Формулы по квадратным уравнениям. Квадратные уравнения

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант .

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Первое уравнение:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c /a ) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (−c /a ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c /a ) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c /a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.


Продолжаем изучение темы «решение уравнений ». Мы уже познакомились с линейными уравнениями и переходим к знакомству с квадратными уравнениями .

Сначала мы разберем, что такое квадратное уравнение, как оно записывается в общем виде, и дадим связанные определения. После этого на примерах подробно разберем, как решаются неполные квадратные уравнения. Дальше перейдем к решению полных уравнений, получим формулу корней, познакомимся с дискриминантом квадратного уравнения и рассмотрим решения характерных примеров. Наконец, проследим связи между корнями и коэффициентами.

Навигация по странице.

Что такое квадратное уравнение? Их виды

Для начала надо отчетливо понимать, что такое квадратное уравнение. Поэтому разговор о квадратных уравнениях логично начать с определения квадратного уравнения, а также связанных с ним определений. После этого можно рассмотреть основные виды квадратных уравнений: приведенные и неприведенные, а также полные и неполные уравнения.

Определение и примеры квадратных уравнений

Определение.

Квадратное уравнение – это уравнение вида a·x 2 +b·x+c=0 , где x – переменная, a , b и c – некоторые числа, причем a отлично от нуля.

Сразу скажем, что квадратные уравнения часто называют уравнениями второй степени. Это связано с тем, что квадратное уравнение является алгебраическим уравнением второй степени.

Озвученное определение позволяет привести примеры квадратных уравнений. Так 2·x 2 +6·x+1=0 , 0,2·x 2 +2,5·x+0,03=0 и т.п. – это квадратные уравнения.

Определение.

Числа a , b и c называют коэффициентами квадратного уравнения a·x 2 +b·x+c=0 , причем коэффициент a называют первым, или старшим, или коэффициентом при x 2 , b – вторым коэффициентом, или коэффициентом при x , а c – свободным членом.

Для примера возьмем квадратное уравнение вида 5·x 2 −2·x−3=0 , здесь старший коэффициент есть 5 , второй коэффициент равен −2 , а свободный член равен −3 . Обратите внимание, когда коэффициенты b и/или c отрицательные, как в только что приведенном примере, то используется краткая форма записи квадратного уравнения вида 5·x 2 −2·x−3=0 , а не 5·x 2 +(−2)·x+(−3)=0 .

Стоит отметить, что когда коэффициенты a и/или b равны 1 или −1 , то они в записи квадратного уравнения обычно не присутствуют явно, что связано с особенностями записи таких . Например, в квадратном уравнении y 2 −y+3=0 старший коэффициент есть единица, а коэффициент при y равен −1 .

Приведенные и неприведенные квадратные уравнения

В зависимости от значения старшего коэффициента различают приведенные и неприведенные квадратные уравнения. Дадим соответствующие определения.

Определение.

Квадратное уравнение, в котором старший коэффициент равен 1 , называют приведенным квадратным уравнением . В противном случае квадратное уравнение является неприведенным .

Согласно данному определению, квадратные уравнения x 2 −3·x+1=0 , x 2 −x−2/3=0 и т.п. – приведенные, в каждом из них первый коэффициент равен единице. А 5·x 2 −x−1=0 , и т.п. - неприведенные квадратные уравнения, их старшие коэффициенты отличны от 1 .

От любого неприведенного квадратного уравнения с помощью деления его обеих частей на старший коэффициент можно перейти к приведенному. Это действие является равносильным преобразованием , то есть, полученное таким способом приведенное квадратное уравнение имеет те же корни, что и исходное неприведенное квадратное уравнение, или, так же как оно, не имеет корней.

Разберем на примере, как выполняется переход от неприведенного квадратного уравнения к приведенному.

Пример.

От уравнения 3·x 2 +12·x−7=0 перейдите к соответствующему приведенному квадратному уравнению.

Решение.

Нам достаточно выполнить деление обеих частей исходного уравнения на старший коэффициент 3 , он отличен от нуля, поэтому мы можем выполнить это действие. Имеем (3·x 2 +12·x−7):3=0:3 , что то же самое, (3·x 2):3+(12·x):3−7:3=0 , и дальше (3:3)·x 2 +(12:3)·x−7:3=0 , откуда . Так мы получили приведенное квадратное уравнение, равносильное исходному.

Ответ:

Полные и неполные квадратные уравнения

В определении квадратного уравнения присутствует условие a≠0 . Это условие нужно для того, чтобы уравнение a·x 2 +b·x+c=0 было именно квадратным, так как при a=0 оно фактически становится линейным уравнением вида b·x+c=0 .

Что касается коэффициентов b и c , то они могут быть равны нулю, причем как по отдельности, так и вместе. В этих случаях квадратное уравнение называют неполным.

Определение.

Квадратное уравнение a·x 2 +b·x+c=0 называют неполным , если хотя бы один из коэффициентов b , c равен нулю.

