеров.

Ames и соавторы исследовали извлеченную жидкость из сосудистых сплетений. Результаты, полученные авторами, еще раз доказали, что сосудистые сплетения боковых, III и IV желудочков являются основным местом образования ликвора (от 60 до 80%). Спинномозговая жидкость может возникать также в других местах, о чем предполагал еще Weed. В последнее время это мнение подтверждается новыми данными. Однако количество такого ликвора значительно больше, чем образованного в сосудистых сплетениях. Собрано достаточно доказательств, подтверждающих образование спинномозговой жидкости вне сосудистых сплетений. Около 30%, а по данным некоторых авторов, и до 60% ликвора возникает вне сосудистых сплетений, но точное место его образования остается предметом дискуссий. Ингибирование фермента карбоангидразы ацетазоламидом в 100% случаев прекращает образование ликвора в изолированных сплетениях, но in vivo его эффективность снижается до 50-60%. Последнее обстоятельство, как и исключение ликворообразования в сплетениях, подтверждают возможность появления спинномозговой жидкости вне сосудистых сплетений. Вне сплетений ликвор образуется в основном в трех местах: в пиальных кровеносных сосудах, эпендимальных клетках и мозговой интерстициальной жидкости. Участие эпендимы, вероятно, незначительно, о чем свидетельствует ее морфологическая структура. Главным источником образования ликвора вне сплетений служит мозговая паренхима с ее капиллярным эндотелием, который образует около 10-12 % спинномозговой жидкости. Для подтверждения этого предположения изучались внеклеточные маркеры, которые после их введения в мозг обнаруживались в желудочках и подпаутинном пространстве. Они проникали в эти пространства независимо от массы их молекул. Сам эндотелий богат митохондриями, что свидетельствует об активном метаболизме с образованием энергии, которая необходима для этого процесса. Экстрахориоидальной секрецией объясняется и отсутствие успеха при сосудистой плексусектомии при гидроцефалии. Наблюдается проникновение жидкости из капилляров непосредственно в вентрикулярное, субарахноидальное и межклеточное пространства. Введенный интравенозно достигает ликвора, не проходя через сплетения. Изолированные пиальная и эпендимальная поверхности вырабатывают жидкость, по химическому составу близкую к спинномозговой жидкости. Новейшие данные свидетельствуют о том, что арахноидальная мембрана участвует в экстрахориоидальном образовании ликвора. Существуют морфологические, а, вероятно, и функциональные различия между сосудистыми сплетениями боковых и IV желудочков. Считают, что около 70-85% спинномозговой жидкости появляется в сосудистых сплетениях, а остальное количество, то есть около 15-30%, — в мозговой паренхиме (мозговые капилляры, а также вода, образовавшаяся в процессе метаболизма).

Механизм образования ликвора (спинномозговой жидкости)

Согласно секреционной теории, ликвор является продуктом секреции сосудистых сплетений. Однако этой теорией нельзя объяснить отсутствие специфичного гормона и неэффективность воздействия некоторых стимуляторов и ингибиторов желез внутренней секреции на сплетения. По фильтрационной теории ликвор является обычным диализатом, или ультрафильтратом кровяной плазмы. Она объясняет некоторые общие свойства спинномозговой и интерстициальной жидкости.

Первоначально считалось, что это простая фильтрация. Позднее обнаружено, что для образования ликвора существенное значение имеет целый ряд биофизических и биохимических закономерностей:

  • осмос,
  • равновесие Донна,
  • ультрафильтрация и др.

Биохимический состав ликвора наиболее убедительно подтверждает теорию фильтрации в целом, то есть то, что спинномозговая жидкость является только фильтратом плазмы. Ликвор содержит большое количество натрия, хлора и магния и низкое — калия, бикарбоната кальция фосфата и глюкозы. Концентрация этих веществ зависит от места получения спинномозговой жидкости, так как существует непрерывная диффузия между мозгом, экстрацеллюлярной жидкостью и ликвором при прохождении последнего через желудочки и подпаутинное пространство. Содержание воды в плазме около 93%, а в спинномозговой жидкости — 99%. Концентрационное соотношение ликвор/плазма в отношении большей части элементов существенно отличается от состава ультрафильтрата плазмы. Содержание белков, как было установлено при реакции Панди в ликворе, составляет 0,5% белков плазмы и изменяется с возрастом согласно формуле:

23,8 X 0,39 X возраст ± 0,15 г/л

Люмбальный ликвор, как показывает реакция Панди, содержит почти в 1,6 раза больше общих белков, чем желудочков, тогда как спинномозговая жидкость цистерн имеет в 1,2 раза больше общих белков, чем желудочков, соответственно:

  • 0,06-0,15 г/л в желудочках,
  • 0,15-0,25 г/л в мозжечково-продолговатомозговых цистернах,
  • 0,20-0,50 г/л в люмбальном.

Считается, что высокий уровень белков в каудальной части образуется вследствие притока белков плазмы, а не в результате дегидратации. Эти различия не распространяются на все виды белков.

Соотношение ликвор/плазма для натрия — около 1,0. Концентрация калия, а по данным некоторых авторов, и хлора, уменьшается в направлении от желудочков к подпаутинному пространству, а концентрация кальция, напротив, увеличивается, тогда как концентрация натрия остается постоянной, хотя существуют и противоположные мнения. pH ликвора несколько ниже, чем pH плазмы. Осмотическое давление спинномозговой жидкости, плазмы и ультрафильтрата плазмы в обычном состоянии очень близки, даже изотоничны, что свидетельствует о свободном уравновешивании воды между этими двумя биологическими жидкостями. Концентрация глюкозы и аминокислот (например, глицина) очень низкая. Состав ликвора при изменениях концентрации плазмы остается почти постоянным. Так, содержание калия в спинномозговой жидкости остается в пределах 2-4 ммоль/л, тогда как в плазме его концентрация изменяется от 1 до 12 ммоль/л. С помощью гомеостазного механизма на постоянном уровне поддерживаются концентрации калия, магния, кальция, АК, катехоламинов, органических кислот и оснований, а также pH. Это имеет большое значение, так как изменения состава ликвора влекут за собой нарушения деятельности нейронов и синапсов ЦНС и изменяют нормальные функции мозга.

В результате развития новых методов исследования ликворной системы (вентрикуло-цистернальная перфузия in vivo, изолирование и перфузия сосудистых сплетений in vivo, экстракорпоральная перфузия изолированного сплетения, непосредственный забор жидкости из сплетений и ее анализ, контрастная радиография, определение направления транспорта растворителя и растворенных веществ через эпителий) возникла потребность рассмотрения вопросов, связанных с образованием ликвора.

Как следует рассматривать жидкость, образованную сосудистыми сплетениями? Как простой фильтрат плазмы, полученный в результате трансэпендимальных различий гидростатического и осмотического давления, или как специфичный сложный секрет ворсинчатых клеток эпендимы и других клеточных структур, возникший в результате затраты энергии?

