График диссоциации оксигемоглобина. Факторы, влияющие на кривую диссоциации оксигемоглобина

Красный пигмент крови человека, сложный железосодержащий белок (хромопротеин, состоящий из глобина и четырех гемов с двухвалентным железом в центре каждого) – , соединяясь с молекулярным кислородом (O2) в легких, образует оксигенированную форму – оксигемоглобин (HHbO2) . Оксигемоглобин, приобретая уникальные свойства и обеспечивая дыхание, как одно из элементарных проявлений жизни, продолжает саму жизнь организма. Например, достаточно ввести окись углерода вместо кислорода или нарушить потребление О2 клетками при попадании цианидов (солей синильной кислоты), которые ингибируют ферментные системы тканевого дыхания, как тут же наступает гибель организма.

Дыхание, на первый взгляд, кажется совсем простым процессом. Между тем, оно основано на взаимодействии многих компонентов, составляющих гигантскую молекулу красного пигмента крови – хромопротеина гемоглобина, который, в свою очередь, отличается многообразием производных, где из их числа несомненный интерес вызывает оксигемоглобин. Итак, оксигемоглобин образуется в легких путем соединения сложного железосодержащего белка гемоглобина с кислородом, поступающим с вдыхаемым воздухом.

Образование и распад оксигемоглобина

В спокойном состоянии тканям человеческого тела достаточно около 0,2 л кислорода в одну минуту, но все меняется при физической нагрузке и чем она интенсивнее, тем больше необходимого для дыхания газа запрашивают ткани. Для удовлетворения их нужд потребность в кислороде может увеличиваться в 10 – 15 раз и составлять до 2, а то и 3 литров О2 в одну минуту. Однако газообразный кислород в данном количестве никак не сможет пробраться в ткани, поскольку он почти не растворим и в воде, и в плазме, то есть, этот элемент в ткани должен доставить какой-то белок, способный соединиться с ним и решить задачу транспорта.

Кровь, как биологическая среда, реализует свои функциональные обязанности по обеспечению дыхания за счет присутствия в ней сложного содержащего железо протеина – гемоглобина, физиологическая роль которого, как транспортного средства кислорода, базируется на способности Hb связывать и отдавать О2 в корреляции с концентрацией (парциальным давлением – P) данного газа в крови. Образование оксигемоглобина осуществляется в паренхиме легких, куда кислород прибывает при дыхании из воздуха окружающей среды.

Процесс образования HHbO2 происходит в доли секунды (0,01 с), поскольку кровь в легких задерживается всего-то на полсекунды. Схематично и коротко образование оксигемоглобина можно представить в следующем виде:

  • Попадая в капиллярные сосуды легких, кровь обогащается кислородом, то есть, красный кровяной пигмент к своим 4 гемам присоединяет кислород – идет реакция окисления (оксигенации);
  • Кислород связывается с гемами хромопротеина при помощи координационных связей феррума (железо – Fe) и, не изменяя в данном случае валентности последнего (в геме валентность железа всегда – II), переводит его (Hb) в несколько иное состояние;
  • Гем железосодержащего протеина представляет собой активный центр, с его помощью хромопротеин в результате вышеуказанной реакции переходит в непрочный комплекс – оксигенированный гемоглобин (HHbO2), который, находясь в красных кровяных тельцах – эритроцитах, с током крови доставляется к клеткам тканей, чтобы через распад оксигемоглобина и выделения в процессе диссоциации кислорода, обеспечить их дыхание.

Таким образом, результатом реакции оксигенации становится образование оксигемоглобина, подкисление биологической жидкости, снижение ее щелочного резерва, то есть, ее умения связывать углекислоту (СО2), которое, разумеется, на тот момент снижается.

Железосодержащий протеин, насытившись в легочной паренхиме кислородом и приобретя оксигенированную форму, уносит О2 к тканям, в капиллярных сосудах которых его концентрация в крови резко понижена. Там происходит распад оксигемоглобина (диссоциация), кислород уходит на тканевое дыхание, гемоглобин забирает отработанный углекислый газ, превращаясь в другую физиологическую модель – карбогемоглобин (HHbCO2), и в этом качестве отправляется в главный орган дыхания, чтобы обменять CO2 на очередную порцию необходимого организму газа.


Кривая образования и распада (диссоциации) оксигемоглобина

Агентом, гарантирующим быстрое насыщение железосодержащего белка кислородом (образование оксигемоглобина), выступает высокое напряжение (парциальное давление) О2 в легочных альвеолах (порядка 100 мм рт. ст.).

Корреляцию между степенью насыщения красного кровяного пигмента кислородом и парциальным давлением O2 (P O 2) выражают в виде S-образной кривой (сигмоиды), которую называют кривой диссоциации оксигемоглобина.

Свойственная красному кровяному пигменту S-образная (сигмоида) кривая диссоциации оксигемоглобина свидетельствует о том, что контактирование первой молекулы О2 с одним из гемов Hb открывает путь присоединению других молекул элемента остальными тремя гемами. Кривой насыщения железосодержащего белка кислородом принадлежит немалая физиологическая значимость – S-образная конфигурация позволяет крови обогатиться данным газом при изменениях концентрации кислорода в биологической жидкости в довольно обширных интервалах. К примеру, не следует ожидать таких особенных расстройств дыхательной функции крови, как выраженное кислородное голодание (гипоксия), при подъеме на высоту до 3,5 км над уровнем моря или во время перелета на самолете. Хотя P O 2 во вдыхаемом воздухе сильно понизится, концентрация кислорода в крови будет находиться на достаточно высоком уровне, чтобы обеспечить насыщение Hb данным газом. На это указывает и отлогий график формирования и распада оксигемоглобина на верхнем его отрезке (верхний отрезок кривой свидетельствует о течении процесса насыщения О2 красного пигмента крови в легочной паренхиме и находится в пределах 75 – 98%).

Кривая диссоциации оксигемоглобина может быть разделена на 4 отрезка, каждому их которых соответствует определенный период образования оксигемоглобина (зависимость скорости насыщения хромопротеина кислородом от парциального давления газа в крови):

  • 0 – 10 мм рт. ст. – гемоглобин не спешит насыщаться;
  • 10 – 40 мм рт. ст. – оксигенация резко ускоряется (стремительный подъем кривой), доходя до 75%;
  • 40 – 60 мм рт. ст. – оксигенация заметно замедляется, потихоньку добираясь до 90%;
  • Значения P O 2 пересекают отметку 60 мм рт. ст. – насыщение идет слабо (линия лениво ползет вверх). Однако кривая медленно продолжает стремиться к отметке 100%, но, так и не достигнув ее, останавливается на уровне 96 – 98%. Кстати, и такие показатели насыщения Hb кислородом отмечаются только у молодых и здоровых людей (P O 2 артериальной крови ≈ 95 мм рт. ст., легочных капилляров – ≈ 100 мм рт. ст.). С возрастом дыхательные способности крови снижаются.

