Для чего предназначен телескоп. Что такое телескоп и зачем он нужен

ОПТИЧЕСКИЙ ТЕЛЕСКОП - применяется для получения изображений и спектров космич. объектов в оптич. диапазоне. Излучение объектов регистрируется при помощи фотогр. или телевиз. камер, электронно-оптических преобразователей, приборов с зарядовой связью . Эффективность О. т. характеризуется предельной звёздной величиной , достижимой на данном телескопе при заданном отношении сигнала к шуму (точности). Для слабых точечных объектов, когда шум определяется фоном ночного неба, она зависит в осн. от отношения D/ , где D - размер апертуры О. т., - угл. диаметр даваемого им изображения (чем больше D/ , тем больше, при прочих равных условиях, предельная звёздная величина). Работающий в оптим. условиях О. т. с зеркалом диам. 3,6 м имеет предельную звёздную величину ок. 26 т при точности 30%. Принципиальных ограничений предельной звёздной величины наземных О. т. не существует.
Астр. О. т. изобретён Г. Галилеем (G. Galilei) в нач. 17 в. (хотя, возможно, у него были предшественники). Его О. т. имел рассеивающий (отрицательный) окуляр. Прибл. в это же время И. Кеплер (J. Kepler) предложил О. т. с положит. окуляром, позволяющим установить в нём крест нитей, что значительно повысило точность визирования. На протяжении 17 в. астрономы пользовались О. т. подобного типа с объективом, состоящим из одной плоско-выпуклой линзы. С помощью этих О. т. изучалась поверхность Солнца (пятна, факелы), картографировалась Луна, открыты спутники Юпитера, кольца и спутники Сатурна. Во 2-й пол. 17 в. И. Ньютон (I. Newton) предложил и изготовил О. т. с объективом в виде металлич. параболич. зеркала (рефлектор). С помощью подобного О. т. У. Гершелем (W. Herschel) открыт Уран. Прогресс стекловарения и теории оптич. систем позволил создать в нач. 19 в. ахроматич. объективы (см. Ахромат ).О. т. с их использованием (рефракторы) обладали сравнительно небольшой длиной и давали хорошее изображение. С помощью таких О. т. были измерены расстояния до ближайших звёзд. Подобные инструменты применяются и в наше время. Создание очень большого (с объективом диам. более 1 м) линзового рефрактора оказалось невозможным из-за деформации объектива под действием собств. веса. Поэтому в кон. 19 в. появились первые усовершенствованные рефлекторы, объектив к-рых представлял собой изготовленное из стекла вогнутое зеркало параболич. формы, покрытое отражающим свет слоем серебра. С помощью подобных О. т. в нач. 20 в. были измерены расстояния до ближайших галактик и открыто космологич. красное смещение .
Основой О. т. является его оптич. система. Гл. зеркало - вогнутое (сферич., параболич. или гиперболическое). Параболич. зеркало строит хорошее изображение только на оптич. оси, гиперболическое - вообще не строит его, поэтому применяются линзовые корректоры, увеличивающие поле зрения (рис., а) . Вариантом оптич. системы является кассегреновская система: пучок сходящихся лучей от гл. параболич. зеркала перехватывается до фокуса выпуклым гиперболич. зеркалом (рис., б) . Иногда этот фокус с помощью зеркал выносят в неподвижное помещение (фокус куде). Рабочее поле зрения, в пределах к-рого оптич. система совр. крупного О. т. строит неискажённые изображения, не превышает 1 - 1,5°. Более широкоугольные О. т. выполняют по схеме Шмидта или Максутова (зеркально-линзовые О. т.). У О. т. Шмидта коррекц. пластина имеет асферич. поверхность и помещается в центре кривизны сферич. зеркала. У систем Максутова аберрации (см. Аберрации оптических систем )гл. сферич. зеркала исправляются мениском со сферич. поверхностями. Диаметр гл. зеркала зеркально-линзовых О. т. не более 1,5 - 2 м, поле зрения до 6°. Материал, из к-рого изготовлены зеркала О. т., имеет малый термич. коэф. расширения (ТКР) для того, чтобы форма зеркал не менялась при изменении темп-ры в течение наблюдений.

Некоторые оптические схемы крупных современных рефлекторов: а - прямой фокус; б - кассегреновский фокус. А - главное зеркало, В - фокальная поверхность, стрелками показан ход лучей.