Механизм ликворной секреции — довольно сложный процесс и хотя известны многие его фазы, все же еще остались нераскрытые звенья. Активный везикулярный транспорт, облегченная и пассивная диффузия, ультрафильтрация и другие виды транспорта играют определенную роль в образовании ликвора. Первым этапом в образовании спинномозговой жидкости является прохождение ультрафильтрата плазмы через капиллярный эндотелий, в котором отсутствуют уплотненные контакты. Под влиянием гидростатического давления в капиллярах, расположенных у основания хориоидальных ворсинок, ультрафильтрат поступает в окружающую соединительную ткань под эпителий ворсинок. Здесь определенную роль играют пассивные процессы. Следующий этап в образовании ликвора — это трансформирование поступающего ультрафильтрата в секрет, называемый ликвором. При этом большое значение имеют активные метаболические процессы. Иногда эти две фазы трудно отделить одну от другой. Пассивное всасывание ионов происходит с участием экстрацеллюлярного шунтирования в сплетения, то есть через контакты и латеральные межклеточные пространства. Кроме того, наблюдается пассивное проникновение через мембраны неэлектролитов. Происхождение последних во многом зависит от их растворимости в липидах/воде. Анализ данных свидетельствует о том, что проницаемость сплетений изменяется в очень широких пределах (от 1 до 1000*10-7 см/с; для сахаров — 1,6*10-7 см/с, для мочевины — 120*10-7 см/с, для воды 680*10-7 см/с, для кофеина — 432*10-7 см/с и т. д.). Вода и мочевина проникают быстро. Скорость их проникновения зависит от коэффициента липиды/вода, который может влиять на время проникновения через липидные мембраны этих молекул. Сахара проходят этот путь с помощью так называемой облегченной диффузии, которая показывает определенную зависимость от гидроксильной группы в молекуле гексозы. До настоящего времени отсутствуют данные об активном транспорте глюкозы через сплетения. Низкая концентрация сахаров в спинномозговой жидкости объясняется высокой скоростью метаболизма глюкозы в мозгу. Для образования ликвора большое значение имеют активные транспортные процессы против осмотического градиента.

Открытие Davson того факта, что движение Na + от плазмы к ликвору однонаправленное и изотоничное с образованной жидкостью, стало оправдано при рассмотрении процессов секреции. Доказано, что натрий транспортируется активно и является основой процесса секреции спинномозговой жидкости из сосудистых сплетений. Опыты со специфичными ионными микроэлектродами показывают, что натрий проникает в эпителий благодаря существующему электрохимическому потенциальному градиенту, равному приблизительно 120 ммоль, через базо-латеральную мембрану эпителиальной клетки. После этого он поступает из клетки к желудочку против градиента концентрации через апикальную клеточную поверхность с помощью натриевого насоса. Последний локализован на апикальной поверхности клеток вместе с аденилциклоазотом и щелочной фосфатазой. Выделение натрия в желудочки происходит в результате проникновения туда воды вследствие осмотического градиента. Калий движется в направлении от ликвора к эпителиальным клеткам против градиента концентрации с затратой энергии и при участии калиевого насоса, расположенного также на апикальной стороне. Небольшая часть К + после этого движется в кровь пассивно, вследствие электрохимического потенциального градиента. Калиевый насос связан с натриевым насосом, так как оба насоса имеют одинаковое отношение к уабаину, нуклеотидам, бикарбонатам. Калий перемещается только в присутствии натрия. Считают, что число насосов всех клеток составляет 3×10 6 и каждый насос осуществляет 200 перекачек в минуту.


1 — строма, 2 — вода, 3 — ликвор

В последние годы выявлена роль анионов в процессах секреции. Транспорт хлора, вероятно, осуществляется с участием активного насоса, но пассивное перемещение также наблюдается. Образование НСО 3 — из CO 2 и Н 2 O имеет большое значение в физиологии ликвора. Почти все количество бикарбоната в спинномозговой жидкости образуется из CO 2 , а не переходит из плазмы. Этот процесс тесно связан с транспортом Na + . Концентрация HCO3 — в процессе образования ликвора намного выше, чем в плазме, тогда как содержание Cl — низкое. Фермент карбоангидраза, который служит катализатором реакции образования и диссоциации угольной кислоты:

Этот фермент играет важную роль в секреции ликвора. Образующиеся протоны (Н +) обмениваются на поступающий в клетки натрий и переходят в плазму, а буферные анионы следуют за натрием в спинномозговой жидкости. Ацетазоламид (диамокс) является ингибитором этого фермента. Он существенно уменьшает образование ликвора или его ток, или то и другое. С введением ацетазоламида обмен натрия уменьшается на 50-100%, а скорость его непосредственно коррелирует со скоростью образования спинномозговой жидкости. Исследование новообразованного ликвора, взятого непосредственно из сосудистых сплетений, показывает, что он слегка гипертоничен вследствие активной секреции натрия. Это обусловливает осмотический водный переход от плазмы к ликвору. Содержание натрия, кальция и магния в спинномозговой жидкости несколько выше, чем в ультрафильтрате плазмы, а концентрация калия и хлора ниже. Вследствие сравнительно большого просвета хориоидальных сосудов можно допустить участие гидростатических сил в секреции ликвора. Около 30% этой секреции может быть не заторможено, это указывает на то, что процесс происходит пассивно, через эпендиму и зависит от гидростатического давления в капиллярах.

Уточнено действие некоторых специфичных ингибиторов. Уабаин ингибирует Na/K в зависимости от АТФ-азы и тормозит транспорт Na + . Ацетазоламид ингибирует карбоангидразу, а вазопрессин вызывает спазм капилляров. Морфологические данные детализируют клеточную локализацию части этих процессов. Иногда перенос воды, электролитов и других соединений в межклеточных хориоидных пространствах находится в состоянии коллапса (смотрите рисунок ниже). При ингибировании транспорта межклеточные пространства расширяются вследствие сжатия клеток. Рецепторы уабаина расположены между микроворсинками на апикальной стороне эпителия и обращены к ликворному пространству.


Segal и Роllау допускают, что образование ликвора можно разделить на две фазы (смотрите рисунок ниже). В первой фазе вода и ионы переносятся к ворсинчатому эпителию вследствие существования внутри клеток локальных осмотических сил, согласно гипотезе Diamond и Bossert. После этого во второй фазе ионы и вода переносятся, выходя из межклеточных пространств, в двух направлениях:

  • в желудочки через апикальные уплотненные контакты и
  • внутриклеточно и затем через плазматическую мембрану в желудочки. Эти трансмембранные процессы, вероятно, зависят от натриевого насоса.


1 — нормальное ликворное давление,
2 — повышенное ликворное давление

Ликвор в желудочках, мозжечково-продолговатомозговой цистерне и подпаутинном пространстве неодинаков по составу. Это свидетельствует о существовании экстрахориоидальных процессов обмена в ликворных пространствах, эпендиме и пиальной поверхности мозга. Это доказано для К + . От сосудистых сплетений мозжечково-продолговатомозговой цистерны концентрации К + , Са 2+ и Mg 2+ уменьшаются, в то время как концентрация Cl — увеличивается. Ликвор из подпаутинного пространства имеет более низкую концентрацию К + , чем субокципитальный. Сосудистая оболочка относительно проницаема для К + . Комбинацией активного транспорта в спинномозговой жидкости при полном насыщении и постоянной по объему секреции ликвора из сосудистых сплетений можно объяснить концентрацию этих ионов в только что образованной спинномозговой жидкости.

Резорбция и отток ликвора (спинномозговой жидкости)

Постоянное образование ликвора говорит о существовании непрерывной резорбции. При физиологических условиях между этими двумя процессами существует равновесие. Образованная спинномозговая жидкость, находящаяся в желудочках и подпаутинном пространстве, вследствие этого уходит из ликворной системы (резорбируется) при участии многих структур:

  • арахноидальных ворсинок (церебральных и спинальных);
  • лимфатической системы;
  • мозга (адвентиция мозговых сосудов);
  • сосудистых сплетений;
  • капиллярного эндотелия;
  • арахноидальной мембраны.