Несовпадение парциального давления кислорода артериальной крови и смеси газов в альвеолах легких трактуется:

  1. Некоторыми разногласиями между интенсивностью тока крови и вентилированием разных отделов главного органа дыхания – легких;
  2. Притоком незначительного объема крови из бронхиальных вен в венозные сосуды легких (шунтирование), где, как известно, течет артериальная кровь;
  3. Прибытием доли крови из коронарных вен в левый желудочек сердца посредством тебезиевых вен (вены Тебезия-Вьессена), в которых проходимость возможна в обоих направлениях.

Между тем, причины, вследствие которых кривая образования и диссоциации оксигемоглобина приобрела сигмоидную форму, пока остаются не до конца выясненными.

Смещение кривой диссоциации оксигемоглобина

Но кривая диссоциации оксигемоглобина, о которой идет речь выше, справедлива, если в организме все нормально. В других ситуациях график может сдвигаться в ту или иную сторону.

В числовом выражении сродство гемоглобина к кислороду обозначается величиной P 50 – напряжение полунасыщения красного пигмента крови кислородом или иными словами: парциальное напряжение О2, при котором 50% Hb пребывает в форме оксигемоглобина (оптимальные условия: рН – 7,4, tº – 37ºC). Нормальные значения этого показателя в артериальной крови приближаются к величине 34,67 гПа (26 мм рт. ст.). Смещение графика вправо указывает на то, что способность красного кровяного пигмента соединяться с кислородом снижается, что, естественно, увеличивает значения P 50. И, наоборот – смещение кривой влево говорит об увеличении сродства этого хромопротеина к кислороду (↓P 50.).

Ходу сигмоиды помогают некоторые факторы, повышающие обогащение крови кислородом и таким образом участвующие в тканевом дыхании, поэтому названные вспомогательными:

  • Повышение водородного показателя (pH) крови (эффект Бора), поскольку способность гемоглобина присоединять кислород связана с водородным показателем (pH) данной биологической среды (гемоглобин представляет одну из четырех буферных систем и влияет на регуляцию кислотно-основного баланса, поддерживая pH на нужном уровне: 7,36 – 7,4). Следовательно, чем выше водородный показатель, тем активнее ведет себя гемоглобин в отношении кислорода и наоборот – снижение pH отнимает возможности хромопротеина присоединять кислород, например: ↓pH до 7,2 заставит график отклоняться вправо (≈ на 15%), pH до 7,6 передвинет кривую диссоциации оксигемоглобина влево (≈ на 15%);
  • Отделение углекислого газа от карбогемоглобина в легких и выход СО2 с выдыхаемым воздухом (эффект Бора-Вериго) на фоне повышения водородного показателя создает условия для жадного насыщения гемоглобина кислородом (образование оксигемоглобина в легких);
  • Возрастание уровня значимого для обмена фосфата – 2,3-дифосфоглицерата (2,3-ДФГ), содержание которого в крови меняется в зависимости от условий протекания обменных процессов;
  • Снижение температуры в легких (в тканях она выше, нежели в легких) и чем ниже упадет tº, тем больше способностей присоединять кислород появляется у железосодержащего белка (при повышении температуры идет обратный эффект).

Уровень красного пигмента в крови, а также его способность присоединять кислород (кривая диссоциации оксигемоглобина) в некоторой степени подвержены возрастным колебаниям. Так, у младенцев, только-только известившим мир о своем появлении первым криком, количество гемоглобина заметно выше, что объясняется присутствием фетального гемоглобина, который, как известно, обладает повышенным сродством к кислороду. Красный пигмент крови стариков, напротив, постепенно снижает способности связывать кислород.

В заключение хочется заметить, что гемоглобин не только имеет сродство к кислороду и довольно легко соединяется с углекислым газом. Кроме физиологических соединений красного кровяного пигмента при определенных условиях возникают связи с другими газами, в частности – с угарным газом (CO) и оксидом азота (NO), причем соединение происходит также непринужденно

Высокое сродство Hb к угарному газу влечет образование карбоксигемоглобина (HHbCO), который препятствует соединению хромопротеина с кислородом, а в результате этого ткани остаются без O2. К чему это может привести – всем известно: при отравлении угарным газом высок риск смертельного исхода, если вовремя не помочь человеку.

При отравлении оксидом азота или парами нитробензола гемоглобин переходит в метгемоглобин (HHbOH) с изменением валентности железа (II → III). Метгемоглобин также не позволяет кислороду соединиться с гемоглобином, в итоге – наступает кислородное голодание тканей, создается угроза жизни организма.

Видео: о транспорте кислорода и углекислого газа гемоглобином


Реакция взаимодействия кислорода с гемоглобином подчиняется закону действующих масс. Это означает, что соотношение между количествами гемоглобина и оксигемоглобина зависит от содержания физически растворенного О 2 в крови; последнее же, согласно закону Генри-Дальтона, пропорционально напряжению О 2 . Процент оксигемоглобина от общего содержания гемоглобина называют кислородным насыщением (SО 2) гемоглобина. Если гемоглобин полностью дезоксигенирован, то SО 2 = 0%; если же весь гемоглобин превратился в оксигемоглобин, то SО 2 = 100%. В соответствии с законом действующих масс насыщение гемоглобина кислородом зависит от напряжения О 2 . Графически эту зависимость отражает так называемая кривая диссоциации оксигемоглобина. Эта кривая имеет S-образную форму. Расположение кривой диссоциации оксигемоглобина зависит от ряда факторов (см. ниже). Наиболее простым показателем, характеризующим расположение этой кривой, служит так называемое напряжение полунасыщения (50%), т.е. такое напряжение О 2 , при котором насыщение гемоглобина кислородом составляет 50%. В норме (при рН=7,4 и t=37°C) полунасыщение артериальной крови составляет около 26 мм рт.ст. (3,46 кПа).