Элементы оптики О. т. закрепляются в трубе О. т. Для устранения децентровки оптики и предотвращения ухудшения качества изображения при деформациях трубы под действием веса частей О. т. применяются т. н. трубы компенсац. типа, не меняющие при деформациях направление оптич. оси.
Установка (монтировка) О. т. позволяет наводить его на избранный космич. объект и точно и плавно сопровождать этот объект в суточном движении по небу. Повсеместно распространена экваториальная монтировка: одна из осей вращения О. т. (полярная) направлена в полюс мира (см. Координаты астрономические ),а вторая перпендикулярна ей. В этом случае сопровождение объекта осуществляется одним движением - поворотом вокруг полярной оси. При азимутальной монтировке одна из осей вертикальна, другая - горизонтальна. Сопровождение объекта осуществляется тремя движениями одновременно (по программе, задаваемой ЭВМ) - поворотами по азимуту и высоте и вращением фотопластинки (приёмника) вокруг оптич. оси. Азимутальная монтировка позволяет уменьшить массу подвижных частей О. т., т. к. в этом случае труба поворачивается относительно вектора силы тяжести лишь в одном направлении. Подшипники монтировки О. т. обеспечивают малое трение покоя. Обычно применяются гидростатич. подшипники: оси вращения О. т. плавают на тонком слое масла, подаваемого под давлением.
О. т. устанавливают в спец. башнях. Башня должна находиться в тепловом равновесии с окружающей средой и с телескопом. О. т., предназначенные для наблюдений Солнца, устанавливают в высоких башнях - для уменьшения влияния турбулентности вблизи нагретой Солнцем почвы, заметно ухудшающей качество изображения. Подъём О. т., предназначенного для ночных наблюдений, на высоту 10 - 20 м не улучшает качество изображения (как это предполагалось ранее).
Совр. О. т. можно разделить на четыре поколения. К 1-му поколению относятся рефлекторы с главным стеклянным (ТКР7 х 10 -6) зеркалом параболич. формы с отношением толщины к диаметру (относит. толщиной) 1 / 8 . Фокусы - прямой, кассегреновский и куде. Труба - сплошная или решётчатая - выполнена но принципу макс. жёсткости. Подшипники обычно шариковые. Примеры: 1,5- и 2,5-метровые рефлекторы обсерватории Маунт-Вилсон (США, 1905 и 1917).
Для О. т. 2-го поколения также характерно параболич. гл. зеркало. Фокусы - прямой с корректором, кассегреновский и куде. Зеркало изготовлено из пирекса (стекла с ТКР, пониженным до 3 х 10 -6), относит. толщина 1 / 8 . Очень редко зеркало выполнялось облегчённым, т. е. имело пустоты с тыльной стороны. Труба решётчатая, осуществлён принцип компенсации. Подшипники шариковые или гидростатические. Примеры: 5-метровый рефлектор обсерватории Маунт-Паломар (США, 1947) и 2,6-метровый рефлектор Крымской астрофиз. обсерватории (СССР, 1961).
О. т. 3-го поколения начали создаваться в кон. 60-х гг. Для них характерна оптич. схема с гиперболич. гл. зеркалом (т. н. схема Ричи - Кретьена). Фокусы - прямой с корректором, кассегреновский, куде. Материал зеркала - кварц или ситалл (ТКР 5 х 10 -7 или1 х 10 -7), относит. толщина 1 / 8 . Труба компенсац. схемы. Подшипники гидростатические. Пример: 3,6-метровый рефлектор Европейской южной обсерватории (Чили, 1975).
О. т. 4-го поколения - инструменты с зеркалом диам. 7 - 10 м; вход в строй их ожидается в 90-х гг. В них предполагается использование группы новшеств, направленных на значит. уменьшение массы инструмента. Зеркала - из кварца, ситалла и, возможно, из пирекса (облегчённые). Относит. толщина меньше 1 / 10 . Труба компенсационная. Монтировка азимутальная. Подшипники гидростатические. Оптич. схема - Ричи - Кретьена.
Крупнейшим в мире О. т. является 6-метровый телескоп, установленный в Спец. астрофиз. обсерватории (САО) АН СССР на Северном Кавказе. Телескоп имеет прямой фокус, два фокуса Нэсмита и фокус куде. Монтировка азимутальная.
Известная перспектива имеется у О. т., состоящих из неск. зеркал, свет от к-рых собирается в общем фокусе. Один из таких О. т. действует в США. Он состоит из шести 1,8-метровых параболич. зеркал и по собирающей площади эквивалентен 4,5-метровому О. т. Монтировка азимутальная.
Для солнечных О. т. характерны очень большие размеры спектральной аппаратуры, поэтому зеркала и спектрограф обычно делают неподвижными, а свет Солнца подаётся на них системой зеркал, называемой целостатом. Диаметр совр. солнечных О. т. обычно составляет 50 - 100 см. Небольшие узкоспециализиров. солнечные инструменты выполняются в виде рефракторов обычного типа. Предполагается создание солнечного О. т. диам. 2,5 м.
Астрометрич. О. т. (предназначенные для определения положений космич. объектов) обычно имеют небольшие размеры и повыш. механич. стабильность. О. т. для фотогр. астрометрии имеют спец. линзовые объективы и экваториальную монтировку. Пассажный инструмент, меридианный круг, фотогр. зенитная труба и ряд др. астрометрич. О. т. не предназначены для слежения за суточным движением объектов. Их аппаратура регистрирует прохождение объекта через оптич. ось инструмента, положение к-рой относительно меридиана и вертикали известно.
Для исключения влияния атмосферы предполагается установка О. т. на космич. аппараты.

Обычно покупая телескоп, вы получаете в комплекте простые, но необходимые аксессуары, без которых он не может функционировать: окуляры, линза Барлоу, оборачивающая призма или диагональное зеркало и искатель. Обычно такими аксессуарами комплектуются большинство любительских телескопов.

Но все всегда можно обойтись только комплектными аксессуарами, или не все необходимые аксессуары есть в комплекте. Как правило, дорогие модели телескопов комплектуются только одним окуляром и требуют покупки необходимого набора.

Окуляры

Окуляр - это элемент оптической системы, необходимый для смены увеличения. Без окуляра наблюдать через телескоп нельзя. Чтобы рассчитать увеличение телескопа, нужно фокусное расстояние телескопа разделить на фокусное расстояние окуляра. Например, фокусное расстояние телескопа составляет 700 мм, а фокусное расстояние окуляра 10 мм, в этом случае, увеличение составит 70 крат.

Окуляры бывают разных классов и оптических схем. Окуляры могут различаться углом зрения, и могут быть условно разделены на простые, широкоугольные и сверхширокоугольные. Также, очень удобным является zoom-окуляр с переменным фокусным расстоянием и увеличением.

Юстировочные окуляры и лазерные коллиматоры пригодятся владельцам зеркальных телескопов, т.к. такие телескопы практически после каждой транспортировки требуют повторной юстировки. Только в таком случае, зеркальный телескоп будет использовать свой потенциал

При выборе окуляра, обратите внимание на диаметр посадки, он должен совпадать с посадочным диаметром фокусера. Стандартные размеры: 0,96", 1,25", 2".