Арахноидальные ворсинки считают местом дренажа ликвора, поступающего из субарахноидального пространства в синусы. Еще в 1705 г. Pachion описал арахноидальные грануляции, названные позднее его именем — пахионовы грануляции . Позже Key и Retzius указывали на значение арахноидальных ворсинок и грануляций для оттока ликвора в кровь. Кроме того, несомненно, что в резорбции спинномозговой жидкости участвуют мембраны, соприкасающиеся с ликвором, эпителий оболочек цереброспинальной системы, мозговая паренхима, периневральные пространства, лимфатические сосуды и периваскулярные пространства. Участие этих дополнительных путей невелико, но они приобретают большое значение, когда главные пути затронуты патологическими процессами. Самое большое количество арахноидальных ворсинок и грануляций находится в зоне верхней сагиттальной пазухи. В последние годы получены новые данные относительно функциональной морфологии арахноидальных ворсинок. Их поверхность образует один из барьеров для оттока ликвора. Поверхность ворсинок изменчива. На их поверхности находятся веретенообразные клетки 40-12 мкм длиной и 4-12 мкм толщиной, в центре находятся апикальные выпуклости. Поверхность клеток содержит многочисленные маленькие выпуклости, или микроворсинки, и соседние с ними пограничные поверхности имеют неправильные очертания.

Ультраструктурные исследования показывают, что поверхности клеток поддерживают поперечные базальные мембраны и субмезотелиальная соединительная ткань. Последняя состоит из коллагеновых волокон, эластичной ткани, микроворсинок, базальной мембраны и мезотелиальных клеток с длинными и тонкими цитоплазматическими отростками. Во многих местах отсутствует соединительная ткань, вследствие чего образуются пустые пространства, которые находятся в связи с межклеточными пространствами ворсинок. Внутренняя часть ворсинок образована соединительной тканью, богатой клетками, ограждающими лабиринт от межклеточных пространств, которые служат продолжением арахноидальных пространств, содержащих ликвор. Клетки внутренней части ворсинок имеют различные формы и ориентацию и похожи на клетки мезотелия. Выпуклости близкостоящих клеток связаны между собой и образуют единое целое. Клетки внутренней части ворсинок имеют хорошо выраженный сетчатый аппарат Гольджи, цитоплазматические фибриллы и пиноцитозные везикулы. Между ними иногда находятся «блуждающие макрофаги» и различные клетки лейкоцитарного ряда. Так как эти арахноидальные ворсинки не содержат кровеносных сосудов и нервов, считают, что они питаются спинномозговой жидкостью. Поверхностные мезотелиальные клетки арахноидальных ворсинок образуют с близлежащими клетками непрерывную мембрану. Важным свойством этих мезотелиальных клеток, покрывающих ворсинки, является то, что они содержат одну или несколько гигантских вакуолей, вздутых в направлении апикальной части клеток. Вакуоли соединены с мембранами и обычно пусты. Большая часть вакуолей вогнута и непосредственно связана с ликвором, находящимся в субмезотелиальном пространстве. У значительной части вакуолей базальные отверстия больше апикальных и эти конфигурации интерпретируют как межклеточные каналы. Изогнутые вакуольные трансцеллюлярные каналы выполняют функцию одностороннего клапана для оттока ликвора, то есть в направлении базиса к верхушке. Структура этих вакуолей и каналов хорошо изучена с помощью меченых и флуоресцентных веществ, вводимых чаще всего в мозжечково-продолговатомозговую цистерну. Трансцеллюлярные каналы вакуолей представляют собой динамическую систему пор, которая играет основную роль в резорбции (оттока) ликвора. Считают, что некоторая часть из предполагаемых вакуольных трансцеллюлярных каналов, в сущности, является расширенными межклеточными пространствами, которые также имеют большое значение для оттока ликвора в кровь.

Еще в 1935 году Weed на основании точных опытов установил, что часть ликвора оттекает через лимфатическую систему. В последние годы появился ряд сообщений о дренаже спинномозговой жидкости через лимфатическую систему. Однако эти сообщения оставили открытым вопрос о том, какое количество ликвора абсорбируется и какие механизмы в этом участвуют. Через 8-10 ч после введения в мозжечково-продолговатомозговую цистерну окрашенного альбумина или меченых белков от 10 до 20% этих веществ можно обнаружить в лимфе, образующейся в шейном отделе позвоночника. При увеличении внутрижелудочкового давления дренаж через лимфатическую систему усиливается. Ранее предполагалось, что существует резорбция ликвора через капилляры мозга. При помощи компьютерной томографии установлено, что перивентрикулярные зоны пониженной плотности часто обусловлены поступлением ликвора экстрацеллюлярно в ткани мозга, особенно при увеличении давления в желудочках. Спорным остается вопрос о том, является ли поступление большей части спинномозговой жидкости в мозг резорбцией или последствием дилатации. Наблюдается вытекание ликвора в межклеточное мозговое пространство. Макромолекулы, которые вводятся в вентрикулярную спинномозговую жидкость или субарахноидальное пространство, быстро достигают внеклеточного мозгового пространства. Сосудистые сплетения считают местом оттока ликвора, так как они окрашиваются после введения краски при увеличении ликворного осмотического давления. Установлено, что сосудистые сплетения могут резорбировать около 1 / 10 секретированного ими ликвора. Этот отток чрезвычайно важен при высоком внутрижелудочковом давлении. Спорными остаются вопросы абсорбции ликвора через капиллярный эндотелий и арахноидальную мембрану.

Механизм резорбции и оттока ликвора (спинномозговой жидкости)

Для резорбции ликвора имеет значение целый ряд процессов: фильтрация, осмос, пассивная и облегченная диффузия, активный транспорт, везикулярный транспорт и другие процессы. Отток ликвора можно характеризовать как:

  1. однонаправленное просачивание через арахноидальные ворсинки посредством клапанного механизма;
  2. резорбция, которая не является линейной и требует определенного давления (обычно 20-50 мм вод. ст.);
  3. своеобразный пассаж из спинномозговой жидкости в кровь, но не наоборот;
  4. резорбция ликвора, уменьшающаяся, когда общее содержание белка увеличивается;
  5. резорбция с одинаковой скоростью для молекул различных размеров (например, молекул маннитола, сахарозы, инсулина, декстрана).