Причины S-образной формы кривой диссоциации оксигемоглобина до конца не ясны. Если бы каждая молекула гемоглобина присоединяла только одну молекулу О 2 , то кинетика этой реакции графически описывалась бы гиперболой. Именно такая гиперболическая кривая диссоциации характерна, например, для реакции соединения кислорода с красным мышечным пигментом миоглобином, аналогичной реакции оксигенации гемоглобина. Строение миоглобина сходно со структурой одной из четырех субъединиц гемоглобина, поэтому молекулярные массы этих двух веществ соотносятся как 1:4. Поскольку в состав миоглобина входит лишь одна пигментная группа, одна молекула миоглобина может присоединить только одну молекулу О 2 . Исходя из вполне правдоподобного предположения о том, что S-образная форма кривой диссоциации НbО 2 обусловлена связыванием одной молекулой гемоглобина четырех молекул О 2 , Эдер выдвинул так называемую гипотезу промежуточных соединений. Согласно этой гипотезе, присоединение четырех молекул О 2 к гемоглобину происходит в несколько стадий, причем каждая из этих стадий влияет на равновесие следующей реакции. Таким образом, реакция соединения кислорода с гемоглобином описывается четырьмя константами равновесия, что и объясняет сигмоидную форму кривой диссоциации оксигемоглобина.

В то же время возможно и другое объяснение, согласно которому существуют две формы гемоглобина-оксигенированная и дезоксигенированная, переходящие одна в другую в результате конформационных перестроек. Если предположить, что параметры равновесия реакций оксигенации для этих двух форм гемоглобина различны, то с позиции данной гипотезы можно объяснить S-образную форму кривой диссоциации НbО 2

Биологический смысл формы кривой диссоциации оксигемоглобина. Конфигурация кривой диссоциации оксигемоглобина имеет важное значение с точки зрения переноса кислорода кровью. В процессе поглощения кислорода в легких напряжение О 2 в крови приближается к таковому в альвеолах. У молодых людей РО 2 артериальной крови составляет около 95 мм рт.ст. (12,6 кПа). При таком напряжении насыщение гемоглобина кислородом составляет примерно 97%. С возрастом (и в еще большей степени при заболеваниях легких) напряжение О 2 в артериальной крови может значительно снижаться, однако, поскольку кривая диссоциации оксигемоглобина в правой ее части почти горизонтальна, насыщение крови кислородом уменьшается ненамного. Так, даже при падении РО 2 в артериальной крови до 60 мм рт.ст. (8,0 кПа) насыщение гемоглобина кислородом равно 90%. Таким образом, благодаря тому, что области высоких напряжений кислорода соответствует горизонтальный участок кривой диссоциации оксигемоглобина, предупреждается cyщественное снижение насыщения артериальной крови кислородом.

Крутой наклон среднего участка кривой диссоциации оксигемоглобина свидетельствует об очень благоприятных условиях для отдачи кислорода тканям. При изменении локальной потребности в кислороде он должен высвобождаться в достаточном количестве в отсутствие значительных сдвигов РО 2 в артериальной крови. В состоянии покоя РО 2 в области венозного конца капилляра равно приблизительно 40 мм рт.ст. (5,3 кПа), что соответствует примерно 73% насыщения. Если в результате увеличения потребления кислорода его напряжение в венозной крови падает лишь на 5 мм рт.ст. (0,7 кПа), то насыщение гемоглобина кислородом снижается не менее чем на 7%; высвобождающийся при этом О 2 может быть сразу же использован для процессов метаболизма.

Кислородная емкость крови. Большая часть кислорода переносится кровью в виде химического соединения с гемоглобином. Для того чтобы узнать, какое наибольшее количество О 2 ; может быть связано гемоглобином, следует иметь в виду, что молекула последнего состоит из четырех субъединиц. Следовательно, реакцию оксигенации можно записать следующим образом Нb+4О 2 Нb(О 2)4.

Таким образом, 1 моль гемоглобина может связать до 4 моль О 2 . Поскольку объем 1 моль идеального газа составляет 22,4 л, 64 500 г гемоглобина связывают 4·22,4 л О 2 , а 1 г гемоглобина ―1,39 мл О 2 . При анализе газового состава крови получают несколько меньшую величину (1,34-1,36 мл О 2 на 1 г Hb). Это обусловлено тем, что небольшая часть гемоглобина находится в неактивном состоянии. Таким образом, ориентировочно можно считать, что in vivo 1г Hb связывает 1,34 мл О 2 (так называемое число Хюфнера).

Исходя из числа Хюфнера, можно, зная содержание гемоглобина, вычислить кислородную емкость крови: [О 2 ] макс = (1,34 мл О 2 на 1 г Hb)·(150 г Hb на 1 л крови) = 0,2 л О 2 на 1 л крови. Однако такое содержание кислорода в крови может достигаться лишь в том случае, если кровь контактирует с газовой смесью, насыщенной кислородом (РО 2 > 300 мм рт.ст.); при этом равновесие значительно сдвинуто вправо. В естественных условиях эта реакция протекает при меньшем значении парциального давления О 2 , поэтому гемоглобин оксигенируется не полностью.

Кривая диссоциации оксигемоглобина.

Реакция взаимодействия кислорода с гемоглобином подчиняется закону действующих масс. Это означает, что соотношение между количествами гемоглобина и оксигемоглобина зависит от содержания физически растворенного О 2 в крови; последнее же, согласно закону Генри-Дальтона, пропорционально напряжению О 2 . Процент оксигемоглобина от общего содержания гемоглобина называют кислородным насыщением (SО 2) гемоглобина. Если гемоглобин полностью дезоксигенирован, то SО 2 = 0%; если же весь гемоглобин превратился в оксигемоглобин, то SО 2 = 100%. В соответствии с законом действующих масс насыщение гемоглобина кислородом зависит от напряжения О 2 . Графически эту зависимость отражает так называемая кривая диссоциации оксигемоглобина. Эта кривая имеет S-образную форму. Расположение кривой диссоциации оксигемоглобина зависит от ряда факторов (см. ниже). Наиболее простым показателем, характеризующим расположение этой кривой, служит так называемое напряжение полунасыщения (50%), т.е. такое напряжение О 2 , при котором насыщение гемоглобина кислородом составляет 50%. В норме (при рН=7,4 и t=37°C) полунасыщение артериальной крови составляет около 26 мм рт.ст. (3,46 кПа).