В свою очередь

Определение.

Полное квадратное уравнение – это уравнение, у которого все коэффициенты отличны от нуля.

Такие названия даны не случайно. Из следующих рассуждений это станет понятно.

Если коэффициент b равен нулю, то квадратное уравнение принимает вид a·x 2 +0·x+c=0 , и оно равносильно уравнению a·x 2 +c=0 . Если c=0 , то есть, квадратное уравнение имеет вид a·x 2 +b·x+0=0 , то его можно переписать как a·x 2 +b·x=0 . А при b=0 и c=0 мы получим квадратное уравнение a·x 2 =0 . Полученные уравнения отличаются от полного квадратного уравнения тем, что их левые части не содержат либо слагаемого с переменной x, либо свободного члена, либо и того и другого. Отсюда и их название – неполные квадратные уравнения.

Так уравнения x 2 +x+1=0 и −2·x 2 −5·x+0,2=0 – это примеры полных квадратных уравнений, а x 2 =0 , −2·x 2 =0 , 5·x 2 +3=0 , −x 2 −5·x=0 – это неполные квадратные уравнения.

Решение неполных квадратных уравнений

Из информации предыдущего пункта следует, что существует три вида неполных квадратных уравнений :

  • a·x 2 =0 , ему отвечают коэффициенты b=0 и c=0 ;
  • a·x 2 +c=0 , когда b=0 ;
  • и a·x 2 +b·x=0 , когда c=0 .

Разберем по порядку, как решаются неполные квадратные уравнения каждого из этих видов.

a·x 2 =0

Начнем с решения неполных квадратных уравнений, в которых коэффициенты b и c равны нулю, то есть, с уравнений вида a·x 2 =0 . Уравнению a·x 2 =0 равносильно уравнение x 2 =0 , которое получается из исходного делением его обеих частей на отличное от нуля число a . Очевидно, корнем уравнения x 2 =0 является нуль, так как 0 2 =0 . Других корней это уравнение не имеет, что объясняется , действительно, для любого отличного от нуля числа p имеет место неравенство p 2 >0 , откуда следует, что при p≠0 равенство p 2 =0 никогда не достигается.

Итак, неполное квадратное уравнение a·x 2 =0 имеет единственный корень x=0 .

В качестве примера приведем решение неполного квадратного уравнения −4·x 2 =0 . Ему равносильно уравнение x 2 =0 , его единственным корнем является x=0 , следовательно, и исходное уравнение имеет единственный корень нуль.

Краткое решение в этом случае можно оформить следующим образом:
−4·x 2 =0 ,
x 2 =0 ,
x=0 .

a·x 2 +c=0

Теперь рассмотрим, как решаются неполные квадратные уравнения, в которых коэффициент b равен нулю, а c≠0 , то есть, уравнения вида a·x 2 +c=0 . Мы знаем, что перенос слагаемого из одной части уравнения в другую с противоположным знаком, а также деление обеих частей уравнения на отличное от нуля число дают равносильное уравнение. Поэтому можно провести следующие равносильные преобразования неполного квадратного уравнения a·x 2 +c=0 :

  • перенести c в правую часть, что дает уравнение a·x 2 =−c ,
  • и разделить обе его части на a , получаем .

Полученное уравнение позволяет сделать выводы о его корнях. В зависимости от значений a и c значение выражения может быть отрицательным (например, если a=1 и c=2 , то ) или положительным, (к примеру, если a=−2 и c=6 , то ), оно не равно нулю, так как по условию c≠0 . Отдельно разберем случаи и .

Если , то уравнение не имеет корней. Это утверждение следует из того, что квадрат любого числа есть число неотрицательное. Из этого вытекает, что когда , то ни для какого числа p равенство не может быть верным.

Если , то дело с корнями уравнения обстоит иначе. В этом случае, если вспомнить о , то сразу становится очевиден корень уравнения , им является число , так как . Несложно догадаться, что и число тоже является корнем уравнения , действительно, . Других корней это уравнение не имеет, что можно показать, например, методом от противного. Сделаем это.

Обозначим только что озвученные корни уравнения как x 1 и −x 1 . Предположим, что уравнение имеет еще один корень x 2 , отличный от указанных корней x 1 и −x 1 . Известно, что подстановка в уравнение вместо x его корней обращает уравнение в верное числовое равенство . Для x 1 и −x 1 имеем , а для x 2 имеем . Свойства числовых равенств нам позволяют выполнять почленное вычитание верных числовых равенств, так вычитание соответствующих частей равенств и дает x 1 2 −x 2 2 =0 . Свойства действий с числами позволяют переписать полученное равенство как (x 1 −x 2)·(x 1 +x 2)=0 . Мы знаем, что произведение двух чисел равно нулю тогда и только тогда, когда хотя бы одно из них равно нулю. Следовательно, из полученного равенства следует, что x 1 −x 2 =0 и/или x 1 +x 2 =0 , что то же самое, x 2 =x 1 и/или x 2 =−x 1 . Так мы пришли к противоречию, так как вначале мы сказали, что корень уравнения x 2 отличен от x 1 и −x 1 . Этим доказано, что уравнение не имеет других корней, кроме и .