Линзы Барлоу

Линза Барлоу - это еще один популярный аксессуар для телескопа. Линза Барлоу представляет собой рассеивающую линзу или несколько линз, увеличивающую фокусное расстояние телескопа в несколько раз, и соответственно, позволяет сделать увеличение телескопа в несколько раз больше.

Линза Барлоу использует только совместно с окуляром, отдельно Линза Барлоу использоваться не может.

Светофильтры

Светофильтр, также является важным, а иногда и вовсе необходимым аксессуаром для наблюдений в телескоп. Светофильтры для телескопов можно разделить на несколько типов: солнечные фильтры, цветные планетные фильтры, узкополосные фильтры для наблюдения и съемки туманностей.

Солнечные фильтры применяются для безопасного наблюдения диска Солнца. Ни в коем случае не рекомендуем наблюдать Солнце через телескоп, не оснащенный специальным фильтром. Применяя специальные фильтры, такие как Seymour Solar и Baader AstroSolar наблюдения Солнца становятся абсолютно безопасными, т.к. солнечные фильтры отсекают 99,999% видимого излучения Солнца. Чтобы безопасно наблюдать Солнце, необходимо надевать солнечный фильтр на объектив телескопа. Т. е. внутренний диаметр солнечного фильтра должен быть равен внешнему диаметру трубы телескопа. Наблюдать через окулярный солнечный фильтр небезопасно, т. к. лучи солнца вызывают нагрев и могут привести к растрескиванию фильтра! Наблюдения Солнца может вызвать нагрев и повреждение фильтра надетого на окуляр.


Самый бюджетный вариант солнечного фильтра – это изготовление фильтра по диаметру телескопа с помощью специальной солнечной пленки. Такая пленка также полностью безопасна и дает насыщенную контрастную картинку. В зависимости от производителя пленки, цвет диска Солнца при наблюдении может варьироваться (Seymour Solar – ярко-оранжевое, Bader AstroSolar – белое). Также, различается визуальная и фотографическая пленка. Для безопасных визуальных наблюдений подойдет только визуальная пленка.


Другой вариант – это готовые стеклянные солнечные фильтры , рассчитанные на определенный диаметр трубы телескопа.

Цветные фильтры применяются в основном для визуальных наблюдений планет. Такие фильтры делают изображение планет более контрастным и выделяют детали на их поверхности. К цветным фильтрам можно отнести лунный фильтр нейтрального серого или зеленого цвета, приглушающий яркость Луны, делающий наблюдения более комфортными. Цветные фильтры продаются как отдельно, так и наборами.

Цветные фильтры для наблюдения планет

Цветные фильтры имеют диаметр 1,25” и 2”, резьбу и вкручиваются в баррель окуляра.

Красный фильтр применяется для дневных наблюдений Венеры, наблюдений полярных шапок на поверхности Марса, голубых облаков на Юпитере. Оранжевый фильтр будет очень полезен для наблюдения Луны, для дневных наблюдений Меркурия, детализации деталей поверхности Марса, поясов, фестонов на Юпитере. Желтый фильтр – усиливает контраст поверхности Венеры, усиливает видимость морей и облаков на Марсе, поясов на Юпитере. Зеленый – повышает контраст деталей на Луне, улучшает контраст деталей на Венере, полезен для наблюдений плевых бурь и полярных шапок Марса. Сине-голубой – очень полезен для

Специальные узкополосные фильтры представляют собой фильтры отсекающие определенные области длин волн, оставляя узкую полосу пропускания излучения? делая изображение более контрастным. Такие фильтры применяются как для визуальных наблюдений, так и для астрофотографии объектов дальнего космоса, излучающих в определенном спектре.


В нашем магазине Вы можете купить готовые наборы аксессуаров для телескопов.

Кроме перечисленных аксессуаров, вам также могут понадобиться такие аксессуары как:

  • Переходное Т2-кольцо для съемки через телескоп в прямом фокусе
  • Специальная астрономическая камера
  • Держатель для смартфона для фотосъемки через оукляртфона для фотосъемки через оукляр
  • Чехол для телескопа
  • Лазерный коллиматор для юстировки телескопа
  • Другие аксессуары

Как увидеть Луну в телескоп

Самый доступный вариант изучения космоса для непрофессиональных астрономов – наблюдение Луны в телескоп. Луна – это яркое небесное тело большего размера, и вы получите истинное удовольствие от рассматривания его деталей (например, впадин и гор), которые можно увидеть даже в окуляре любительского телескопа.

Телескопы
Российский рынок может предоставить потребителям разнообразные телескопы, предназначенные для использования и простыми любителями, и профессионалами. Чтобы наблюдать за небесными телами необходимо покупать удобные в эксплуатации телескопы. Они должны быть функциональными и хорошо укомплектованными.

Ключевые характеристики изделий
Функций у современных телескопов довольно много. Одних астрономов больше интересует специальные функции, вторых — простота управления прибором, третьих — удобство в эксплуатации. Поэтому надо обратить внимание на ключевые параметры оборудования, чтобы выбрать оптимальный телескоп.

Для начинающих любителей рекомендуем модель Meade DS2080AT-TC. У неё широкие возможности. Благодаря функции «экскурсовод » (она на пульте управления) у телескопа включается автоматическая наводка, что дает возможность аппарату быстро найти интересные небесные тела. Наблюдя за ними, астроном-любитель будет получать и информацию о них. Аппарат прост в управлении, а тренога дает возможность разместить телескоп так, чтобы было удобно обозревать небесные тела.