Причины S-образной формы кривой диссоциации оксигемоглобина до конца не ясны. Если бы каждая молекула гемоглобина присоединяла только одну молекулу О 2 , то кинетика этой реакции графически описывалась бы гиперболой. Именно такая гиперболическая кривая диссоциации характерна, например, для реакции соединения кислорода с красным мышечным пигментом миоглобином, аналогичной реакции оксигенации гемоглобина. Строение миоглобина сходно со структурой одной из четырех субъединиц гемоглобина, поэтому молекулярные массы этих двух веществ соотносятся как 1:4. Поскольку в состав миоглобина входит лишь одна пигментная группа, одна молекула миоглобина может присоединить только одну молекулу О 2 . Исходя из вполне правдоподобного предположения о том, что S-образная форма кривой диссоциации НbО 2 обусловлена связыванием одной молекулой гемоглобина четырех молекул О 2 , Эдер выдвинул так называемую гипотезу промежуточных соединений. Согласно этой гипотезе, присоединение четырех молекул О 2 к гемоглобину происходит в несколько стадий, причем каждая из этих стадий влияет на равновесие следующей реакции. Таким образом, реакция соединения кислорода с гемоглобином описывается четырьмя константами равновесия, что и объясняет сигмоидную форму кривой диссоциации оксигемоглобина.

В то же время возможно и другое объяснение, согласно которому существуют две формы гемоглобина-оксигенированная и дезоксигенированная, переходящие одна в другую в результате конформационных перестроек. Если предположить, что параметры равновесия реакций оксигенации для этих двух форм гемоглобина различны, то с позиции данной гипотезы можно объяснить S-образную форму кривой диссоциации НbО 2

Биологический смысл формы кривой диссоциации оксигемоглобина. Конфигурация кривой диссоциации оксигемоглобина имеет важное значение с точки зрения переноса кислорода кровью. В процессе поглощения кислорода в легких напряжение О 2 в крови приближается к таковому в альвеолах. У молодых людей РО 2 артериальной крови составляет около 95 мм рт.ст. (12,6 кПа). При таком напряжении насыщение гемоглобина кислородом составляет примерно 97%. С возрастом (и в еще большей степени при заболеваниях легких) напряжение О 2 в артериальной крови может значительно снижаться, однако, поскольку кривая диссоциации оксигемоглобина в правой ее части почти горизонтальна, насыщение крови кислородом уменьшается ненамного. Так, даже при падении РО 2 в артериальной крови до 60 мм рт.ст. (8,0 кПа) насыщение гемоглобина кислородом равно 90%. Таким образом, благодаря тому, что области высоких напряжений кислорода соответствует горизонтальный участок кривой диссоциации оксигемоглобина, предупреждается cyщественное снижение насыщения артериальной крови кислородом.

Крутой наклон среднего участка кривой диссоциации оксигемоглобина свидетельствует об очень благоприятных условиях для отдачи кислорода тканям. При изменении локальной потребности в кислороде он должен высвобождаться в достаточном количестве в отсутствие значительных сдвигов РО 2 в артериальной крови. В состоянии покоя РО 2 в области венозного конца капилляра равно приблизительно 40 мм рт.ст. (5,3 кПа), что соответствует примерно 73% насыщения. Если в результате увеличения потребления кислорода его напряжение в венозной крови падает лишь на 5 мм рт.ст. (0,7 кПа), то насыщение гемоглобина кислородом снижается не менее чем на 7%; высвобождающийся при этом О 2 может быть сразу же использован для процессов метаболизма.

Количество химически связанного кислорода в крови зависит от насыщения им гемоглобина.

При прохождении крови через тканевые капилляры используется лишь 25% общей кислородной емкости. Разумеется, разные органы существенно различаются по степени извлечения кислорода. При интенсивной физической нагрузке артериовенозная разница по кислороду может превышать 0,1.

Кривая диссоциации оксигемоглобина

Нормальная кривая диссоциации оксигемоглобина представлена на рис. 1.7. В исходной ее точке, когда Р а О 2 = 0, гемоглобин не содержит кислорода и SаO 2 также равняется нулю. По мере повышения Р а О 2 гемоглобин начинает быстро насыщаться кислородом, превращаясь в оксигемоглобин: небольшого увеличения напряжения кислорода оказывается достаточно для существенного прироста содержания НbО 2 . При 40 мм рт. ст. содержание НbО 2 достигает уже 75 %. Затем наклон кривой становится все более и более пологим. На этом участке кривой гемоглобин уже менее охотно присоединяет к себе кислород, и для насыщения оставшихся 25 % Hb требуется поднять РaО 2 с 40 до 150 мм рт ст. Впрочем, в естественных условиях гемоглобин артериальной крови никогда не насыщается кислородом полностью, потому что при дыхании атмосферным воздухом Р а О,> не превышает 100 мм рт ст (см. ранее)

Нормальному уровню Р а О 2 (92-98 мм рт. ст.) соответствует S a O 2 94-98 %. Добиться полного насыщения гемогло бина кислородом можно только посредством увеличения содержания кислорода во вдыхаемом газе.

Рис. 1.7. Кривая диссоциации оксигемоглобина

Выбирая пульсоксиметр, обычно проверяют его на себе. Если монитор показывает S P O 2 = 100 % (а такие модели-оптимисты встречаются достаточно часто), подумайте, стоит ли его покупать. Испытывать пульсоксиметр должен некурящий человек, так как после выкуренной сигареты до 8-10 % гемоглобина крови превращаются в карбокси-гемоглобин. При этом пульсоксиметр завышает S a O 2 , и модель может оказаться незаслуженно скомпрометированной.

Зависимость S а O 2 от Р а О 2 для каждого больного можно описать эмпирическими формулами (уравнение Хилла, алгоритмы Келмана, Северингхауза и др.), в которых учитываются температура, рН и прочие факторы. Данные формулы в разных модификациях обычно вводят в современные автоматические приборы контроля КЩС и газового состава крови (Radiometer, AVL, Instrumentation Laboratories и пр.), которые вычисляют сатурацию гемоглобина по напряжению кислорода в крови. Собственно, сама кривая диссоциации оксигемоглобина и является графическим выражением этих уравнений. Более простой показатель положения кривой диссоциации - индекс Р 50 ; он равен напряжению кислорода в крови, при котором сатурация гемоглобина составляет 50 % (рис. 1.7).

Нормальная величина Р 50 равна 27 мм рт. ст. Ее уменьшение соответствует сдвигу кривой влево, а увеличение - сдвигу вправо.