Скорость резорбции спинномозговой жидкости зависит в значительной степени от гидростатических сил и является относительно линейной при давлении в широких физиологических пределах. Существующая разница в давлении между ликвором и венозной системой (от 0,196 до 0,883 кПа) создает условия для фильтрации. Большое различие в содержании белка в этих системах определяет значение осмотического давления. Welch и Friedman предполагают, что арахноидальные ворсинки функционируют как клапаны и определяют движение жидкости в направлении от ликвора к крови (в венозные синусы). Размеры частиц, которые проходят через ворсинки, различны (коллоидное золото размером 0,2 мкм, полиэфирные частички — до 1,8 мкм, эритроциты — до 7,5 мкм). Частички с большими размерами не проходят. Механизм оттока ликвора через различные структуры различен. В зависимости от морфологической структуры арахноидальных ворсинок существует несколько гипотез. Согласно закрытой системе, арахноидальные ворсинки покрыты эндотелиальной мембраной и между клетками эндотелия находятся уплотненные контакты. Вследствие наличия этой мембраны резорбция ликвора совершается с участием осмоса, диффузии и фильтрации низкомолекулярных веществ, а для макромолекул — путем активного транспорта через барьеры. Однако прохождение некоторых солей и воды остается свободным. В противоположность этой системе существует открытая система, согласно которой в арахноидальных ворсинках имеются открытые каналы, связывающие паутинную оболочку с венозной системой. Эта система предполагает пассивное прохождение микромолекул, в результате чего абсорбция спинномозговой жидкости полностью зависит от давления. Tripathi предложил еще один механизм абсорбции ликвора, который, в сущности, является дальнейшим развитием первых двух механизмов. Помимо последних моделей, существуют еще динамические трансэндотелиальные вакуолизационные процессы. В эндотелии арахноидальных ворсинок временно образуются трансэндотелиальные или трансмезотелиальные каналы, через которые ликвор и его составные частицы вытекают из субарахноидального пространства в кровь. Эффект давления при этом механизме не выяснен. Новые исследования подкрепляют эту гипотезу. Считают, что с увеличением давления число и размеры вакуолей в эпителии возрастают. Вакуоли с размерами больше 2 мкм встречаются редко. Комплексность и интеграция уменьшаются при больших различиях в давлении. Физиологи считают, что резорбция ликвора является пассивным, зависящим от давления процессом, который происходит через поры, размеры которых больше размеров молекул протеинов. Спинномозговая жидкость проходит от дистального субарахноидального пространства между клетками, образующими строму арахноидальных ворсинок и достигает субэндотелиального пространства. Однако эндотелиальные клетки пиноцитозно активны. Прохождение ликвора через эндотелиальный слой является также активным трансцеллюлозным процессом пиноцитоза. Согласно функциональной морфологии арахноидальных ворсинок, прохождение спинномозговой жидкости осуществляется через вакуольные трансцеллюлозные каналы в одном направлении от базиса к верхушке. Если давление в подпаутинном пространстве и синусах одинаковое, арахноидальные разрастания находятся в состоянии коллапса, элементы стромы плотные и эндотелиальные клетки имеют суженные межклеточные пространства, местами пересеченные специфическими клеточными соединениями. Когда в субарахноидальном пространстве давление повышается только до 0, 094 кПа, или 6-8 мм вод. ст., разрастания увеличиваются, клетки стромы отделяются одна от другой и эндотелиальные клетки выглядят меньшими по объему. Межклеточное пространство расширено и клетки эндотелия проявляют повышенную активность к пиноцитозу (смотрите рисунок ниже). При большой разнице в давлении изменения более выражены. Трансцеллюлярные каналы и расширенные межклеточные пространства позволяют прохождение ликвора. Когда арахноидальные ворсинки находятся в состоянии коллапса, проникновение составных частиц плазмы в спинномозговую жидкость невозможно. Для резорбции ликвора имеет значение также микропиноцитоз. Прохождение молекул протеина и других макромолекул из спинномозговой жидкости субарахноидального пространства зависит в известной степени от фагоцитарной активности арахноидальных клеток и «блуждающих» (свободных) макрофагов. Вряд ли, однако, чтобы клиренс этих макрочастичек осуществлялся только путем фагоцитоза, так как это достаточно продолжительный процесс.



1 — арахноидальные ворсинки, 2 — хориоидальное сплетение, 3 — субарахноидальное пространство, 4 — оболочки мозга, 5 — боковой желудочек.

В последнее время все больше становится сторонников теории активной резорбции ликвора через сосудистые сплетения. Точный механизм этого процесса не выяснен. Однако предполагают, что вытекание спинномозговой жидкости происходит в сторону сплетений из субэпендимального поля. После этого через фенестрированные ворсинчатые капилляры ликвор поступает в кровь. Эпендимальные клетки с места резорбционных транспортных процессов, то есть специфичные клетки, являются посредниками для переноса веществ из вентрикулярного ликвора через ворсинчатый эпителий в кровь капилляров. Резорбция отдельных составных частей спинномозговой жидкости зависит от коллоидного состояния вещества, его растворимости в липидах/воде, отношения к специфичным транспортным белками и т. д. Для переноса отдельных компонентов существуют специфичные транспортные системы.

Скорость образование ликвора и резорбции спинномозговой жидкости


Методы исследования скорости образование ликвора и резорбции спинномозговой жидкости, которые использовались до настоящего времени (продолжительный люмбальный дренаж; вентрикулярный дренаж, используемый также для ; измерение времени, необходимого для восстановления в давления, после истечения спинномозговой жидкости из субарахноидального пространства), подвергались критике за то, что они были нефизиологичными. Метод вентрикулоцистернальной перфузии, введенный Pappenheimer и соавторами, был не только физиологичным, но и позволял одновременно производить оценку образования и резорбции ликвора . Скорость образования и резорбции спинномозговой жидкости определялась при нормальном и патологическом давлении спинномозговой жидкости. Образование ликвора не зависит от непродолжительных изменений вентрикулярного давления, отток его линейно связан с ним. Секреция ликвора уменьшается при продолжительном повышении давления в результате изменений в хориоидальном кровотоке. При давлении ниже 0,667 кПа резорбция равна нулю. При давлении между 0,667 и 2,45 кПа, или 68 и 250 мм вод. ст. соответственно, скорость резорбции спинномозговой жидкости прямо пропорциональна давлению. Cutler и соавторы изучали эти явления у 12 детей и установили, что при давлении 1,09 кПа, или 112 мм вод. ст., скорость образования и скорость оттока ликвора равны (0,35 мл / мин). Segal и Pollay утверждают, что у человека скорость образования спинномозговой жидкости достигает 520 мл / мин. Еще мало известно об эффекте воздействия температуры на образование ликвора. Экспериментально остро вызванное повышение осмотического давления тормозит, а понижение осмотического давления усиливает секрецию ликвора. Неврогенное стимулирование адренергических и холинергических волокон, которые иннервируют хориоидальные кровеносные сосуды и эпителий, имеют различное действие. При стимулировании адренергических волокон, которые исходят из верхнего шейного симпатического узла, ток ликвора резко уменьшается (почти на 30%), а денервирование усиливает его на 30%, не изменяя хориоидальный кровоток.