Начинающим астрономам можем посоветовать Celestron LCM 80, оснащенный технологией SkyAlign и имеющий компьютерное управление. Благодаря этому, телескоп можно исключительно быстро настроить на работу. На небе выбираются объекты, а потом телескоп будет проводить исследования. Опытные специалисты считают такую систему оптимальной на начальном этапе работы. 4.000 объектов хранится в памяти данного телескопа, а пользователь может добавить еще 40.

Если часто выезжаете на природу, посоветуем приобрести мобильную модель Vixen Greet Polaris ED 81SF. Компактное изделие обладает необычным и стильным дизайном. Конструкция такого аппарата позволяет безопасно и чересчур легко транспортировать изделие. Линзы данного телескопа выполнены из стекла, имеющего предельно низкую дисперсию, поэтому искажение изображения будет минимальным. Полученная картинка будет невероятно яркой, максимально четкой и невероятно контрастной.

Теперь посмотрим, какие же имеются телескопы в общем плане:

» Детские телескопы
Это отличный подарок для любопытных дошкольников. Они необычайно просты в эксплуатации и необычайно красочны. Обычно поставляются в комплекте, куда еще входят энциклопедии, игрушечные модели и прочий ассортимент. Дизайн и функциональность аппарата полностью соответствует целевой аудитории.

» Телескопы-рефракторы
Большинство начинающих астрономов приобретают подобные дешевые модели. В таких телескопах линзы, собранные в объектив, используются для увеличения. Да, вряд ли с их помощью астрономы могут наблюдать далекие небесные тела, но детально изучить Луну и планеты они смогут.

» Телескопы-рефлекторы
Дороже стоят телескопы-рефлекторы, в которых вместо линз применяются зеркала. Это позволяет резко увеличить кратность увеличения. Поэтому можно рассмотреть кометы, звездные скопления, астероиды. Одним словом, все, что невозможно наблюдать при помощи предыдущего телескопа. Имеется еще и катадиоптрический телескоп, в котором применяются линзы и одновременно используются зеркала.

» Гелиоскопы
Для наблюдения за солнцем используется гелиоскоп. В качестве фильтров применялись цветные и закопченные стекла. Потом стали использовать более изощренные фильтры. Однако сегодня такие приборы неактуальны, потому что уже выпускаются более совершенные изделия.

» Коронографы
Этот аппарат также наблюдает за солнцем, но только за её короной. Правда, во время затмений для таких целей подойдет и обычный телескоп, но в остальное время необходимо специальное оборудование.

» Радиотелескопы и прочие изделия
Для работающих в пустынных местах, предназначены радиотелескопы. Они состоят из антенны и радиометра, усиливающего сигналы. Имеются еще гравитационные и космические телескопы. Это уже для профессионалов.

Заключение
Вот такая небольшая статья про телескопы. Как видите, разновидностей фантастически много. А это только малая часть. Возможна, наша статья поможет вам приобрести прибор, который будет удобен в эксплуатации и полностью укомплектован.

И напоследок видео: «Космический телескоп Джеймса Вебба — это орбитальная инфракрасная обсерватория, телескоп нового поколения, преемник знаменитого Хаббла. Один из самых дорогостоящих научных проектов современности. Если он будет запущен в космос, а это произойдёт не ранее 2018 года, то он станет самым современным, самым большим и самым мощным космическим телескопом, который человечество, когда либо, посылало в космос. »

> Виды телескопов

Все оптические телескопы группируются по виду светособирающего элемента на зеркальные, линзовые и комбинированные. Каждый тип телескопов имеет свои достоинства и недостатки, поэтому, выбирая оптику, нужно принимать во внимание следующие факторы: условия и цели наблюдения, требования к весу и мобильности, цене, уровню аберрации. Охарактеризуем наиболее популярные виды телескопов.

Рефракторы (линзовые телескопы)

Рефракторы – это первые телескопы, изобретенные человеком. В таком телескопе за сбор света отвечает двояковыпуклая линза, которая выступает в роли объектива. Ее действие строится на основном свойстве выпуклых линз – преломлении световых лучей и их сборе в фокусе. Отсюда и название - рефракторы (от латинского refract - преломлять).

Был создан в 1609 году. В нем были использованы две линзы, с помощью которых собиралось максимальное количество звездного света. Первая линза, которая выступала в роли объектива, была выпуклой и служила для сбора и фокусировки света на определенном расстоянии. Вторая линза, играющая роль окуляра, была вогнутой и использовалась для превращения сходящего светового пучка в параллельный. С помощью системы Галилея можно получить прямое, неперевернутое изображение, качество которого сильно страдает от хроматической аберрации. Эффект хроматической аберрации можно увидеть в виде ложного прокрашивания деталей и границ объекта.

Рефрактор Кеплера – более совершенная система, которая была создана в 1611 году. Здесь в роли окуляра использовалась выпуклая линза, в которой передний фокус был совмещен с задним фокусом линзы-объектива. От этого итоговое изображение было перевернутым, что не принципиально для астрономических исследований. Главное преимущество новой системы – возможность установки измерительной сетки внутри трубы в точке фокуса.

Для данной схемы также была характерна хроматическая аберрация, впрочем эффект от нее можно было нивелировать, увеличив фокусное расстояние. Именно поэтому телескопы того времени имели огромное фокусное расстояние с трубой соответствующего размера, что вызывало серьезные трудности при проведении астрономических исследований.

В начале XVIII века появился , который популярен и в сегодняшние дни. Объектив данного прибора сделан из двух линз, изготовленных их различных сортов стекла. Одна линза – собирающая, вторая – рассеивающая. Такая структура позволяет серьезно уменьшить хроматическую и сферическую аберрации. А корпус телескопа остается весьма компактным. Сегодня созданы рефракторы апохроматы, в которых влияние хроматической аберрации сведено к возможному минимуму.