После полного насыщения гемоглобина кислородом дальнейшее повышение РаО 2 сопровождается лишь незначительным приростом С а О 2 за счет физически растворенного кислорода. Поэтому увеличение концентрации кислорода во вдыхаемом или вдуваемом газе (FiО 2) сверх уровня, достаточного для полного насыщения гемоглобиновой емкости (S а O 2 = 99-100 %), редко бывает оправданным.

Проходя через капилляры, артериальная кровь отдает тканям часть содержащегося в ней кислорода и превращается в венозную (P V O 2 = 40 мм рт. ст., S V О 2 = 75 %). Таким образом, в газообмене участвует лишь около 25 % запаса кислорода артериальной крови, а сатурация и десатурация гемоглобина происходят на пологом участке кривой диссоциации.

Патология дыхательной системы приводит к нарушению оксигенации крови в легких с развитием артериальной гипоксемии, степень которой количественно оценивается пульсоксиметром. В этих условиях снабжение тканей кислородом осуществляется в "аварийном" режиме, на крутом участке кривой, где незначительного падения Р а О 2 оказывается достаточно для отделения от оксигемоглобина требуемого количества кислорода. Аварийность режима заключается в уменьшении напряжения и, следовательно, содержания кислорода в тканях, о чем свидетельствует низкое напряжение кислорода в венозной крови.

Гемоглобин как транспортный белок призван решать две задачи: присоединять кислород в легких и отдавать его тканям. Эти задачи противоположны по своей сути, но выполняются одним и тем же веществом, поэтому стремление гемоглобина связываться с кислородом (сродство гемоглобина к кислороду) должно быть достаточным - чтобы обеспечить оксигенацию крови в легких, но не избыточным - чтобы не нарушить процесс отдачи кислорода на периферии. Нормальное положение кривой диссоциации оксигемоглобина как раз и соответствует оптимальной готовности гемоглобина к реализации обеих задач. Но при определенных условиях баланс между стремлением гемоглобина присоединить кислород и готовностью его отдать нарушается. Графически это выражается сдвигом кривой диссоциации вправо или влево (рис. 1.8).

При ацидозе (респираторном или метаболическом), гипертермии и увеличении концентрации 2,3-дифосфоглицерата (2,3-ДФГ) в эритроцитах сродство гемоглобина к кислороду снижается и кривая диссоциации HbО 2 сдвигается вправо. При этом насыщение гемоглобина кислородом в легких ухудшается (уменьшение SрО 2 при прежнем РаO 2), но отделение кислорода от оксигемоглобина в капиллярах облегчается.

Если газообмен в легких не нарушен, то даже существенный сдвиг кривой диссоциации вправо сопровождается весьма незначительным снижением S P O 2 , поскольку события в легких происходят на пологом участке кривой. В тканях же напряжение кислорода повышается. В отношении кислородного гомеостаза это в целом безопасная ситуация. Некоторые специалисты даже считают, что при нормальной работе легких ацидоз способствует снабжению тканей кислородом.

Рис. 1.8. Сдвиг кривой диссоциации оксигемоглобина

Иная картина наблюдается при грубой патологии дыхания, когда от легких оттекает кровь с низким напряжением кислорода, соответствующим крутому участку кривой диссоциации HbO 2 . Если при этом кривая сдвинута вправо, SpO 2 может оказаться намного ниже, чем при нормальном положении кривой. Данное обстоятельство - дополнительный удар по снабжению тканей кислородом и важный вклад в дело развития гипоксии. Таким образом, при исходной артериальной гипоксемии (низком уровне Р а О 2) метаболический ацидоз, гиперкапния и гипертермия способны заметно снизить сатурацию гемоглобина (SpO 2) и, следовательно, содержание кислорода в артериальной крови.

Алкалоз (респираторный или метаболический), гипотермия и уменьшение концентрации 2,3-ДФГ повышают сродство гемоглобина к кислороду, и кривая диссоциации HbО 2 сдвигается влево. В этих условиях гемоглобин жадно присоединяет к себе кислород в легких (S P O2 возрастает при прежнем Р а О 2) и неохотно отдает его тканям. Считается, что сдвиг кривой диссоциации влево всегда неблагоприятно сказывается на оксигенации тканей, ибо небольшой прирост содержания (но не напряжения) кислорода в артериальной крови не окупает последующего нежелания оксигемоглобина делиться кислородом с тканями на периферии. Пожалуй, от левого положения кривой диссоциации HbО 2 не страдают только новорожденные. Но это отдельная тема.

Непостоянство отношений между Р а О 2 и S P O 2 может затруднить осмысление данных пульсоксиметрии: далеко не всегда известно, по какой кривой диссоциации работает гемоглобин в данный момент.

О дисгемоглобинах, красителях и лаке для ногтей

Еще одно обстоятельство, которое влияет на показания пульсоксиметра,- это наличие в крови дополнительных фракций гемоглобина. К ним принадлежат дисгемоглобины (карбокси- и метгемоглобин), а также фетальный гемоглобин.

В норме содержание карбоксигемоглобина (СОHb) в крови невелико (1-3 %) и не сказывается на величине SpO 2 . Однако при отравлении угарным газом или у больных с недавно полученными ожогами пламенем карбоксигемоглобин может составлять десятки процентов от общего количества гемоглобина. СОНЬ поглощает свет почти так же, как НЬСЬ, поэтому вместо насыщения гемоглобина кислородом пульсоксиметр у таких пациентов показывает сумму процентных концентраций СОНЬ и НЬСЬ. Например, если S..O2 = 65 %, а СОНЬ = 25 %, пульсоксиметр высветит на дисплее величину SpO2, близкую к 90 %.

При карбоксигемоглобинемии пульсоксиметр завышает степень насыщения гемоглобина кислородом.

Метгемоглобинемия возникает в результате действия на гемоглобин метгемоглобинобразующих веществ. К ним относятся не только определенные яды, но и некоторые лекарственные препараты, в частности нитропруссид натрия или сульфален-меглюмин. MetHb поглощает красный и инфракрасный свет так же, как и гемоглобин, насыщенный кислородом на 85 %.

При умеренной метгемоглобинемии пульсоксиметр занижает S P O 2 , а при выраженной метгемоглобинемии показывает величину, близкую к 85 %, которая почти не зависит от колебаний S a O 2 .