Стимулирование холинергического пути увеличивает образование ликвора до 100%, не нарушая хориоидальный кровоток. В последнее время выясняется роль цикличного аденозинмонофосфата (цАМФ) в прохождении воды и растворенных веществ через клеточные мембраны, в том числе и влияние на сосудистые сплетения. Концентрация цАМФ зависит от активности аденилциклазы, фермента, который катализирует образование цАМФ из аденозинтрифосфата (АТФ) и активности его метаболизирования до неактивного 5-АМФ с участием фосфодиэстеразы, или присоединения к нему ингибиторной субъединицы специфичной протеинкиназы. цАМФ действует на ряд гормонов. Холерный токсин, который является специфичным стимулятором аденилциклазы, катализирует образование цАМФ, при этом наблюдается пятикратное увеличение этого вещества в сосудистых сплетениях. Ускорение, вызванное холерным токсином, можно блокировать препаратами из группы индометацина, которые являются антагонистами по отношению к простогландинам. Спорным является вопрос, какие специфичные гормоны и эндогенные агенты стимулируют образование спинномозговой жидкости по пути к цАМФ и каков механизм их действия. Имеется обширный список лекарств, которые влияют на образование спинномозговой жидкости. Некоторые лекарственные препараты воздействуют на образование ликвора как препятствующие метаболизму клеток. Динитрофенол влияет на окислительное фосфорилирование в сосудистых сплетениях, фуросемид — на транспорт хлора. Диамокс уменьшает скорость образования спинномозговой путем торможения карбоангидразы. Он также вызывает преходящее повышение внутричерепного давления, освобождая CO 2 из тканей, следствием чего является увеличение мозгового кровотока и объема крови мозга. Сердечные гликозиды тормозят Na- и К-зависимость АТФ-азы и уменьшают секрецию ликвора. Глико- и минералокортикоиды почти не влияют на обмен натрия. Увеличение гидростатического давления действует на процессы фильтрации через капиллярный эндотелий сплетений. При повышении осмотического давления путем введения гипертонического раствора сахарозы или глюкозы образование ликвора уменьшается, а при снижении осмотического давления введением водных растворов — увеличивается, так как эта связь почти линейная. При изменении осмотического давления введением 1% воды скорость образования спинномозговой жидкости нарушается. При введении гипертонических растворов в терапевтических дозах осмотическое давление увеличивается на 5-10%. Внутричерепное давление значительно больше зависит от церебральной гемодинамики, чем от скорости образования спинномозговой жидкости.

Циркуляция ликвора (спинномозговой жидкости)

Схема циркуляции ликвора (указано стрелками):
1 — спинальные корешки, 2 — хориоидальные сплетения, 3 — хориоидальные сплетения, 4 — III желудочек, 5 — хориоидальное сплетение, 6 — верхняя сагиттальная пазуха, 7 — арахноидальная гранула, 8 — боковой желудочек, 9 — полушарие головного мозга, 10 — мозжечок.

Циркуляция ликвора (спинномозговой жидкости) изображена на рисунке выше.

Также познавательным будет представленное выше видео.

Спинномозговая жидкость (СМЖ, ликвор) - это одна из гуморальных сред организма, которая циркулирует в желудочках головного мозга, центральном канале спинного мозга, ликворо-проводящих путях и субарахноидальном пространстве* головного и спинного мозга, и которая обеспечивает поддержание гомеостаза с выполнением защитной, трофической, экскреторной, транспортной и регуляторной функций (*субарахноидальное пространство - полость между мягкой [сосудистой] и паутинной мозговыми оболочками головного и спинного мозга).

Признано, что СМЖ формирует гидростатическую подушку, предохраняющую головной и спинной мозг от механических воздействий. Некоторые исследователи используют термин «ликворная система», имея в виду совокупность анатомических структур, обеспечивающих секрецию, циркуляцию и отток СМЖ. Ликворная система тесно связана с кровеносной системой. СМЖ образуется в хориоидальных сосудистых сплетениях и оттекает обратно в кровеносное русло. В образовании спинномозговой жидкости принимают участие сосудистые сплетения желудочков мозга, сосудистая система мозга, нейроглия и нейроны. По своему составу СМЖ сходна только с эндо- и перилимфой внутреннего уха и водянистой влагой глаза, но существенно отличается от состава плазмы крови, поэтому ее нельзя считать ультрафильтратом крови.

Хориоидальные сплетения мозга развиваются из складок мягкой оболочки, которые еще в эмбриональном периоде впячиваются в мозговые желудочки. Сосудисто-эпителиальные (хориоидальные) сплетения покрыты эпендимой. Кровеносные сосуды этих сплетений причудливо извиты, что создает их большую общую поверхность. Особо дифференцированный покровный эпителий сосудисто-эпителиального сплетения вырабатывает и выделяет в СМЖ ряд белков, которые необходимы для жизнедеятельности мозга, его развития, а также транспорта железа, некоторых гормонов. Гидростатическое давление в капиллярах сосудистых сплетений повышено по сравнению с обычным для капилляров (вне головного мозга), они выглядят как при гиперемии. Поэтому тканевая жидкость легко выделяется из них (транссудация). Доказанным механизмом продукции ликвора является, наряду с транссудацией жидкой части плазмы крови, активная секреция. Железистое строение сосудистых сплетений мозга, их обильное кровоснабжение и потребление этой тканью большого количества кислорода (почти вдвое больше, чем кора головного мозга), является доказательством их высокой функциональной активности. Величина продукции СМЖ зависит от рефлекторных влияний, скорости резорбции ликвора и давления в ликворной системе. Гуморальные и механические воздействия также влияют на образование СМЖ.

Средняя скорость продукции ликвора у человека равна 0,2 - 0,65 (0,36) мл/мин. У взрослого человека в сутки секретируется около 500 мл спинномозговой жидкости. Количество ликвора во всех ликвороносных путях у взрослых людей, по мнению многих авторов, составляет 125 - 150 мл, что соответствует 10 - 14% от массы головного мозга. В желудочках головного мозга присутствует 25 - 30 мл (из них 20 - 30 мл в боковых желудочках и 5 мл в III и IV желудочках), в подпаутинном краниальном пространстве - 30 мл, а в спинальном - 70 - 80 мл. В течение суток жидкость может обмениваться 3 - 4 раза у взрослого и до 6 - 8 раз у детей раннего возраста. Точное измерение количества жидкости у живых субъектов крайне затруднено, а на трупах также измерение практически невозможно, так как после смерти ликвор начинает быстро всасываться и через 2 - 3 суток исчезает из желудочков мозга. Видимо, поэтому, данные о количестве ликвора в разных источниках сильно варьируют.

СМЖ циркулирует в анатомическом пространстве, в составе которого выделяют внутреннее и наружное вместилища. Внутреннее вместилище - это система желудочков головного мозга, сильвиев водопровод, центральный канал спинного мозга. Наружное вместилище - это субарахноидальное пространство спинного и головного мозга. Оба вместилища соединены между собой срединным и латеральными отверстиями (апертурами) четвертого желудочка, т.е. отверстием Мажанди (срединная апертура), расположенным над calamus scriptorius (треугольное углубление на дне IV желудочка головного мозга в области нижнего угла ромбовидной ямки), и отверстиями Люшка (латеральные апертуры), расположенными в области recessus (боковых карманов) IV желудочка. Сквозь отверстия четвертого желудочка ликвор проходит из внутреннего вместилища непосредственно в большую цистерну мозга (cisterna magna или cisterna cerebellomedullaris). В области отверстий Мажанди и Люшка есть клапанные приспособления, позволяющие СМЖ проходить только в одном направлении - в субарахноидальное пространство.

Таким образом, полости внутреннего вместилища сообщаются между собой и с субарахноидальным пространством, образуя ряд сообщающихся сосудов. В свою очередь, лептоменингс (совокупность паутинной и мягкой мозговых оболочек, образующих субарахноидальное пространство - наружное вместилище ликвора) тесно связан с тканью мозга при помощи глии. При погружении сосудов с поверхности головного мозга внутрь него - вместе с оболочками впячивается и маргинальная глия, поэтому образуются околососудистые щели. Эти периваскулярные щели (пространства Вирхова - Робина) являются продолжением арахноидального ложа, они сопровождают сосуды, глубоко внедряющиеся в вещество мозга. Следовательно, наряду с периневральными и эндоневральными щелями периферических нервов, имеют место и периваскулярные щели, которые образуют внутрипаренхиматозное (внутримозговое) вместилище, имеющее большое функциональное значение. Ликвор по межклеточным щелям поступает в околососудистые и пиальные пространства, а оттуда - в субарахноидальные вместилища. Таким образом, омывая элементы паренхимы мозга и глии, ликвор является той внутренней средой ЦНС, в которой проходят основные метаболические процессы.