Обобщим информацию этого пункта. Неполное квадратное уравнение a·x 2 +c=0 равносильно уравнению , которое

  • не имеет корней, если ,
  • имеет два корня и , если .

Рассмотрим примеры решения неполных квадратных уравнений вида a·x 2 +c=0 .

Начнем с квадратного уравнения 9·x 2 +7=0 . После переноса свободного члена в правую часть уравнения, оно примет вид 9·x 2 =−7 . Разделив обе части полученного уравнения на 9 , придем к . Так как в правой части получилось отрицательное число, то это уравнение не имеет корней, следовательно, и исходное неполное квадратное уравнение 9·x 2 +7=0 не имеет корней.

Решим еще одно неполное квадратное уравнение −x 2 +9=0 . Переносим девятку в правую часть: −x 2 =−9 . Теперь делим обе части на −1 , получаем x 2 =9 . В правой части находится положительное число, откуда заключаем, что или . После записываем окончательный ответ: неполное квадратное уравнение −x 2 +9=0 имеет два корня x=3 или x=−3 .

a·x 2 +b·x=0

Осталось разобраться с решением последнего вида неполных квадратных уравнений при c=0 . Неполные квадратные уравнения вида a·x 2 +b·x=0 позволяет решить метод разложения на множители . Очевидно, мы можем , находящийся в левой части уравнения, для чего достаточно вынести за скобки общий множитель x . Это позволяет перейти от исходного неполного квадратного уравнения к равносильному уравнению вида x·(a·x+b)=0 . А это уравнение равносильно совокупности двух уравнений x=0 и a·x+b=0 , последнее из которых является линейным и имеет корень x=−b/a .

Итак, неполное квадратное уравнение a·x 2 +b·x=0 имеет два корня x=0 и x=−b/a .

Для закрепления материала разберем решение конкретного примера.

Пример.

Решите уравнение .

Решение.

Выносим x за скобки, это дает уравнение . Оно равносильно двум уравнениям x=0 и . Решаем полученное линейное уравнение: , и выполнив деление смешанного числа на обыкновенную дробь, находим . Следовательно, корнями исходного уравнения являются x=0 и .

После получения необходимой практики, решения подобных уравнений можно записывать кратко:

Ответ:

x=0 , .

Дискриминант, формула корней квадратного уравнения

Для решения квадратных уравнений существуют формула корней. Запишем формулу корней квадратного уравнения : , где D=b 2 −4·a·c – так называемый дискриминант квадратного уравнения . Запись по сути означает, что .

Полезно знать, как была получена формула корней, и как она применяется при нахождении корней квадратных уравнений. Разберемся с этим.

Вывод формулы корней квадратного уравнения

Пусть нам нужно решить квадратное уравнение a·x 2 +b·x+c=0 . Выполним некоторые равносильные преобразования :

  • Обе части этого уравнения мы можем разделить на отличное от нуля число a , в результате получим приведенное квадратное уравнение .
  • Теперь выделим полный квадрат в его левой части: . После этого уравнение примет вид .
  • На этом этапе можно осуществить перенос двух последних слагаемых в правую часть с противоположным знаком, имеем .
  • И еще преобразуем выражение, оказавшееся в правой части: .

В итоге мы приходим к уравнению , которое равносильно исходному квадратному уравнению a·x 2 +b·x+c=0 .

Аналогичные по форме уравнения мы уже решали в предыдущих пунктах, когда разбирали . Это позволяет сделать следующие выводы, касающиеся корней уравнения :

  • если , то уравнение не имеет действительных решений;
  • если , то уравнение имеет вид , следовательно, , откуда виден его единственный корень ;
  • если , то или , что то же самое или , то есть, уравнение имеет два корня.

Таким образом, наличие или отсутствие корней уравнения , а значит и исходного квадратного уравнения, зависит от знака выражения , стоящего в правой части. В свою очередь знак этого выражения определяется знаком числителя, так как знаменатель 4·a 2 всегда положителен, то есть, знаком выражения b 2 −4·a·c . Это выражение b 2 −4·a·c , назвали дискриминантом квадратного уравнения и обозначили буквой D . Отсюда понятна суть дискриминанта – по его значению и знаку делают вывод, имеет ли квадратное уравнение действительные корни, и если имеет, то каково их количество - один или два.

Возвращаемся к уравнению , перепишем его с использованием обозначения дискриминанта: . И делаем выводы:

  • если D<0 , то это уравнение не имеет действительных корней;
  • если D=0 , то это уравнение имеет единственный корень ;
  • наконец, если D>0 , то уравнение имеет два корня или , которые в силу можно переписать в виде или , а после раскрытия и приведения дробей к общему знаменателю получаем .