Достоинства рефракторов:

  • Простая конструкция, легкость в эксплуатации, надежность;
  • Быстрая термостабилизация;
  • Нетребовательность к профессиональному обслуживанию;
  • Идеален для исследования планет, Луны, двойных звезд;
  • Превосходная цветопередача в апохроматическом исполнении, хорошая – в ахроматическом;
  • Система без центрального экранирования от диагонального или вторичного зеркала. Отсюда высокая контрастность изображения;
  • Отсутствие воздушных потоков в трубе, защита оптики от грязи и пыли;
  • Цельная конструкция объектива, не требующая регулировок со стороны астронома.

Недостатки рефракторов:

  • Высокая цена;
  • Большой вес и габариты;
  • Небольшой практический диаметр апертуры;
  • Ограниченность в исследовании тусклых и небольших объектов в далеком космосе.

Название зеркальных телескопов – рефлекторов происходит от латинского слова reflectio – отражать. Данный прибор представляет собой телескоп с объективом, в роли которого выступает вогнутое зеркало. Его задача – собирать звездный свет в единой точке. Поместив в данной точке окуляр, можно увидеть изображение.

Один из первых рефлекторов (телескоп Грегори ) был придуман в 1663 году. Данный телескоп с параболическим зеркалом был полностью избавлен от хроматических и сферических аберраций. Свет, собранный зеркалом, отражался от небольшого овального зеркала, который был закреплен перед главным, в котором было небольшое отверстие для вывода светового пучка.

Ньютон был полностью разочарован в телескопах-рефракторах, поэтому одной из главных его разработок стал телескоп-рефлектор, созданный на основе металлического главного зеркала. Он одинаково отражал свет с различными длинами волн, а сферическая форма зеркала делала прибор более доступным даже для самостоятельного изготовления.

В 1672 году ученый-астроном Лорен Кассегрен предложил схему телескопа, который внешне напоминал знаменитый рефлектор Грегори. Но усовершенствованная модель имела несколько серьезных отличий, главное из которых – выпуклое гиперболическое вторичное зеркало, которое позволило сделать телескоп более компактным и свело к минимуму центральное экранирование. Впрочем, традиционный рефлектор Кассегрена оказался нетехнологичным для массового изготовления. Зеркала со сложными поверхностями и неисправленная аберрация комы – основные причины такой непопулярности. Однако модификации данного телескопа используются сегодня по всему миру. К примеру, телескоп Ричи-Кретьена и масса оптических приборов на основе системы Шмидта-Кассегрена и Максутова-Кассегрена .

Сегодня под названием «рефлектор» принято понимать ньютоновский телескоп. Основные его характеристики – это небольшая сферическая аберрация, отсутствие какого-либо хроматизма, а также неизопланатизм – проявление комы вблизи от оси, что связано с неравностью отдельных кольцевых зон апертуры. Из-за этого звезда в телескопе выглядит не как круг, а как некая проекция конуса. При этом, тупая округлая его часть повернута от центра в сторону, а острая – напротив, к центру. Для коррекции эффекта комы используются линзовые корректоры, которые следует фиксировать перед фотокамерой или окуляром.

«Ньютоны» зачастую выполняются на монтировке Добсона, которая отличается практичностью и компактными размерами. Это делает телескоп весьма портативным устройством, несмотря на размеры апертуры.

Достоинства рефлекторов:

    Доступная цена;

  • Мобильность и компактность;
  • Высокая эффективность при наблюдении тусклых объектов в глубоком космосе: туманностей, галактик, звездных скоплений;
  • Максимально яркие и четкие изображения с минимальным искажением.

    Хроматическая аберрация сведена к нулю.

Недостатки рефлекторов:

  • Растяжка вторичного зеркала, центральное экранирование. Отсюда – низкая контрастность изображения;
  • Термостабилизация большого стеклянного зеркала занимает много времени;
  • Открытая труба без защиты от тепла и пыли. Отсюда – низкое качество изображения;
  • Требуется регулярная коллимация и юстировка, которые могут утрачиваться во время использования или перевозки.

Для исправления аберрации и построения изображения катадиоптрические телескопы применяют как зеркала, так и линзы. Набольшим спросом сегодня пользуются два типа таких телескопов: на схеме Шмидт-Кассегрена и Максутов-Кассегрена.

Конструкция приборов Шмидта-Кассегрена (ШК) состоит из сферических главного и вторичного зеркал. При этом сферическая аберрация корректируется полноапертурной пластиной Шмидта, которая установлена на входе в трубу. Однако здесь сохраняются некоторые остаточные аберрации в виде комы и кривизны поля. Их исправление возможно при использовании линзовых корректоров, которые особенно актуальны в астрофотографии.

Основные достоинства приборов такого типа касаются минимального веса и короткой трубы при сохранении внушительного диаметра апертуры и фокусного расстояния. Вместе с тем, для данных моделей не характерны растяжки крепления вторичного зеркала, а особая конструкция трубы исключает проникновение внутрь воздуха и пыли.

Разработка системы Максутова-Кассегрена (МК) принадлежит советскому инженеру-оптику Д. Максутову. Конструкция такого телескопа оснащена сферическими зеркалами, а за коррекцию аберраций отвечает полноапертурный линзовый корректор, в роли которой выступает выпукло-вогнутая линза – мениск. Именно поэтому такое оптическое оборудование часто называют менисковым рефлектором.

К достоинствам МК относится возможность корректировки практически любой аберрации с помощью подбора основных параметров. Единственное исключение – это сферическая аберрация высшего порядка. Всё это делает схему популярной среди производителей и любителей астрономии.

Действительно, при прочих равных условиях система МК дает более качественные и четкие изображения, чем схема ШК. Однако у более габаритных телескопах МК продолжительнее период термостабилизации, поскольку толстый мениск теряет температуру гораздо медленнее. Кроме того, МК более чувствительны к жесткости крепления корректора, поэтому конструкция телескопа обладает большим весом. С этим связана высокая популярность систем МК с малыми и средними апертурами и систем ШК со средними и большими апертурами.