Cубарахноидальное пространство ограничено паутинной и мягкой оболочками и представляет собой сплошное вместилище, окружающее головной и спинной мозг. Эта часть ликвороносных путей представляет собой внемозговой резервуар СМЖ, который тесно связан с системой периваскулярных (периадвентициальных*) и внеклеточных щелей мягкой мозговой оболочки головного и спинного мозга и с внутренним (желудочковым) резервуаром (*адвентиция - наружная оболочка стенки вены или артерии).

В отдельных местах, преимущественно на основании мозга, значительно расширенное субарахноидальное пространство образует цистерны. Самая крупная из них - цистерна мозжечка и продолговатого мозга (cisterna cerebellomedullaris или cisterna magna) - расположена между передненижней поверхностью мозжечка и заднебоковой поверхностью продолговатого мозга. Наибольшая глубина ее 15 - 20 мм, ширина 60 - 70 мм. Между миндалинами мозжечка в эту цистерну открывается отверстие Мажанди, а на концах боковых выступов IV желудочка - отверстия Люшка. Через эти отверстия спинномозговая жидкость изливается из просвета желудочка в большую цистерну.

Субарахноидальное пространство в позвоночном канале разделено на передний и задний отделы посредством зубчатой связки, соединяющей твердую и мягкую оболочки и фиксирующей спинной мозг. Передний отдел содержит выходящие передние корешки спинного мозга. Задний отдел содержит входящие задние корешки и разделен на левую и правую половины при помощи septum subarachnoidale posterius (задняя субарахноидальная перегородка). В нижней части шейного и в грудном отделах перегородка имеет сплошное строение, а в верхней части шейного, нижней части поясничного и крестцового отделов позвоночного столба выражена слабо. Поверхность ее покрыта слоем плоских клеток, выполняющих функцию всасывания СМЖ, поэтому в нижней части грудного и поясничного отделов давление СМЖ в несколько раз ниже, чем в шейном отделе. П. Фонвиллер и С. Иткин (1947) установили, что скорость течения СМЖ равна 50 - 60 мк/сек. Weed (1915) установил, что в спинальном пространстве циркуляция почти в 2 раза медленнее, чем в головном субарахноидальном пространстве. Эти исследования подтверждают представления о том, что головная часть субарахноидального пространства является главной в обмене между СМЖ и венозной кровью, то есть главным путем оттока. В шейной части субарахноидального пространства находится клапанообразная мембрана Ретциуса, способствующая движению ликвора из черепа в позвоночный канал и препятствующая его обратному току.

Внутренний (желудочковый) резервуар представлен желудочками головного мозга и центральным спинномозговым каналом. Система желудочков включает в себя два боковых желудочка, расположенных в правом и левом полушариях, III-й и IV-й. Боковые желудочки расположены в глубине головного мозга. Полость правого и левого боковых желудочков имеет сложную форму, т.к. части желудочков располагаются во всех долях полушарий (кроме островка). Посредством парных межжелудочковых отверстий - foramen interventriculare - боковые желудочки сообщаются с III-м. Последний с помощью водопровода мозга - aquneductus mesencephali (cerebri) или сильвиева водопровода - связан с IV-м желудочком. Четвертый желудочек через 3 отверстия - срединную апертуру (apertura mediana - Можанди) и 2 боковых апертуры (aperturae laterales - Люшка) - соединяется с подпаутинным пространством головного мозга.

Циркуляция СМЖ схематично может быть представлена следующим образом: боковые желудочки - межжелудочковые отверстия - III желудочек - водопровод мозга - IV желудочек - срединная и боковые апертуры - цистерны мозга - субарахноидальное пространство головного и спинного мозга.

Ликвор с наибольшей скоростью образуется в боковых желудочках головного мозга, создавая в них максимальное давление, что в свою очередь обусловливает каудальное движение жидкости к отверстиям IV-гo желудочка. Этому способствуют также волнообразные биения эпендимальных клеток, обеспечивающие движение жидкости к выходным отверстиям желудочковой системы. В желудочковый резервуар, помимо секреции ликвора сосудистым сплетением, возможна диффузия жидкости через эпендиму, выстилающую полости желудочков, а также и обратный ток жидкости из желудочков через эпендиму в межклеточные пространства, к клеткам мозга. С помощью новейших радиоизотопных методик обнаружено, что СМЖ в течение нескольких минут выводится из желудочков головного мозга, а затем в течение 4 - 8 часов переходит из цистерн основания мозга в субарахноидальное (подпаутинное) пространство.

М.А. Барон (1961) установил, что субарахноидальное пространство не является однородным образованием, а дифференцируется на две системы - систему ликвороносных каналов и систему субарахноидальных ячей. Каналы являются главными магистральными руслами движения СМЖ. Они представляют собой единую сеть трубок с оформленными стенками, их диаметр - от 3 мм до 200 ангстрем. Крупные каналы свободно сообщаются с цистернами основания мозга, они распространяются на поверхности больших полушарий в глубине борозд. От «каналов борозд» отходят постепенно уменьшающиеся «каналы извилин». Часть этих каналов залегает в наружной части субарахноидального пространства и входит в связь с паутинной оболочкой. Стенки каналов образованы эндотелием, который не образует сплошного слоя. Отверстия в мембранах могут появляться и исчезать, а также менять свои размеры, то есть мембранный аппарат имеет не только селективную, но и изменчивую проницаемость. Ячеи мягкой мозговой оболочки располагаются многими рядами и напоминают пчелиные соты. Их стенки также образованы эндотелием с отверстиями. СМЖ может перетекать из ячеи в ячею. Эта система сообщается с системой каналов.

1-й путь оттока СМЖ в венозное русло . В настоящее время преобладает мнение, что основная роль в выведении СМЖ принадлежит паутинной (арахноидальной) оболочке головного и спинного мозга. Отток ликвора в основном (на 30 - 40%) происходит через пахионовы грануляции в верхний сагиттальный синус, являющийся частью венозной системы головного мозга. Пахионовы грануляции (granulaticnes arachnoideales) представляют собой возникающие с возрастом дивертикулы паутинной оболочки, сообщающиеся с субарахноидальными ячеями. Эти ворсинки прободают твердую оболочку и непосредственно соприкасаются с эндотелием венозного синуса. М.А. Барон (1961) убедительно доказал, что у человека они являются аппаратом оттока СМЖ.

Синусы твердой мозговой оболочки являются общими коллекторами оттока двух гуморальных сред - крови и СМЖ. Стенки синусов, образованные плотной тканью твердой оболочки, не содержат мышечных элементов и выстланы изнутри эндотелием. Просвет их постоянно зияет. В синусах встречаются различной формы трабекулы и перепонки, но нет настоящих клапанов, вследствие чего в синусах возможны изменения направления тока крови. Венозные синусы отводят кровь от головного мозга, глазного яблока, среднего уха и твердой оболочки. Кроме того, посредством диплоэтических вен и санториниевых выпускников - теменных (v. emissaria parietalis), сосцевидных (v. emissaria mastoidea), затылочных (v. emissaria occipitalis) и других, - венозные синусы связаны с венами черепных костей и мягких покровов головы и частично дренируют их.