Так мы вывели формулы корней квадратного уравнения, они имеют вид , где дискриминант D вычисляется по формуле D=b 2 −4·a·c .

С их помощью при положительном дискриминанте можно вычислить оба действительных корня квадратного уравнения. При равном нулю дискриминанте обе формулы дают одно и то же значение корня, соответствующее единственному решению квадратного уравнения. А при отрицательном дискриминанте при попытке воспользоваться формулой корней квадратного уравнения мы сталкиваемся с извлечением квадратного корня из отрицательного числа, что выводит нас за рамки и школьной программы. При отрицательном дискриминанте квадратное уравнение не имеет действительных корней, но имеет пару комплексно сопряженных корней, которые можно найти по тем же полученным нами формулам корней .

Алгоритм решения квадратных уравнений по формулам корней

На практике при решении квадратных уравнения можно сразу использовать формулу корней, с помощью которой вычислить их значения. Но это больше относиться к нахождению комплексных корней.

Однако в школьном курсе алгебры обычно речь идет не о комплексных, а о действительных корнях квадратного уравнения. В этом случае целесообразно перед использованием формул корней квадратного уравнения предварительно найти дискриминант, убедиться, что он неотрицательный (в противном случае можно делать вывод, что уравнение не имеет действительных корней), и уже после этого вычислять значения корней.

Приведенные рассуждения позволяют записать алгоритм решения квадратного уравнения . Чтобы решить квадратное уравнение a·x 2 +b·x+c=0 , надо:

  • по формуле дискриминанта D=b 2 −4·a·c вычислить его значение;
  • заключить, что квадратное уравнение не имеет действительных корней, если дискриминант отрицательный;
  • вычислить единственный корень уравнения по формуле , если D=0 ;
  • найти два действительных корня квадратного уравнения по формуле корней , если дискриминант положительный.

Здесь лишь заметим, что при равном нулю дискриминанте можно использовать и формулу , она даст то же значение, что и .

Можно переходить к примерам применения алгоритма решения квадратных уравнений.

Примеры решения квадратных уравнений

Рассмотрим решения трех квадратных уравнений с положительным, отрицательным и равным нулю дискриминантом. Разобравшись с их решением, по аналогии можно будет решить любое другое квадратное уравнение. Начнем.

Пример.

Найдите корни уравнения x 2 +2·x−6=0 .

Решение.

В этом случае имеем следующие коэффициенты квадратного уравнения: a=1 , b=2 и c=−6 . Согласно алгоритму, сначала надо вычислить дискриминант, для этого подставляем указанные a , b и c в формулу дискриминанта, имеем D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28 . Так как 28>0 , то есть, дискриминант больше нуля, то квадратное уравнение имеет два действительных корня. Найдем их по формуле корней , получаем , здесь можно упростить полученные выражения, выполнив вынесение множителя за знак корня с последующим сокращением дроби:

Ответ:

Переходим к следующему характерному примеру.

Пример.

Решите квадратное уравнение −4·x 2 +28·x−49=0 .

Решение.

Начинаем с нахождения дискриминанта: D=28 2 −4·(−4)·(−49)=784−784=0 . Следовательно, это квадратное уравнение имеет единственный корень, который находим как , то есть,

Ответ:

x=3,5 .

Остается рассмотреть решение квадратных уравнений с отрицательным дискриминантом.

Пример.

Решите уравнение 5·y 2 +6·y+2=0 .

Решение.

Здесь такие коэффициенты квадратного уравнения: a=5 , b=6 и c=2 . Подставляем эти значения в формулу дискриминанта, имеем D=b 2 −4·a·c=6 2 −4·5·2=36−40=−4 . Дискриминант отрицательный, следовательно, данное квадратное уравнение не имеет действительных корней.

Если же потребуется указать комплексные корни, то применяем известную формулу корней квадратного уравнения , и выполняем действия с комплексными числами :

Ответ:

действительных корней нет, комплексные корни таковы: .

Еще раз отметим, что если дискриминант квадратного уравнения отрицательный, то в школе обычно сразу записывают ответ, в котором указывают, что действительных корней нет, и не находят комплексные корни.

Формула корней для четных вторых коэффициентов

Формула корней квадратного уравнения , где D=b 2 −4·a·c позволяет получить формулу более компактного вида, позволяющую решать квадратные уравнения с четным коэффициентом при x (или просто с коэффициентом, имеющим вид 2·n , например, , или 14·ln5=2·7·ln5 ). Выведем ее.

Допустим нам нужно решить квадратное уравнение вида a·x 2 +2·n·x+c=0 . Найдем его корни с использованием известной нам формулы. Для этого вычисляем дискриминант D=(2·n) 2 −4·a·c=4·n 2 −4·a·c=4·(n 2 −a·c) , и дальше используем формулу корней:

Обозначим выражение n 2 −a·c как D 1 (иногда его обозначают D" ). Тогда формула корней рассматриваемого квадратного уравнения со вторым коэффициентом 2·n примет вид , где D 1 =n 2 −a·c .

