Доказать что вектора образуют базис. Базис

Пример 8

Даны векторы . Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора в этом базисе.

Решение: Сначала разбираемся с условием. По условию даны четыре вектора, и, как видите, у них уже есть координаты в некотором базисе. Какой это базис – нас не интересует. А интересует следующая вещь: три вектора вполне могут образовывать новый базис. И первый этап полностью совпадает с решением Примера 6, необходимо проверить, действительно ли векторы линейно независимы:

Вычислим определитель, составленный из координат векторов :

, значит, векторы линейно независимы и образуют базис трехмерного пространства.

! Важно : координаты векторов обязательно записываем в столбцы определителя, а не в строки. Иначе будет путаница в дальнейшем алгоритме решения.

Теперь вспомним теоретическую часть: если векторы образуют базис, то любой вектор можно единственным способом разложить по данному базису: , где – координаты вектора в базисе .

Поскольку наши векторы образуют базис трёхмерного пространства (это уже доказано), то вектор можно единственным образом разложить по данному базису:
, где – координаты вектора в базисе .

По условию и требуется найти координаты .

Для удобства объяснения поменяю части местами: . В целях нахождения следует расписать данное равенство покоординатно:

По какому принципу расставлены коэффициенты? Все коэффициенты левой части в точности перенесены из определителя , в правую часть записаны координаты вектора .

Получилась система трёх линейных уравнений с тремя неизвестными. Обычно её решают поформулам Крамера , часто даже в условии задачи есть такое требование.

Главный определитель системы уже найден:
, значит, система имеет единственное решение.

Дальнейшее – дело техники:

Таким образом:
– разложение вектора по базису .

Ответ:

Как я уже отмечал, задача носит алгебраический характер. Векторы, которые были рассмотрены – это не обязательно те векторы, которые можно нарисовать в пространстве, а, в первую очередь, абстрактные векторы курса линейной алгебры. Для случая двумерных векторов можно сформулировать и решить аналогичную задачу, решение будет намного проще. Однако на практике мне такое задание ни разу не встречалось, именно поэтому я его пропустил в предыдущем разделе.

Такая же задача с трёхмерными векторами для самостоятельного решения:

Пример 9

Даны векторы . Показать, что векторы образуют базис и найти координаты вектора в этом базисе. Систему линейных уравнений решить методом Крамера.

Полное решение и примерный образец чистового оформления в конце урока.

Аналогично можно рассмотреть четырёхмерное, пятимерное и т.д. векторные пространства, где у векторов соответственно 4, 5 и более координат. Для данных векторных пространств тоже существует понятие линейной зависимости, линейной независимости векторов, существует базис, в том числе, ортонормированный, разложение вектора по базису. Да, такие пространства невозможно нарисовать геометрически, но в них работают все правила, свойства и теоремы двух и трех мерных случаев – чистая алгебра. Собственно, о философских вопросах меня уже пробивало поговорить в статье Частные производные функции трёх переменных , которая появилась раньше данного урока.

Любите векторы, и векторы полюбят вас!

Решения и ответы:

Пример 2: Решение : составим пропорцию из соответствующих координат векторов:

Ответ: при

Пример 4: Доказательство : Трапецией называется четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны.
1) Проверим параллельность противоположных сторон и .
Найдём векторы:


, значит, данные векторы не коллинеарны, и стороны не параллельны.
2) Проверим параллельность противоположных сторон и .
Найдём векторы:

Вычислим определитель, составленный из координат векторов :
, значит, данные векторы коллинеарны, и .
Вывод: Две стороны четырёхугольника параллельны, а две другие стороны не параллельны, значит, он является трапецией по определению. Что и требовалось доказать .