Степень оттока (фильтрации) ликвора через пахионовые грануляции, возможно, определяется разницей давлений крови в верхнем сагиттальном синусе и СМЖ в подпаутинном пространстве. Давление ликвора в норме превышает венозное давление в верхнем сагиттальном синусе на 15 - 50 мм вод. ст. Кроме того, более высокое онкотическое давление крови (обусловленное ее белками) должно присасывать СМЖ, содержащую мало белков, обратно в кровь. Когда давление СМЖ превышает давление в венозном синусе, открываются тонкие трубочки в пахионовых грануляциях, которые пропускают ее в синус. После того как давление выравнивается, просвет трубочек закрывается. Таким образом, имеет место медленная циркуляция СМЖ из желудочков в субарахноидальное пространство и далее, в венозные синусы.

2-й путь оттока СМЖ в венозное русло . Отток СМЖ происходит также по ликвороносным каналам в субдуральное пространство, а затем ликвор поступает в кровеносные капилляры твердой мозговой оболочки и выводится в венозную систему. Решетилов В.И. (1983) показал в эксперименте с введением радиоактивного вещества в подпаутинное пространство спинного мозга движение ликвора преимущественно из субарахноидального в субдуральное пространство и его резорбцию структурами микроциркулярного русла твердой мозговой оболочки. Кровеносные сосуды твердой оболочки головного мозга образуют три сети. Внутренняя сеть капилляров расположена под эндотелием, выстилающим обращенную к субдуральному пространству поверхность твердой оболочки. Эта сеть отличается значительной густотой и по степени развития намного превосходит наружную сеть капилляров. Для внутренней сети капилляров характерны малая протяженность их артериальной части и гораздо большая протяженность и петлистость венозной части капилляров.

Экспериментальными исследованиями был установлен основной путь оттока СМЖ: из субарахноидального пространства жидкость направляется через паутинную оболочку в субдуральное пространство и далее во внутреннюю сеть капилляров твердой оболочки мозга. Выделение СМЖ через паутинную оболочку удалось наблюдать в микроскопе без применения каких бы то ни было индикаторов. Приспособленность сосудистой системы твердой оболочки к резорбирующей функции этой оболочки выражается в максимальном приближении капилляров к дренируемым ими пространствам. Более мощное развитие внутренней сети капилляров по сравнению с наружной сетью объясняется более интенсивной резорбцией СМЭ по сравнению с эпидуральной жидкостью. По степени проницаемости кровеносные капилляры твердой оболочки близки высокопроницаемым лимфатическим сосудам.

Другие пути оттока СМЖ в венозное русло . Кроме описанных двух основных путей оттока СМЖ в венозное русло имеются и дополнительные пути вывода ликвора: частично в лимфатическую систему по периневральным пространствам черепных и спинномозговых нервов (от 5 до 30%); всасывание ликвора клетками эпендимы желудочков и сосудистых сплетений в их вены (около 10%); резорбция в паренхиме мозга в основном вокруг желудочков, в межклеточных пространствах, при наличии гидростатического давления и коллоидно-осмотической разницы на границе двух сред - ликвора и венозной крови.

использованы материалы статьи «Физиологическое обоснование краниального ритма (аналитический обзор)» часть 1 (2015) и часть 2 (2016), Ю.П. Потехина, Д.Е. Мохов, Е.С. Трегубова; Нижегородская государственная медицинская академия. Нижний Новгород, Россия; Санкт-Петербургский государственный университет. Санкт-Петербург, Россия; Северо-Западный государственный медицинский университет им. И.И. Мечникова. Санкт-Петербург, Россия (части статьи опубликованы в журнале «Мануальная терапия»)

Самая распространенная жалоба, которую слышит врач от своих пациентов, - На нее жалуются и взрослые, и дети. Не обращать внимания на это нельзя. Особенно если при этом есть еще другие симптомы. Особое внимание следует обратить родителям на головные боли у ребенка и на поведение грудничка, ведь он не может сказать, что болит. Возможно, это последствия тяжелых родов или врожденные аномалии, что можно выяснить еще в раннем возрасте. Может, это ликвородинамические нарушения. Что это такое, какие есть характерные признаки этого заболевания у детей и взрослых и как лечить, рассмотрим далее.

Что значит ликвородинамические нарушения

Ликвор - это цереброспинальная жидкость, которая постоянно циркулирует в желудочках, ликворопроводящих путях и в субарахноидальном пространстве головного и спинного мозга. Ликвор играет большую роль в обменных процессах в центральной нервной системе, в поддержке гомеостаза в тканях мозга, а также создает определенную механическую защиту головному мозгу.

Ликвородинамические нарушения - это состояния, при которых нарушена циркуляция ликвора, его выделение и обратное процессы регулируются железами, которые расположены в сосудистых сплетениях желудочков мозга, вырабатывающих жидкость.

В нормальном состоянии организма состав спинномозговой жидкости и давление ее стабильны.

Каков механизм нарушений

Рассмотрим, как могут развиваться ликвородинамические нарушения головного мозга:

  1. Увеличивается скорость выработки и выделения ликвора сосудистыми сплетениями.
  2. Замедляется скорость всасывания ликвора из субарахноидального пространства из-за перекрытия сужения ликвророносных сосудов вследствие перенесенных субарахноидальных кровоизлияний или воспалительных
  3. Снижается скорость выработки ЦСЖ при нормальном процессе всасывания.

Скорость всасывания, выработки и выделения ликвора оказывает влияние:

  • На состояние церебральной гемодинамики.
  • Состояние гематоэнцефалического барьера.

Воспалительный процесс в головном мозге способствует увеличению его объема и повышению внутричерепного давления. Как результат - нарушение кровообращения и закупорка сосудов, по которым движется ликвор. Из-за накопления жидкости в полостях может начаться частичное отмирание внутричерепных тканей, а это приведет к развитию гидроцефалии.

Классификация нарушений

Ликвородинамические нарушения классифицируют по следующим направлениям:

  1. Как протекает патологический процесс:
  • Хроническое течение.
  • Острая фаза.

2. Стадии развития:

  • Прогрессирующая. Внутричерепное давление растет, и патологические процессы прогрессируют.
  • Компенсированная. Внутричерепное давление стабильное, но желудочки головного мозга остаются расширенными.
  • Субкомпенсированная. Большая опасность возникновения кризов. Нестабильное состояние. Давление может резко подняться в любой момент.

3. В какой полости мозга локализуется ликвор:

  • Внутрижелудочковая. Жидкость накапливается в желудочковой системе мозга из-за непроходимости ликворной системы.
  • Субарахноидальная. Ликвородинамические нарушения по наружному типу могут привести к деструктивным поражениям тканей головного мозга.
  • Смешанная.

4. В зависимости от давления ликвора:

  • Гипертензия. Характерно высокое внутричерепное давление. Нарушен отток спинномозговой жидкости.
  • Нормотензивная стадия. Давление внутричерепное в норме, но полость желудочков увеличена. Характерно такое состояние чаще всего в детском возрасте.
  • Гипотензия. После оперативного вмешательства избыточный отток ликвора из полостей желудочков.

Причины врожденные

Существуют врожденные аномалии, которые могут способствовать развитию ликвородинамических нарушений:

  • Генетические нарушения во
  • Агенезия мозолистого тела.
  • Синдром Денди-Уокера.
  • Синдром Арнольда-Киари.
  • Энцефалоцеле.
  • Стеноз водопровода мозга первичный или вторичный.
  • Порэнцефалические кисты.