Несложно заметить, что D=4·D 1 , или D 1 =D/4 . Другими словами, D 1 – это четвертая часть дискриминанта. Понятно, что знак D 1 такой же, как знак D . То есть, знак D 1 также является индикатором наличия или отсутствия корней квадратного уравнения.

Итак, чтобы решить квадратное уравнение со вторым коэффициентом 2·n , надо

  • Вычислить D 1 =n 2 −a·c ;
  • Если D 1 <0 , то сделать вывод, что действительных корней нет;
  • Если D 1 =0 , то вычислить единственный корень уравнения по формуле ;
  • Если же D 1 >0 , то найти два действительных корня по формуле .

Рассмотрим решение примера с использованием полученной в этом пункте формулы корней.

Пример.

Решите квадратное уравнение 5·x 2 −6·x−32=0 .

Решение.

Второй коэффициент этого уравнения можно представить в виде 2·(−3) . То есть, можно переписать исходное квадратное уравнение в виде 5·x 2 +2·(−3)·x−32=0 , здесь a=5 , n=−3 и c=−32 , и вычислить четвертую часть дискриминанта: D 1 =n 2 −a·c=(−3) 2 −5·(−32)=9+160=169 . Так как его значение положительно, то уравнение имеет два действительных корня. Найдем их, используя соответствующую формулу корней:

Заметим, что можно было использовать обычную формулу корней квадратного уравнения, но в этом случае пришлось бы выполнить больший объем вычислительной работы.

Ответ:

Упрощение вида квадратных уравнений

Порой, прежде чем пускаться в вычисление корней квадратного уравнения по формулам, не помешает задаться вопросом: «А нельзя ли упростить вид этого уравнения»? Согласитесь, что в плане вычислений проще будет решить квадратное уравнение 11·x 2 −4·x−6=0 , чем 1100·x 2 −400·x−600=0 .

Обычно упрощение вида квадратного уравнения достигается путем умножения или деления его обеих частей на некоторое число. Например, в предыдущем абзаце удалось достичь упрощения уравнения 1100·x 2 −400·x−600=0 , разделив обе его части на 100 .

Подобное преобразование проводят с квадратными уравнениями, коэффициенты которого не являются . При этом обычно делят обе части уравнения на абсолютных величин его коэффициентов. Для примера возьмем квадратное уравнение 12·x 2 −42·x+48=0 . абсолютных величин его коэффициентов: НОД(12, 42, 48)= НОД(НОД(12, 42), 48)= НОД(6, 48)=6 . Разделив обе части исходного квадратного уравнения на 6 , мы придем к равносильному ему квадратному уравнению 2·x 2 −7·x+8=0 .

А умножение обеих частей квадратного уравнения обычно производится для избавления от дробных коэффициентов. При этом умножение проводят на знаменателей его коэффициентов. Например, если обе части квадратного уравнения умножить на НОК(6, 3, 1)=6 , то оно примет более простой вид x 2 +4·x−18=0 .

В заключение этого пункта заметим, что почти всегда избавляются от минуса при старшем коэффициенте квадратного уравнения, изменяя знаки всех членов, что соответствует умножению (или делению) обеих частей на −1 . Например, обычно от квадратного уравнения −2·x 2 −3·x+7=0 переходят к решению 2·x 2 +3·x−7=0 .

Связь между корнями и коэффициентами квадратного уравнения

Формула корней квадратного уравнения выражает корни уравнения через его коэффициенты. Отталкиваясь от формулы корней, можно получить другие зависимости между корнями и коэффициентами.

Наиболее известны и применимы формулы из теоремы Виета вида и . В частности, для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней – свободному члену. Например, по виду квадратного уравнения 3·x 2 −7·x+22=0 можно сразу сказать, что сумма его корней равна 7/3 , а произведение корней равно 22/3 .

Используя уже записанные формулы можно получить и ряд других связей между корнями и коэффициентами квадратного уравнения. К примеру, можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты: .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.

Решение уравнений в математике занимает особое место. Этому процессу предшествует множество часов изучения теории, в ходе которых ученик узнает способы решения уравнений, определения их вида и доводит навык до полного автоматизма. Однако далеко не всегда поиск корней имеет смысл, так как их может попросту не быть. Существуют особые приемы нахождения корней. В данной статье мы разберем основные функции, их области определения, а также случаи, когда их корни отсутствуют.

Какое уравнение не имеет корней?

Уравнение не имеет корней в том случае, если не существует таких действительных аргументов х, при которых уравнение тождественно верно. Для неспециалиста данная формулировка, как и большинство математических теорем и формул, выглядит очень размытой и абстрактной, однако это в теории. На практике все становится предельно просто. Например: уравнение 0 * х = -53 не имеет решения, так как не найдется такого числа х, произведение которого с нулем дало бы что-то, кроме нуля.

Сейчас мы рассмотрим самые базовые типы уравнений.