Пример 5: Решение :
б) Проверим, существует ли коэффициент пропорциональности для соответствующих координат векторов:

Система не имеет решения, значит, векторы не коллинеарны.
Более простое оформление:
– вторая и третья координаты не пропорциональны, значит, векторы не коллинеарны.
Ответ: векторы не коллинеарны.
в) Исследуем на коллинеарность векторы . Составим систему:

Соответствующие координаты векторов пропорциональны, значит
Вот здесь как раз не проходит «пижонский» метод оформления.
Ответ:

Пример 6: Решение : б) Вычислим определитель, составленный из координат векторов (определитель раскрыт по первой строке):

, значит, векторы линейно зависимы и не образуют базиса трёхмерного пространства.
Ответ : данные векторы не образуют базиса

Пример 9:Решение: Вычислим определитель, составленный из координат векторов :


Таким образом, векторы линейно независимы и образуют базис.
Представим вектор в виде линейной комбинации базисных векторов:

Покоординатно:

Систему решим по формулам Крамера:
, значит, система имеет единственное решение.



Ответ: Векторы образуют базис,

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Векторное произведение векторов.
Смешанное произведение векторов

На данном уроке мы рассмотрим ещё две операции с векторами: векторное произведение векторов и смешанное произведение векторов . Ничего страшного, так иногда бывает, что для полного счастья, помимо скалярного произведения векторов , требуется ещё и ещё. Такая вот векторная наркомания. Может сложиться впечатление, что мы залезаем в дебри аналитической геометрии. Это не так. В данном разделе высшей математики вообще мало дров, разве что на Буратино хватит. На самом деле материал очень распространенный и простой – вряд ли сложнее, чем то же скалярное произведение , даже типовых задач поменьше будет. Главное в аналитической геометрии, как многие убедятся или уже убедились, НЕ ОШИБАТЬСЯ В ВЫЧИСЛЕНИЯХ. Повторяйте как заклинание, и будет вам счастье =)

Если векторы сверкают где-то далеко, как молнии на горизонте, не беда, начните с урокаВекторы для чайников , чтобы восстановить или вновь приобрести базовые знания о векторах. Более подготовленные читатели могут знакомиться с информацией выборочно, я постарался собрать максимально полную коллекцию примеров, которые часто встречаются в практических работах

Чем вас сразу порадовать? Когда я был маленьким, то умел жонглировать двумя и даже тремя шариками. Ловко получалось. Сейчас жонглировать не придётся вообще, поскольку мы будем рассматривать только пространственные векторы , а плоские векторы с двумя координатами останутся за бортом. Почему? Такими уж родились данные действия – векторное и смешанное произведение векторов определены и работают в трёхмерном пространстве. Уже проще!

1 (1, 2, 0, 1) , 2 (0, 1, 2, 3) , 3 (1, 3, 2, 2) , 4 (0, 1, 3, 1) , (1, 0, 1, 5).

Решение. Покажем, что векторы 1 (1, 2, 0, 1) , 2 (0, 1, 2, 3) , 3 (1, 3, 2, 2) , 4 (0, 1, 3, 1) образуют базис. Найдём определитель, составленный из координат этих векторов.

Выполняем элементарные преобразования:

Вычтем из строки 3 строку 1 умноженную на(-1)

Вычтем из строки 3 строку 2, Вычтем из строки 4 строку 2

Поменяем местами строки 3 и 4.

При этом определитель изменит знак на противоположный:

Т.к. определитель не равен нулю, следовательно, векторы линейно независимы и образуют базис.

Разложим вектор по векторам данного базиса: , здесь, ? искомые координаты вектора в базисе, . В координатной форме это уравнение (1, 2, 0, 1) + (0, 1, 2, 3) + (1, 3, 2, 2) + (0, 1, 3, 1) = (1, 0, 1, 5) принимает вид:

Решаем систему методом Гаусса:

Запишем систему в виде расширенной матрицы

Для удобства вычислений поменяем строки местами:

Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой. Умножим 3-ую строку на 2. Добавим 4-ую строку к 3-ой:

Умножим 1-ую строку на 3. Умножим 2-ую строку на (-2). Добавим 2-ую строку к 1-ой:

Умножим 2-ую строку на 5. Умножим 3-ую строку на 3. Добавим 3-ую строку к 2-ой:

Умножим 2-ую строку на (-2). Добавим 2-ую строку к 1-ой:

Из 1-ой строки выражаем?4

Из 2-ой строки выражаем? 3

Из 3-ой строки выражаем? 2

Базисом пространства называют такую систему векторов в которой все остальные векторы пространства можно представить в виде линейной комбинации векторов, входящих в базис.
На практике это все реализуется достаточно просто. Базис, как правило, проверяют на плоскости или в пространстве, а для этого нужно найти определитель матрицы второго, третьего порядка составленный из координат векторов. Ниже схематически записаны условия, при которых векторы образуют базис

Чтобы разложить вектор b по базисным векторам
e,e...,e[n] необходимо найти коэффициенты x, ..., x[n] при которых линейная комбинация векторов e,e...,e[n] равна вектору b:
x1*e+ ... + x[n]*e[n] = b.

Для этого векторное уравнение следует преобразовать к системе линейных уравнений и найти решения. Это также достаточно просто реализовать.
Найденные коэффициенты x, ..., x[n] называются координатами вектора b в базисе e,e...,e[n].
Перейдем к практической стороне темы.

Разложение вектора по векторам базиса

Задача 1. Проверьте, образуют ли векторы a1, a2 базис на плоскости

1) a1 (3; 5), a2 (4; 2)
Решение: Составляем определитель из координат векторов и вычисляем его


Определитель не равен нулю , следовательно векторы линейно независимы, а значит образуют базис .

2) a1 (2; -3), a2 (5;-1)
Решение: Вычисляем детерминант составленный из векторов

Определитель равен 13 (не равен нулю) - из этого следует что векторы a1, a2 является базисом на плоскости.

---=================---

Рассмотрим типичные примеры из программы МАУП по дисциплине "Высшая математика".

Задача 2. Показать, что векторы a1, a2, a3 образуют базис трехмерного векторного пространства, и разложить вектор b по этому базису (при решении системы линейных алгебраических уравнений использовать метод Крамера).
1) a1 (3; 1; 5), a2 (3; 2; 8), a3 (0; 1; 2), b (−3; 1; 2) .
Решение: Сначала рассмотрим систему векторов a1, a2, a3 и проверим определитель матрицы А

построенной на векторах отличных от нуля. Матрица содержит один нулевой элемент, поэтому детерминант целесообразнее вычислять как расписание по первому столбцу или третей строчке.

В рекзультаье вычислений получили что определитель отличен от нуля, следовательно векторы a1, a2, a3 линейно независимы .
Согласно определению векторы образуют базис в R3 . Запишем расписание вектора b по базису

Векторы равны, когда их соответствующие координаты равны.
Поэтому из векторного уравнения получим систему линейных уравнений

Решим СЛАУ методом Крамера . Для этого запишем систему уравнений в виде

Главный определитель СЛАУ всегда равен определителю составленному из векторов базиса

Поэтому на практике его не исчисляют дважды. Для нахождения вспомогательных определителей ставим столбец свободных членов на место каждого столбца главного определителя. Определители вычисляем по правилу треугольников



Подставим найденые определители в формулу Крамера



Итак, разложение вектора b по базису имеет вид b=-4a1+3a2-a3 . Координатами вектора b в базисе a1, a2, a3 будут (-4,3, 1).

2) a1 (1; -5; 2), a2 (2; 3; 0), a3 (1; -1; 1), b (3; 5; 1).
Решение: Проверяем векторы на базис - составляем определитель из координат векторов и вычисляем его

Определитель не равен нулю, следовательно векторы образуют базис в пространстве . Осталось найти расписание вектора b через данный базис. Для этого записываем векторное уравнение

и преобразуем к системе линейных уравнений

Записываем матричное уравнение

Далее для формул Крамера находим вспомогательные определители



Применяем формулы Крамера



Итак заданный вектора b имеет расписание через два вектора базиса b=-2a1+5a3, а его координаты в базисе равны b(-2,0, 5).