Причины приобретенные

Ликвородинамические нарушения могут начать свое развитие по приобретенным причинам:

Симптомы ликвородинамических нарушений у взрослых

Ликвородинамические нарушения головного мозга у взрослых сопровождаются следующими симптомами:

  • Сильные головные боли.
  • Тошнота и рвота.
  • Быстрая утомляемость.
  • Горизонтальные глазных яблок.
  • Повышенный тонус, скованность мышц.
  • Судороги. Миоклонические припадки.
  • Нарушение речи. Интеллектуальные проблемы.

Симптоматика нарушений у грудных детей

Ликвородинамические нарушения у детей до года имеют следующие признаки:

  • Частые и обильные срыгивания.
  • Неожиданный плач без видимой причины.
  • Медленное зарастание родничка.
  • Монотонный плач.
  • Ребенок вялый, сонливый.
  • Сон нарушен.
  • Расхождение швов.

Со временем заболевание все более прогрессирует, и становятся более выражены признаки ликвородинамических нарушений:

  • Тремор подбородка.
  • Подергивание конечностей.
  • Непроизвольные вздрагивания.
  • Нарушены функции жизнеобеспечения.
  • Нарушения в работе внутренних органов без видимых причин.
  • Возможно косоглазие.

Визуально можно заметить сосудистую сетку в области носа, шеи, груди. При плаче или напряжении мышц она становится более выражена.

Также невролог может отметить такие признаки:

  • Гемиплегия.
  • Гипертонус разгибателей.
  • Менингеальные знаки.
  • Параличи и парезы.
  • Параплегия.
  • Симптом Грефе.
  • Нистагм горизонтальный.
  • Отставание в психомоторном развитии.

Следует регулярно посещать педиатра. На приеме врач измеряет объем головы, и в случае развития патологии будут заметны изменения. Так, могут быть такие отклонения в развитии черепа:

  • Быстро увеличивается голова.
  • Имеет неестественно вытянутую форму.
  • Большой и набухают и пульсируют.
  • Расходятся швы из-за высокого внутричерепного давления.

Все это признаки того, что развивается синдром ликвородинамических нарушений у грудничка. Прогрессирует гидроцефалия.

Хочется отметить, что у грудных детей сложно определить ликвородинамические кризы.

Признаки ликвородинамических нарушений у детей после года

У ребенка после года череп уже сформирован. Роднички полностью закрылись, и швы окостенели. Если имеются ликвородинамические нарушения у ребенка, появляются признаки повышенного внутричерепного давления.

Могут быть такие жалобы:

  • Головная боль.
  • Апатия.
  • Беспокойство без причины.
  • Тошнота.
  • Рвота, после которой не наступает облегчение.

А также характерны такие признаки:

  • Нарушается походка, речь.
  • Появляются нарушения в координации движений.
  • Падает зрение.
  • Горизонтальный нистагм.
  • В запущенном случае «качающаяся голова куклы».

А также, если ликвородинамические нарушения головного мозга прогрессируют, будут заметны такие отклонения:

  • Ребенок плохо разговаривает.
  • Используют стандартные, заученные фразы, не понимая их смысл.
  • Всегда в хорошем настроении.
  • Задержка полового развития.
  • Развивается судорожный синдром.
  • Ожирение.
  • Нарушения в работе эндокринной системы.
  • Отставание в учебном процессе.

Диагностика заболевания у детей

У детей до года диагностика прежде всего начинается с опроса матери и сбора сведений о том, как проходила беременность и роды. Далее учитываются жалобы и наблюдения родителей. Затем необходим осмотр ребенка такими специалистами:

  • Невролог.
  • Офтальмолог.

Для уточнения диагноза понадобится пройти следующие исследования:

  • Компьютерная томография.
  • Нейросонография.

Диагностика заболевания у взрослых

С головными болями и симптомами, описанными выше, необходимо обратиться к неврологу. Для уточнения диагноза и назначения лечения могут назначить следующие исследования:

  • Компьютерную томографию.
  • Ангиографию.
  • Пневмоэнцефалографию.
  • мозга.
  • ЯМРТ.

Если есть подозрение на синдром ликвородинамических нарушений, могут назначить поясничную пункцию с изменением ликворного давления.

При диагностике у взрослых большое внимание обращают на основное заболевание.

Лечение ликвородинамических нарушений

Чем раньше выявлено заболевание, тем больше шансов восстановить утраченные функции мозга. Вид лечения подбирают исходя из наличия патологических изменений протекания заболевания, а также из возраста пациента.

При наличии повышенного внутричерепного давления, как правило, назначают мочегонные препараты: «Фуросемид», «Диакарб». Применяют антибактериальные средства при лечении инфекционных процессов. Нормализация внутричерепного давления и его лечение - это главная задача.

Для снятия отеков и воспалительных процессов используют глюкокортикоидные препараты: «Преднизолон», «Дексаметазон».

Также для уменьшения отека мозга используют лекарства группы стероидов. Необходимо устранить причину, вызвавшую заболевание.

Как только выявлены ликвородинамические нарушения, лечение должно быть назначено незамедлительно. После прохождения комплексной терапии заметны положительные результаты. Особенно это важно в период развития ребенка. Речь улучшается, заметен прогресс в психомоторном развитии.

Также возможно хирургическое лечение. Оно может быть назначено в следующих случаях:

  • Медикаментозное лечение неэффективно.
  • Ликвородинамический криз.
  • Окклюзионная гидроцефалия.

Хирургическое лечение рассматривается для каждого случая заболевания отдельно с учетом возраста, особенностей организма и течения заболевания. В большинстве случаев оперативного вмешательства на головном мозге стараются избегать, чтобы не повредить здоровую ткань мозга, и применяют комплексное медикаментозное лечение.

Известно, если не лечить синдром ликвородинамических нарушений у ребенка, смертность составляет 50 % до 3 лет, до взрослого возраста доживает 20-30 % детей. После хирургического вмешательства смертность составляет 5-15 % больных детей.

Смертность повышается из-за несвоевременной постановки диагноза.

Профилактика ликвородинамических нарушений

К профилактическим мероприятиям можно отнести:

  • Наблюдение беременности в женской консультации. Очень важно встать на учет как можно раньше.
  • Своевременное выявление внутриутробных инфекций и их лечение.

На 18-20-й неделе УЗИ показывает развитие мозга плода и состояние ликвора будущего ребенка. На этом сроке можно определить наличие или отсутствие патологий.

  • Правильный выбор родоразрешения.
  • Регулярное наблюдение у педиатра. Измерение окружности черепа, если есть необходимость проводить исследование глазного дна.
  • Если своевременно не закрылся родничок, необходимо провести нейросонографию и проконсультироваться у нейрохирурга.
  • Своевременное удаление новообразований, которые купируют ликворные пути.
  • Регулярное наблюдение у врача и проведение необходимых исследований после перенесенных травм головного и спинного мозга.
  • Своевременное лечение инфекционных заболеваний.
  • Профилактика и терапия хронических заболеваний.
  • Отказаться от курения и алкоголя.
  • Рекомендуется заниматься спортом, вести активный образ жизни.

Любое заболевание легче предупредить или предпринять все меры, чтобы снизить риск развития патологии. Если диагностированы ликвородинамические нарушения, то чем раньше начата терапия, тем больше шансов, что ребенок будет развиваться нормально.