Фетальный гемоглобин (HbF) содержится в эритроцитах плода и у детей первого года жизни. В невысокой концентрации (до 5 %) он также может быть обнаружен у женщин в первом триместре беременности. HbF отличается от гемоглобина взрослых (который обозначается "НЬА" [от англ, adult - взрослый]) значительно большим сродством к кислороду. И это неудивительно. Напряжение кислорода в оксигенированной крови, оттекающей по пупочной вене от плаценты к плоду, составляет всего 30 мм рт. ст., и лишь сдвинутое влево положение кривой диссоциации фетального оксигемоглобина обеспечивает при этом SaO 2 = 75 %. Метаболизм плода настроен на низкое напряжение кислорода в тканях, а увеличение метаболизма после рождения компенсируется возрастанием P а O 2 и S a O 2 при переходе на дыхание атмосферным воздухом.

Фетальный гемоглобин отличается от гемоглобина взрослых только аминокислотным составом двух глобиновых цепей, что делает HbF менее чувствительным к изменению концентрации 2,3-ДФГ, чем и объясняется высокое сродство фетального гемоглобина к кислороду.

Как реагирует пульсоксиметр на присутствие в крови фетального гемоглобина? Практически никак. Величина S P O 2 у новорожденных соответствует истинному значению SаO 2 , потому что гемовые группы HbF и НЬА, определяющие светопоглощающие свойства гемоглобина, идентичны, а молекулы глобина - бесцветны и не влияют на измерение. Особенности пульсоксиметрии в неонатологии относятся в основном к интерпретации данных мониторинга. В частности, необходимо учитывать высокое сродство фетального гемоглобина к кислороду и существенное различие нормальных значений параметров кислородного гомеостаза у новорожденного и взрослого.

За несколько недель до срока рождения в эритроцитах плода начинается синтез взрослого гемоглобина, и к моменту рождения ребенка содержание HbА достигает 15-25 %. Из-за резкого преобладания HbF кривая диссоциации оксигемоглобина у новорожденного сдвинута влево (P 50 = 19-22 мм рт. ст.). Через неделю после появления ребенка на свет HbF постепенно начинает замещаться на НЬА.

Внутривенное введение красителей. Некоторые красители, применяемые с диагностической целью, способны изменять светопоглощающие свойства крови именно в том частотном диапазоне, который используется в пульсоксиметрии (сильное поглощение света с длиной волны 660 нм). К таким веществам относятся метиленовый синий (метиленблау) и, в меньшей степени, индоцианин. Их внутривенное введение сопровождается быстрым и выраженным снижением величины SpO 2 , которое длится 5-10 мин. На этом основан простой тест на правильность установки внутривенного катетера: если сразу после введения красителя наблюдается резкое снижение сатурации, катетер находится в вене.

Лак для ногтей обычно не искажает показания пульсоксиметра. В некоторых случаях он способен уменьшить сигналы обоих светодиодов, но это не сказывается на расчете SpO 2 . Правда, имеются сообщения о том, что синий лак может избирательно ослаблять излучение одного из светодиодов (660 нм), что приводит к артефактному занижению SpO 2 . Это следует иметь в виду, работая с пациентками, которые поступают в операционную в полной боевой раскраске.

Амплитуда ФПГ

Фотоплетизмограмма - не только исходный материал для расчета SpO 2: она также обладает собственным диагностическим значением. Амплитуда ФПГ отражает объемную пульсацию артериол и, значит, характеризует периферический кровоток. Хорошие модели пульсоксиметров способны улавливать даже резко ослабленную пульсацию, когда величина периферического кровотока достигает лишь 4-5 % от нормальной. Разумеется, фо-топлетизмограмма непригодна для количественной оценки кровоснабжения периферии, но она позволяет составить довольно точное впечатление о локальном кровотоке. Пренебрегать такой возможностью ненужно, тем более что метод неинвазивен и длительность его применения не ограничена.

Отображение ФПГ на дисплее предусмотрено не во всех моделях пульсоксиметров. Не забывайте об этом, выбирая монитор.

В клинических условиях амплитуда ФПГ способна изменяться в десятки раз, поэтому на дисплее зубцы кривой в одних случаях не помещаются на экране, а в других - уменьшаются до такой степени, что становятся неразличимыми. Чтобы ФПГ всегда имела удобный для анализа вид и стандартную высоту, она подвергается автоматическому масштабированию (autoscaling ); эта процедура производится при каждом стойком изменении амплитуды. В результате даже при плачевном состоянии периферического кровотока кривая на дисплее может иметь нормальный внешний вид и по ее форме трудно заподозрить неладное. В программном обеспечении некоторых мониторов содержится набор стандартных масштабов, и выбор новой шкалы осуществляется автоматически лишь в тех случаях, когда пики кривой выходят за пределы дисплея или сливаются с изолинией. Такой способ представления данных удобен тем, что позволяет в заданных диапазонах отслеживать изменения амплитуды ФПГ.

Для предотвращения потери информации о реальной амплитуде ФПГ на дисплее некоторых моделей предусмотрен специальный индикатор. Как правило, это столбик, высота которого отражает истинную величину пиков кривой. Максимальная высота столбика присуща нормальному периферическому кровотоку; при нарушении кровоснабжения столбик снижается. В дальнейшем, рассматривая амплитуду ФПГ, мы будем иметь в виду показания именно этого индикатора.

Отдельного упоминания заслуживает другой, более удобный, но редкий способ отображения ФПГ. После первоначального автоматического масштабирования врач вручную выбирает более удачный, с его точки зрения, постоянный масштаб и наблюдает за изменениями формы и высоты фотоплетизмограммы в динамике. Так работают, например, мониторы фирм DATEX и BRUEL & KJAER. Пульсоксиметры фирмы DATEX, кроме того, выдают численный параметр (он называется "амплитудный фактор"), отражающий реальный объем артериальных пульсаций. Мониторы с такой организацией дисплея позволяют отслеживать ситуации, когда амплитуда ФПГ превышает норму. Диагностическое значение этой функции приводится в разделе о клинических аспектах метода.

Фотоплетизмограмма по форме весьма похожа на кривую артериального давления, но, в отличие от последней, характеризует колебания объема микрососудов.

Амплитуда ФПГ зависит от тонуса микрососудов и ударного объема сердца.

Вот почему изменения фотоплетизмограммы далеко не всегда соответствуют изменениям артериального давления. При артериальной гипотензии, вызванной вазодилататорами, кривая на экране пульсоксиметра может иметь высокую амплитуду. И наоборот, снижение волн ФПГ при вазоконстрикции иногда наблюдается и на фоне артериальной гипертензии.