1. Линейное уравнение

Уравнение называется линейным, если его правая и левая части представлены в виде линейных функций: ax + b = cx + d или в обобщенном виде kx + b = 0. Где а, b, с, d - известные числа, а х - неизвестная величина. Какое уравнение не имеет корней? Примеры линейных уравнений представлены на иллюстрации ниже.

В основном линейные уравнения решаются простым переносом числовой части в одну часть, а содержимого с х - в другую. Получается уравнение вида mx = n, где m и n - числа, а х - неизвестное. Чтобы найти х, достаточно разделить обе части на m. Тогда х = n/m. В основном линейные уравнения имеют только один корень, однако бывают случаи, когда корней либо бесконечно много, либо нет вовсе. При m = 0 и n = 0 уравнение принимает вид 0 * х = 0. Решением такого уравнения будет абсолютно любое число.

Однако какое уравнение не имеет корней?

При m = 0 и n = 0 уравнение не имеет корней из множества действительных чисел. 0 * х = -1; 0 * х = 200 - эти уравнения не имеют корней.

2. Квадратное уравнение

Квадратным уравнением называется уравнение вида ax 2 + bx + c = 0 при а = 0. Самым распространенным является решение через дискриминант. Формула нахождения дискриминанта квадратного уравнения: D = b 2 - 4 * a * c. Далее находится два корня х 1,2 = (-b ± √D) / 2 * a.

При D > 0 уравнение имеет два корня, при D = 0 - корень один. Но какое квадратное уравнение не имеет корней? Пронаблюдать количество корней квадратного уравнения проще всего по графику функции, представляющем собой параболу. При а > 0 ветви направлены вверх, при а < 0 ветви опущены вниз. Если дискриминант отрицателен, такое квадратное уравнение не имеет корней на множестве действительных чисел.

Также можно определить визуально количество корней, не вычисляя дискриминант. Для этого нужно найти вершину параболы и определить в какую сторону направлены ветви. Определить координату x вершины можно по формуле: х 0 = -b / 2a. В этом случае координата y вершины находится простой подстановкой значения х 0 в изначальное уравнение.

Квадратное уравнение x 2 - 8x + 72 = 0 не имеет корней, так как имеет отрицательный дискриминант D = (-8) 2 - 4 * 1 * 72 = -224. Это значит, что парабола не касается оси абсцисс и функция никогда не принимает значение 0, следовательно, уравнение не имеет действительных корней.

3. Тригонометрические уравнения

Тригонометрические функции рассматриваются на тригонометрической окружности, однако могут быть представлены и в декартовой системе координат. В данной статье мы рассмотрим две основные тригонометрические функции и их уравнения: sinx и cosx. Так как данные функции образуют тригонометрическую окружность с радиусом 1, |sinx| и |cosx| не могут быть больше 1. Итак, какое уравнение sinx не имеет корней? Рассмотрим график функции sinx, представленный на картинке ниже.

Мы видим, что функция является симметричной и имеет период повторения 2pi. Исходя их этого, можно говорить, что максимальным значением этой функции может быть 1, а минимальным -1. Например, выражение cosx = 5 не будет иметь корней, так как по модулю оно больше единицы.

Это самый простой пример тригонометрических уравнений. На самом деле их решение может занимать множество страниц, в конце которых вы осознаете, что использовали неправильную формулу и все нужно начинать сначала. Порой даже при правильном нахождении корней вы можете забыть учесть ограничения по ОДЗ, из-за чего в ответе появляется лишний корень или интервал, и весь ответ обращается в ошибочный. Поэтому строго следите за всеми ограничениями, ведь не все корни вписываются в рамки задачи.

4. Системы уравнений

Система уравнений представляет собой совокупность уравнений, объединенных фигурной или квадратной скобками. Фигурные скобки обозначают совместное выполнение всех уравнений. То есть если хотя бы одно из уравнений не имеет корней или противоречит другому, вся система не имеет решения. Квадратные скобки обозначают слово "или". Это значит, что если хотя бы одно из уравнений системы имеет решение, то вся система имеет решение.

Ответом системы с является совокупность всех корней отдельных уравнений. А системы с фигурным скобками имеют только общие корни. Системы уравнений могут включать абсолютно разнообразные функции, поэтому такая сложность не позволяет сказать сразу, какое уравнение не имеет корней.

В задачниках и учебниках встречаются разные типы уравнений: такие, которые имею корни, и не имеющие их. В первую очередь, если у вас не получается найти корни, не думайте, что их нет совсем. Возможно, вы совершили где-нибудь ошибку, тогда достаточно лишь внимательно перепроверить ваше решение.

Мы рассмотрели самые базовые уравнения и их виды. Теперь вы можете сказать, какое уравнение не имеет корней. В большинстве случаев сделать это совсем не трудно. Для достижения успеха в решении уравнений требуется лишь внимание и сосредоточенность. Практикуйтесь больше, это поможет вам ориентироваться в материале гораздо лучше и быстрее.