Как рассчитать кратность (увеличение) телескопа?

В этом разделе мы постарались собрать воедино ту обрывочную информацию, которую можно найти в Интернете. Информации много, но она не систематизирована и разрознена. Мы же, руководствуюясь многолетним опытом, систематизировали наши знания для того, чтобы упростить выбор начинающим любителям астрономии.

Основные характеристики телескопов:

Обычно в наименовании телескопа указано его фокусное расстояние, диаметр объектива и тип монтировки.
Например Sky-Watcher BK 707AZ2 , где диаметр объектива - 70 мм, фокусное расстояние - 700 мм, монтировка - азимутальная, второго поколения.
Впрочем фокусное расстояние часто не указывается в маркировке телескопа.
Например Celestron AstroMaster 130 EQ .

Телескоп — это более универсальный оптический прибор чем зрительная труба. Ему доступен больший диапазон кратностей. Максимально доступная кратность определяется фокусным расстоянием (чем больше фокусное расстояние, тем больше кратность).

Чтобы демонстрировать четкое и детализированное изображение на большой кратности, телескоп должен обладать объективом большого диаметра (апертуры). Чем больше, тем лучше. Большой объектив увеличивает светосилу телесокопа и позволяет рассматривать удаленные объекты слабой светимости. Но с увеличением диаметра объектива, увеличиваются и габариты телескопа, поэтому важно понимать в каких условия и для наблюдения каких объектов Вы хотите его использовать.

Как рассчитать кратность (увеличение) телескопа?

Смена кратности в телескопе достигается использованием окуляров с разным фокусным расстоянием. Чтобы рассчитать кратность, нужно фокусное расстояние телескопа разделить на фокусное расстояние окуляра (например телескоп Sky-Watcher BK 707AZ2 c 10 мм окуляром даст кратность 70x).

Кратность нельзя увеличивать бесконечно. Как только кратность превышает разрешающую способность телескопа (диаметр объектива x1.4), изображение становится темным и размытым. Например телескоп Celestron Powerseeker 60 AZ с фокусным расстоянием 700 мм, не имеет смысла использовать с 4 мм окуляром, т.к. в этом случае он даст кратность 175x, что существенно превышает 1.4 диаметра телескопа - 84).

Распространенные ошибки при выборе телескопа

  • Чем больше кратность — тем лучше
    Это далеко не так и зависит от того, как и в каких условиях будет использоваться телескоп, а также от его апертуры (диаметра объектива).
    Если Вы начинающий астролюбитель, не стоит гнаться за большой кратностью. Наблюдение удаленных объектов требует высокой степени подготовки, знаний и навыков в астрономии. Луну и планеты солнечной системы можно наблюдать на кратности от 20 до 100x.
  • Покупка рефлектора или большого рефрактора для наблюдений с балкона или из окна городской квартиры
    Рефлекторы (зеркальные телескопы) очень чувствительны к атмосферным колебаниям и к посторонним источникам света, поэтому в условиях города использовать их крайне непрактично. Рефракторы (линзовые телескопы) большой апертуры всегда имеют очень длинную трубу (напр. при апертуре 90 мм, длина трубы будет превышать 1 метр), поэтому использование их в городских квартирах не представляется возможным.
  • Покупка телескопа на экваториальной монтировке в качестве первого
    Экваториальная монтировка довольно сложна в освоении и требует некоторой подготовки и квалификации. Если вы начинающий астролюбитель, мы бы рекомендовали приобрести телескоп на азимутальной монтировке или на монтировке Добсона.
  • Покупка дешевых окуляров для серьезных телескопов и наоборот
    Качество получаемого изображения определяется качеством всех оптических элементов. Установка дешевого окуляра из бюджетного оптического стекла отрицательно скажется на качестве изображения. И наоборот, установка профессионального окуляра на недорогой прибор, не приведет к желаемому результату.