Микрососуды тканей пальца богато иннервированы волокнами симпатической системы и содержат большое количество рецепторов для "плавающих" катехоламинов. Поэтому активация симпатической системы, инфузия альфа 1 -адреномиметиков, бета 2 -адреноблокаторов, ангиотензина и других сосудосуживающих препаратов сопровождается снижением амплитуды ФПГ. Необходимо помнить, что данные, получаемые при пульсоксиметрии, из-за специфики регуляции пальцевого кровотока не всегда пригодны для суждения о кровоснабжении внутренних органов. Пример такого несоответствия - холодовая вазоконстрикция.

Второй фактор, от которого зависит форма фотоплетизмографической кривой,- ударный объем сердца, определяющий наполнение пульсовой волны. Его непосредственное влияние на амплитуду отдельных волн ФПГ прекрасно видно на экране пульсоксиметра при парадоксальном или альтернирующем пульсе. Кроме того, влияние сердечного выброса на форму ФПГ может быть и опосредованным, поскольку его снижение часто сопровождается периферической вазоконстрикцией.

Снижение амплитуды ФПГ служит признаком периферической вазоконстрикции и/или уменьшения ударного объема, а повышение амплитуды свидетельствует об обратном. Тонус сосудов - основной фактор, определяющий высоту волн фотоплетизмограммы.

К сожалению, пульсоксиметрия в своем современном варианте не позволяет дифференцировать вазоконстрикцию от уменьшения ударного объема. Принципиальная возможность такой дифференцировки, основанной на математическом анализе формы пульсовой волны, существует, но в серийных мониторах еще не реализована.

Форма ФПГ

Форма волны ФПГ индивидуальна, но полной клинической ее интерпретации пока нет. На нисходящем колене каждой волны заметна вырезка - дикротическая инцизура,- которая соответствует закрытию аортального клапана. За инцизурой следует дополнительный пик - дикротический зубец (рис. 1.9). Четкость изображения инцизуры и зубца на дисплеях разных моделей пульсоксиметров неодинакова, и нередко они представлены едва заметной волной.

При выраженной артериальной гипертензии или аортальной недостаточности дикротический зубец может быть очень высоким (рис. 1.10) и пульсоксиметр интерпретирует его как самостоятельную пульсовую волну. В результате частота пульса артефактно завышается.

В каждом случае, когда данные пульсоксиметрии свидетельствуют о выраженной тахикардии, непременно обратите внимание на форму ФПГ и посчитайте пульс вручную. При работе с пульсоксиметром, не выводящим ФПГ на дисплей, коррекции тахикардии обязательно должна предшествовать проверка частоты пульса. Наличие высокого дикротического зубца - типичная причина расхождения показаний пульсоксиметра и ЭКГ-монитора, поэтому такие артефакты нехарактерны для моделей, в которых использован принцип C-lock.

Рис. 1.9. Волна ФПГ как отражение пульсации артериол

Иногда в промежутках между пиками ФПГ наблюдаются дополнительные колебания - венозные волны (об их происхождении и роли см. "Артефакты и их источники", с. 22).

Пульсоксиметрия позволяет непрерывно контролировать важнейшую функцию легких - насыщение гемоглобина крови кислородом. При всей несомненной полезности этой информации нельзя забывать, что SpO 2 - лишь один из многих параметров, используемых для описания кислородного гомеостаза. Надеемся, что приведенных выше фрагментарных сведений из физиологии достаточно для того, чтобы понять, насколько непростой может стать трактовка этого показателя, когда он вырван из клинико-физиологического контекста. Тем не мене пульсоксиметрия - самый распространенный, а во многих случаях и вообще единственный доступный метод определения оксигенации.

Рис. 1.10. Высокий дикротический зубец, имитирующий волну ФПГ

Мониторинг амплитуды фотоплетизмограммы - простой и неинвазивный метод ориентировочной оценки периферического артериального кровотока. Если причина изменения ФПГ лежит на поверхности, заключение, сделанное врачом, поможет своевременно принять правильные меры и контролировать их эффективность. Однако при наличии сложных расстройств кровообращения, когда амплитуда ФПГ формируется под влиянием сразу нескольких факторов, она теряет самостоятельное диагностическое значение и становится лишь дополнительным аргументом в дифференциальной диагностике.

В следующей главе мы расскажем, как выжимать из этих параметров максимум пользы.

Практическое применение пульсоксиметрш

Несколько практических советов

Перед началом работы постарайтесь расположить прибор так, чтобы его существованию ничто не угрожало. Шнур питания и кабель датчика не должны болтаться под ногами у персонала: скорее рано, чем поздно, монитор окажется на полу, а на такие случаи гарантия бесплатного ремонта не распространяется. Разумнее всего найти и приспособить для него удобное постоянное место.

Отучите медицинский персонал использовать верхнюю панель монитора в качестве места для хранения ампул, флаконов, ларингоскопа или контейнеров для трахеальных катетеров. Некоторые модели снабжены специальной подставкой, позволяющей наклонять прибор, чтобы улучшить обзор дисплея. Прибегните к ее помощи еще и потому, что на наклонную плоскость никто ничего положить не сможет.

Мониторы с жидкокристаллическим дисплеем нужно размещать так, чтобы обеспечить максимальный сектор обзора на высоте глаз стоящего человека Желательно покупать мониторы с регулируемой яркостью дисплея.

Если пульсоксиметр реагирует на наводку от электроаппаратуры (а это легко проверить самому), постарайтесь поместить кабель датчика как можно дальше от кабелей электрооборудования. Электрическая дефибрилляция безопасна для пульсоксиметра.

У больного с двигательным беспокойством или судорожным синдромом применяйте ушной или гибкий Y-образный датчик. В любом случае датчик должен быть на виду у персонала, поэтому лучше покупать пульсоксиметры, не реагирующие на окружающий свет. Обидно извлечь из-под одеяла обломки того, что когда-то называлось датчиком и стоило несколько сотен долларов.

Трудно удержаться, чтобы не привести совет, данный фирмой DATEX:

Относитесь к датчику так же бережно, как к собственным часам или очкам.