Итак, уравнение не имеет корней, если:

  • в линейном уравнении mx = n значение m = 0 и n = 0;
  • в квадратном уравнении, если дискриминант меньше нуля;
  • в тригонометрическом уравнении вида cosx = m / sinx = n, если |m| > 0, |n| > 0;
  • в системе уравнений с фигурными скобками, если хотя бы одно уравнение не имеет корней, и с квадратными скобками, если все уравнения не имеют корней.

Просто. По формулам и чётким несложным правилам. На первом этапе

надо заданное уравнение привести к стандартному виду, т.е. к виду:

Если уравнение вам дано уже в таком виде - первый этап делать не нужно. Самое главное - правильно

определить все коэффициенты, а , b и c .

Формула для нахождения корней квадратного уравнения.

Выражение под знаком корня называется дискриминант . Как видим, для нахождения икса, мы

используем только a, b и с . Т.е. коэффициенты из квадратного уравнения . Просто аккуратно подставляем

значения a, b и с в эту формулу и считаем. Подставляем со своими знаками!

Например , в уравнении:

а =1; b = 3; c = -4.

Подставляем значения и записываем:

Пример практически решён:

Это ответ.

Самые распространённые ошибки - путаница со знаками значений a, b и с . Вернее, с подстановкой

отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы

с конкретными числами. Если есть проблемы с вычислениями, так и делайте!

Предположим, надо вот такой пример решить:

Здесь a = -6; b = -5; c = -1

Расписываем все подробно, внимательно, ничего не упуская со всеми знаками и скобками:

Часто квадратные уравнения выглядят слегка иначе. Например, вот так:

А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок.

Приём первый . Не ленитесь перед решением квадратного уравнения привести его к стандартному виду.

Что это означает?

Допустим, после всяких преобразований вы получили вот такое уравнение:

Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с.

Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:

Избавьтесь от минуса. Как? Надо умножить всё уравнение на -1. Получим:

А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример.

Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.

Приём второй. Проверяйте корни! По теореме Виета .

Для решения приведённых квадратных уравнений, т.е. если коэффициент

x 2 +bx+c=0,

тогда x 1 x 2 =c

x 1 +x 2 =− b

Для полного квадратного уравнения, в котором a≠1 :

x 2 + b x+ c =0,

делим все уравнение на а:

где x 1 и x 2 - корни уравнения.

Приём третий . Если в вашем уравнении есть дробные коэффициенты, - избавьтесь от дробей! Домножьте

уравнение на общий знаменатель.

Вывод. Практические советы:

1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно .

2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего

уравнения на -1.

3. Если коэффициенты дробные - ликвидируем дроби умножением всего уравнения на соответствующий

множитель.

4. Если икс в квадрате - чистый, коэффициент при нём равен единице, решение можно легко проверить по

Задачи на квадратное уравнение изучаются и в школьной программе и в ВУЗах. Под ними понимают уравнения вида a*x^2 + b*x + c = 0 ,где x - переменная, a,b,c – константы; a<>0 . Задача состоит в отыскании корней уравнения.

Геометрический смысл квадратного уравнения

Графиком функции, которая представлена квадратным уравнением является парабола. Решения (корни) квадратного уравнения - это точки пересечения параболы с осью абсцисс (х) . Из этого следует, что есть три возможных случая:
1) парабола не имеет точек пересечения с осью абсцисс. Это означает, что она находится в верхней плоскости с ветками вверх или нижней с ветками вниз. В таких случаях квадратное уравнение не имеет действительных корней (имеет два комплексных корня).

2) парабола имеет одну точку пересечения с осью Ох . Такую точку называют вершиной параболы, а квадратное уравнение в ней приобретает свое минимальное или максимальное значение. В этом случае квадратное уравнение имеет один действительный корень (или два одинаковых корня).

3) Последний случай на практике интересный больше - существует две точки пересечения параболы с осью абсцисс. Это означает, что существует два действительных корня уравнения.

На основе анализа коэффициентов при степенях переменных можно сделать интересные выводы о размещении параболы.

1) Если коэффициент а больше нуля то парабола направлена ветками вверх, если отрицательный - ветки параболы направлены вниз.

2) Если коэффициент b больше нуля то вершина параболы лежит в левой полуплоскости, если принимает отрицательное значение - то в правой.

Вывод формулы для решения квадратного уравнения

Перенесем константу с квадратного уравнения

за знак равенства, получим выражение

Умножим обе части на 4а

Чтобы получить слева полный квадрат добавим в обеих частях b^2 и осуществим преобразование

Отсюда находим

Формула дискриминанта и корней квадратного уравнения

Дискриминантом называют значение подкоренного выраженияЕсли он положительный то уравнение имеет два действительных корня, вычисляемые по формулеПри нулевом дискриминант квадратное уравнение имеет одно решение (два совпадающих корня), которые легко получить из приведенной выше формулы при D=0 При отрицательном дискриминант уравнения действительных корней нет. Однако исують решения квадратного уравнения в комплексной плоскости, и их значение вычисляют по формуле

Теорема Виета

Рассмотрим два корня квадратного уравнения и построим на их основе квадратное уравнение.С записи легко следует сама теорема Виета: если имеем квадратное уравнение видато сумма его корней равна коэффициенту p , взятому с противоположным знаком, а произведение корней уравнения равен свободному слагаемому q . Формульная запись вышесказанного будет иметь видЕсли в классическом уравнении константа а отлична от нуля, то нужно разделить на нее все уравнение, а затем применять теорему Виета.