Часто задаваемые вопросы

  • Я хочу телескоп. Какой мне купить?
    Телескоп - не та вещь, которую можно купить без всякой цели. Очень многое зависит от того, что с ним планируется делать. Возможности телескопов: показывать как наземные объекты, так и Луну, а также галактики, удаленные на сотни световых лет (только свет от них добирается до Земли за годы). От этого зависит и оптическая схема телескопа. Поэтому нужно сначала определиться с приемлемой ценой и объектом наблюдений.
  • Я хочу купить телескоп для ребенка. Какой купить?
    Специально для детей многие производители ввели в свой ассортимент детские телескопы. Это не игрушка, а полноценный телескоп, обычно длиннофокусный рефрактор-ахромат на азимутальной монтировке: его легко установить и настроить, он неплохо покажет Луну и планеты. Такие телескопы не слишком мощны, но они недороги, а купить более серьезный телескоп для ребенка - всегда успеется. Если, конечно, ребенок заинтересовался астрономией.
  • Я хочу смотреть на Луну.
    Понадобится телескоп «для ближнего космоса». По оптической схеме лучше всего подойдут длиннофокусные рефракторы, а также длиннофокусные рефлекторы и зеркально-линзовые телескопы. Выбирайте телескоп этих видов на свой вкус, ориентируясь на цену и другие нужные вам параметры. Кстати, в такие телескопы можно будет разглядывать не только Луну, но и планеты Солнечной системы.
  • Хочу смотреть на далекий космос: туманности, звезды.
    Для этих целей подойдут любые рефракторы, короткофокусные рефлекторы и зеркально-линзовые телескопы. Выбирайте на свой вкус. А еще некоторые виды телескопов одинаково неплохо подходят и для ближнего космоса, и для дальнего: это длиннофокусные рефракторы и зеркально-линзовые телескопы.
  • Хочу телескоп, который бы умел все.
    Мы рекомендуем зеркально-линзовые телескопы. Они хороши и для наземных наблюдений, и для Солнечной системы, и для глубокого космоса. У многих таких телескопов более простая монтировка, есть компьютерная наводка, и это отличный вариант для начинающих. Но у таких телескопов цена выше, чем у линзовых или зеркальных моделей. Если цена имеет определяющее значение, можно присмотреться к длиннофокусному рефрактору. Для начинающих лучше выбирать азимутальную монтировку: она проще в использовании.
  • Что такое рефрактор и рефлектор? Какой лучше?
    Зрительно приблизиться к звездам помогут телескопы различных оптических схем, которые по результату схожи, но различны механизмы устройства и, соответственно, различны особенности применения.
    Рефрактор - телескоп, в котором используются линзы из оптического стекла. Рефракторы дешевле, у них закрытая труба (в нее не попадет ни пыль, ни влага). Зато труба такого телескопа длиннее: таковы особенности строения.
    В рефлекторе используется зеркало. Такие телескопы стоят дороже, но у них меньше габариты (короче труба). Однако зеркало телескопа со временем может потускнеть и телескоп «ослепнет».
    У любого телескопа есть свои плюсы и минусы, но под любую задачу и бюджет можно найти идеально подходящую модель телескопа. Хотя, если говорить о выборе в целом, более универсальны зеркально-линзовые телескопы.
  • Что важно при покупке телескопа?
    Фокусное расстояние и диаметр объектива (апертура).
    Чем больше труба телескопа, тем больше будет диаметр объектива. Чем больше диаметр объектива, тем больше света соберет телескоп. Чем больше света соберет телескоп, тем лучше будет видно тусклые объекты и больше деталей можно будет разглядеть. Измеряется этот параметр в миллиметрах или дюймах.
    Фокусное расстояние - параметр, который влияет на увеличение телескопа. Если оно короткое (до 7), большое увеличение получить будет тяжелее. Длинное фокусное расстояние начинается с 8 единиц, такой телескоп больше увеличит, но угол обзора будет меньше.
    Значит, для наблюдения Луны и планет нужна большая кратность. Апертура (как важный параметр для количества света) важна, но эти объекты и так достаточно яркие. А вот для галактик и туманностей как раз важнее именно количество света и апертура.
  • Что такое кратность телескопа?
    Телескопы зрительно увеличивают объект настолько, что можно рассмотреть на нем детали. Кратность покажет, насколько можно зрительно увеличить нечто, на что направлен взгляд наблюдателя.
    Кратность телескопа во многом ограничена его апертурой, то есть границами объектива. К тому же чем выше кратность телескопа, тем более темным будет изображение, поэтому и апертура должна быть большой.
    Формула для расчета кратности: F (фокусное расстояние объектива) разделить на f (фокусное расстояние окуляра). К одному телескопу обычно прилагаются несколько окуляров, и кратность увеличения, таким образом, можно менять.
  • Что я смогу увидеть в телескоп?
    Это зависит от таких характеристик телескопа, как апертура и увеличение.
    Итак:
    апертура 60-80 мм, увеличение 30-125х - лунные кратеры от 7 км в диаметре, звездные скопления, яркие туманности;
    апертура 80-90 мм, увеличение до 200х - фазы Меркурия, лунные борозды 5,5 км в диаметре, кольца и спутники Сатурна;
    апертура 100-125 мм, увеличение до 300х - лунные кратеры от 3 км в диаметре, облачности Марса, звездные галактики и ближайшие планеты;
    апертура 200 мм, увеличение до 400х - лунные кратеры от 1,8 км в диаметре, пылевые бури на Марсе;
    апертура 250 мм, увеличение до 600х - спутники Марса, детали лунной поверхности размером от 1,5 км, созвездия и галактики.
  • Что такое линза Барлоу?
    Дополнительный оптический элемент для телескопа. Фактически он в несколько раз наращивает кратность телескопа, увеличивая фокусное расстояние объектива.
    Линза Барлоу действительно работает, но ее возможности не безграничны: у объектива есть физический предел полезной кратности. После его преодоления изображение станет действительно больше, но детали видны не будут, в телескопе будет видно только большое мутное пятно.
  • Что такое монтировка? Какая монтировка лучше?
    Монтировка телескопа - основание, на котором закрепляется труба. Монтировка поддерживает телескоп, а ее специально спроектированное крепление позволяет не жестко закрепить телескоп, но и двигать его по различным траекториям. Это пригодится, например, если нужно будет следить за движением небесного тела.
    Монтировка так же важна для наблюдений, как и основная часть телескопа. Хорошая монтировка должна быть устойчивой, уравновешивать трубу и фиксировать ее в нужном положении.
    Есть несколько разновидностей монтировок: азимутальная (полегче и попроще в настройке, но тяжело удержать звезду в поле зрения), экваториальная (сложнее в настройке, тяжелее), Добсона (разновидность азимутальной для напольной установки), GoTo (самонаводящаяся монтировка телескопа, потребуется только ввести цель).
    Мы не рекомендуем начинающим экваториальную монтировку: она сложна в настройке и использовании. Азимутальная для начинающих - самое то.
  • Есть зеркально-линзовые телескопы Максутов-Кассегрена и Шмидт-Кассегрена. Какой лучше?
    С точки зрения применения они примерно одинаковы: покажут и ближний космос, и дальний, и наземные объекты. Между ними разница не столь значительна.
    Телескопы Максутов-Кассегрена за счет конструкции не имеют побочных бликов и их фокусное расстояние больше. Такие модели считаются более предпочтительными для изучения планет (хотя это утверждение практически оспаривается). Зато им понадобится чуть больше времени для термостабилизации (начала работы в жарких или холодных условиях, когда нужно уравнять температуру телескопа и окружающей среды), да и весят они чуть больше.
    Телескопы Шмидт-Кассегрена меньше времени потребуют для термостабилизации, будут весить чуть меньше. Но у них есть побочные блики, фокусное расстояние меньше, и меньше контрастность.
  • Зачем нужны фильтры?
    Фильтры понадобятся тем, кто хочет более внимательно взглянуть на объект изучения и лучше его рассмотреть. Как правило, это люди, которые уже определились с целью: ближним космосом или дальним.
    Выделяют планетные фильтры и фильтры для глубокого космоса, которые оптимально подходят для изучения цели. Планетные фильтры (для планет Солнечной системы) оптимально подобраны для того, чтобы рассмотреть в деталях определенную планету, без искажений и с наилучшей контрастностью. Дипскайные фильтры (для дальнего космоса) позволят сосредоточиться на отдаленном объекте. Есть также фильтры для Луны, чтобы во всех деталях и с максимальным удобством рассмотреть земной спутник. Для Солнца фильтры тоже есть, но мы бы не рекомендовали без должной теоретической и вещественной подготовки наблюдать Солнце в телескоп: для неопытного астронома велик риск потери зрения.
  • Какая фирма-производитель лучше?
    Из того, что представлено в нашем магазине, рекомендуем обратить внимание на Celestron, Levenhuk, Sky-Watcher. Есть простые модели для начинающих, отдельные дополнительные аксессуары.
  • Что можно докупить к телескопу?
    Варианты есть, и они зависят от пожеланий владельца.
    Светофильтры для планет или глубокого космоса - для лучшего результата и качества изображения.
    Переходники для астрофотографии - для документирования того, что удалось увидеть в телескоп.
    Рюкзак или сумка для переноски - для транспортировки телескопа к месту наблюдений, если оно отдалено. Рюкзак позволит защитить хрупкие детали от повреждений и не потерять мелкие элементы.
    Окуляры - оптические схемы современных окуляров различаются, соответственно, сами окуляры различны по цене, углу обзора, весу, качеству, а главное - фокусному расстоянию (а от него зависит итоговое увеличение телескопа).
    Конечно, перед такими покупками стоит уточнить, подходит ли дополнение к телескопу.
  • Где нужно смотреть в телескоп?
    В идеале для работы с телескопом нужно место с минимумом освещения (городской засветки фонарями, световой рекламой, светом жилых домов). Если нет известного безопасного места за городом, можно найти место в черте города, но в достаточно малоосвещенном месте. Для любых наблюдений понадобится ясная погода. Глубокий космос рекомендуется наблюдать в новолуние (плюс-минус несколько дней). Слабому телескопу понадобится полнолуние - все равно дальше Луны что-то увидеть будет сложно.