Если датчик сломался, а запасного такого же нет, не подключайте к монитору датчик другой фирмы, даже если у него такой же штекер. Это типичная ошибка, чреватая самыми разнообразными - и всегда плохими - последствиями, ожогами, поломкой оборудования, резким снижением точности измерения и пр. В мире существует большое, но все же ограниченное число типов разъемов, в связи с чем разные фирмы иногда просто вынуждены использовать одинаковые штекеры. Не полагаясь на здравомыслие врачей, фирмы приводят соответствующие предупреждения в руководствах к мониторам, наклеивают их на кабель датчика и даже публикуют в профессиональных журналах, но авантюризм порой оказывается сильнее. Некоторые крупные фирмы, например NELLCOR-PURITAN BENNET, продают свои датчики вместе с патентованной технологией их калибровки другим производителям пульсоксиметров, однако об этом всегда сообщается в документации.

У пациентов с выраженными расстройствами периферического кровообращения попробуйте переместить датчик на соседний палец или другую руку. Попытайтесь согреть руку грелкой или помассируйте ее. В некоторых случаях улучшить локальный кровоток удается с помощью нитроглицериновой мази, нанесенной тонким слоем на мочку уха или палец.

Более надежный сигнал в условиях нарушенного периферического кровотока можно получить с ушного датчика.

Нежелательно размещать датчик на той руке, которая используется для измерения артериального давления, так как это приводит к необоснованной активации аларма при каждом раздувании манжеты 1 . У больных с атеросклеротическим или иным поражением артерий верхних конечностей датчик следует устанавливать на той руке, где амплитуда ФПГ выше. После катетеризации лучевой артерии не исключено снижение амплитуды ФПГ на этой руке.

1 У многофункциональных мониторов во время неинвазивного автоматического измерения артериальною давления аларм пульсоксиметра отключается.

При охлаждении тела человека амплитуда ФПГ на периферии часто резко снижается. Такое состояние наблюдается у пациентов к концу длительных операций. Терморегуляция у них подавлена, теплопотеря повышена, а температура в операционной далека от комфортной, и пациент накрыт одной стерильной простыней. Это надо иметь в виду, выполняя пульсоксиметрию в раннем послеоперационном периоде

Пульсоксиметрию, как любой другой метод мониторинга, следует применять лишь тогда, когда в ней есть необходимость. Пульсоксиметр редко включают без надобности, но часто забывают отключить, когда таковая отпала. Нужно помнить, что срок службы прибора (в большей степени это относится к датчикам) зависит от суммарного наработанного времени.

пульсоксиметрия мониторинг концентрации углекислого газа в конце выдоха (капнография ) чрезкожный мониторинг ... Мир”, 1985. Шурыгин И.А. “Мониторинг дыхания ” П-ск, 2000 ...

Кривые диссоциации оксигемоглобина справедливы для нормальной крови со средними показателями. Однако существует ряд факторов, которые могут сдвигать эту кривую в одну или другую сторону. На рисунке видно, что при некотором закислении крови со снижением рН от нормального уровня 7,4 до 7,2 кривая диссоциации смещается в среднем на 15% вправо, а повышение уровня рН от нормального уровня 7,4 до 7,6 смещает кривую на такое же расстояние влево.

Кроме изменений рН известны и другие факторы, которые могут сдвигать кривую диссоциации. Назовем три, действие которых сдвигает кривую вправо: (1) повышение концентрации двуокиси углерода; (2) повышение температуры крови; (3) повышение концентрации 2,3-дифосфоглицерата - метаболически важного фосфата, который в зависимости от метаболических условий присутствует в крови в разных концентрациях.

Повышение снабжения тканей кислородом в случаях, когда двуокись углерода и ионы водорода сдвигают кривую диссоциации оксигемоглобина. Эффект Бора. Сдвиг кривой диссоциации оксигемоглобина в ответ на повышение содержания двуокиси углерода и ионов водорода в крови имеет существенное влияние, выражающееся в ускорении высвобождения кислорода из крови в тканях и увеличении оксигенации крови в легких. Это называют эффектом Бора и объясняют его следующим образом.

При прохождении крови через ткань двуокись углерода диффундирует из клеток ткани в кровь. В результате в крови увеличивается Ро2, а затем концентрации угольной кислоты (Н2СО3) и ионов водорода. Эти изменения сдвигают кривую диссоциации оксигемоглобина вправо и вниз, уменьшая сродство кислорода к гемоглобину, и в результате увеличивается выход кислорода в ткани.

При диффузии двуокиси углерода из крови в альвеолы происходят процессы обратного направления - в результате в крови снижаются Рсо2 и концентрация ионов водорода, сдвигая кривую диссоциации оксигемоглобина влево и вверх. При этом" значительно увеличивается количество кислорода, связывающегося с гемоглобином при любом существующем уровне альвеолярного Ро2, что увеличивает транспорт кислорода к тканям.

Сдвиг кривой диссоциации оксигемоглобина под влиянием дифосфоглицерата. Нормальное содержание ДФГ в крови вызывает постоянный небольшой сдвиг кривой диссоциации оксигемоглобина вправо. В случае гипоксического состояния, продолжающегося более нескольких часов, концентрация ДФГ в крови значительно возрастает, и кривая диссоциации оксигемоглобина сдвигается вправо еще больше.

В присутствии такой концентрации ДФГ кислород в тканях высвобождается при Ро2, превышающем нормальный уровень на 10 мм рт. ст., поэтому в некоторых случаях такой механизм с участием ДФГ может оказаться важным для адаптации к гипоксии, особенно если причиной гипоксии является уменьшение в ткани кровотока.

Сдвиг кривой диссоциации во время физической нагрузки . Во время физической нагрузки некоторые факторы вызывают значительный сдвиг кривой диссоциации оксигемоглобина вправо, поэтому активные, выполняющие физическую работу мышечные волокна получают дополнительное количество кислорода. В свою очередь, работающие мышцы высвобождают большое количество двуокиси углерода; это в совокупности с действием некоторых других кислот, высвобождающихся мышцами, повышает концентрацию ионов водорода в крови капилляров мышц.

Кроме того, во время работы температура мышцы часто повышается на 2-3°С, что может еще больше увеличивать доставку кислорода мышечным волокнам. Все эти факторы вызывают значительный сдвиг кривой диссоциации оксигемоглобина в крови капилляров мышц вправо. Сдвиг вправо означает высвобождение кислорода гемоглобином в мышце при достаточно высоком уровне Ро2 (40 мм рт. ст.) даже в случаях, когда из него уже высвободилось 70% кислорода. Сдвиг кривой в другую сторону показывает, что в легких присоединилось дополнительное количество кислорода из альвеолярного воздуха.