Расписание квадратного уравнения на множители

Пусть поставлена задача: разложить квадратное уравнение на множители. Для его выполнения сначала решаем уравнение (находим корни). Далее, найденные корни подставляем в формулу разложения квадратного уравненияНа этом задача будет разрешен.

Задачи на квадратное уравнение

Задача 1. Найти корни квадратного уравнения

x^2-26x+120=0 .

Решение: Запишем коэффициенты и подставим в формулу дискриминанта

Корень из данного значения равен 14 , его легко найти с калькулятором, или запомнить при частом использовании, однако для удобства, в конце статьи я Вам дам список квадратов чисел, которые часто могут встречаться при подобных задачах.
Найденное значение подставляем в формулу корней

и получаем

Задача 2. Решить уравнение

2x 2 +x-3=0.

Решение: Имеем полное квадратное уравнение, выписываем коэффициенты и находим дискриминант


По известным формулам находим корни квадратного уравнения

Задача 3. Решить уравнение

9x 2 -12x+4=0.

Решение: Имеем полное квадратное уравнение. Определяем дискриминант

Получили случай когда корни совпадают. Находим значения корней по формуле

Задача 4. Решить уравнение

x^2+x-6=0 .

Решение: В случаях когда есть малые коэффициенты при х целесообразно применять теорему Виета. По ее условию получаем два уравнения

С второго условия получаем, что произведение должно быть равно -6 . Это означает, что один из корней отрицателен. Имеем следующую возможную пару решений{-3;2}, {3;-2} . С учетом первого условия вторую пару решений отвергаем.
Корни уравнения равны

Задача 5. Найти длины сторон прямоугольника, если его периметр 18 см, а площадь 77 см 2 .

Решение: Половина периметра прямоугольника равна сумме соседних сторон. Обозначим х – большую сторону, тогда 18-x меньшая его сторона. Площадь прямоугольника равна произведению этих длин:
х(18-х)=77;
или
х 2 -18х+77=0.
Найдем дискриминант уравнения

Вычисляем корни уравнения

Если х=11 , то 18-х=7 , наоборот тоже справедливо (если х=7 , то 21-х=9 ).

Задача 6. Разложить квадратное 10x 2 -11x+3=0 уравнения на множители.

Решение: Вычислим корни уравнения, для этого находим дискриминант

Подставляем найденное значение в формулу корней и вычисляем

Применяем формулу разложения квадратного уравнения по корнями

Раскрыв скобки получим тождество.

Квадратное уравнение с параметром

Пример 1. При каких значениях параметра а , уравнение (а-3)х 2 +(3-а)х-1/4=0 имеет один корень?

Решение: Прямой подстановкой значения а=3 видим, что оно не имеет решения. Далее воспользуемся тем, что при нулевом дискриминанте уравнение имеет один корень кратности 2 . Выпишем дискриминант

упростим его и приравняем к нулю

Получили квадратное уравнение относительно параметра а , решение которого легко получить по теореме Виета. Сумма корней равна 7 , а их произведение 12 . Простым перебором устанавливаем, что числа 3,4 будут корнями уравнения. Поскольку решение а=3 мы уже отвергли в начале вычислений, то единственным правильным будет - а=4 . Таким образом, при а=4 уравнение имеет один корень.

Пример 2. При каких значениях параметра а , уравнение а(а+3)х^2+(2а+6)х-3а-9=0 имеет более одного корня?

Решение: Рассмотрим сначала особые точки, ими будут значения а=0 и а=-3 . При а=0 уравнение упростится до вида 6х-9=0; х=3/2 и будет один корень. При а= -3 получим тождество 0=0 .
Вычислим дискриминант

и найдем значения а при котором оно положительно

С первого условия получим а>3 . Для второго находим дискриминант и корни уравнения


Определим промежутки где функция принимает положительные значения. Подстановкой точки а=0 получим 3>0 . Итак, за пределами промежутка (-3;1/3) функция отрицательная. Не стоит забывать о точке а=0 , которую следует исключить, поскольку в ней исходное уравнение имеет один корень.
В результате получим два интервала, которые удовлетворяют условию задачи

Подобных задач на практике будет много, постарайтесь разобраться с заданиями самостоятельно и не забывайте учитывать условия, которые взаимоисключают друг друга. Хорошо изучите формулы для решения квадратных уравнений, они довольна часто нужны при вычислениях в разных задачах и науках.