Основные критерии при выборе телескопа

Оптическая схема . Телескопы бывают зеркальные (рефлекторы), линзовые (рефракторы) и зеркально-линзовые.
Диаметр объектива (апертура) . Чем больше диаметр, тем больше светосила телескопа и его разрешающая способность. Тем более далекие и тусклые объекты в него можно увидеть. С другой стороны, диаметр очень сильно влияет на габариты и вес телескопа (особенно линзового). Важно помнить, что максимальное полезное увеличение телескопа физически не может превышать 1.4 его диаметров. Т.е. при диаметре 70 мм максимальное полезное увеличении такого телескопа будет ~98x.
Фокусное расстояние — то, как далеко телескоп может сфокусироваться. Большое фокусное расстояние (длиннофокусные телескопы) означает большую кратность, но меньшее поле зрения и светосилу. Подходит для подробного рассматривания малых удаленных объектов. Малое фокусное расстояние (короткофокусные телескопы) означают малую кратность, но большое поле зрения. Подходит для наблюдения протяженных объектов, например, галактик и для астрофотографии.
Монтировка — это способ крепления телескопа к штативу.
  • Азимутальная (AZ) — свободно вращается в двух плоскостях по типу фото-штатива.
  • Экваториальная (EQ) — более сложная монтировка, настраиваемая на полюс мира и позволяющая находить небесные объекты, зная их часовой угол.
  • Монтировка Добсона (Dob) — разновидность азимутальной монтировки, но более приспособленная для астронаблюдений и позволяющая устанавливать на нее более габаритные телескопы.
  • Автоматизированная — компьютеризированная монтировка для автоматического наведения на небесные объекты, использует GPS.

Плюсы и минусы оптических схем

Длиннофокусные рефракторы-ахроматы (линзовая оптическая система)

Короткофокусные рефракторы-ахроматы (линзовая оптическая система)

Длиннофокусные рефлекторы (зеркальная оптическая система)

Короткофокусные рефлекторы (зеркальная оптическая система)

Зеркально-линзовая оптическая система (катадиоптрик)

Шмидт-Кассегрен (разновидность зеркально-линзовой оптической схемы)

Максутов-Кассегрен (разновидность зеркально-линзовой оптической схемы)

Что можно увидеть в телескоп?

Апертура 60-80 мм
Лунные кратеры от 7 км в диаметре, звездные скопления, яркие туманности.

Апертура 80-90 мм
Фазы Меркурия, лунные борозды 5,5 км в диаметре, кольца и спутники Сатурна.

Апертура 100-125 мм
Лунные кратеры от 3 км изучать облачности Марса, сотни звёздных галактик, ближайших планет.

Апертура 200 мм
Лунные кратеры 1,8 км, пылевые бури на Марсе.

Апертура 250 мм
Спутники Марса, детали лунной поверхности 1,5 км, тысячи созвездий и галактик с возможностью изучения их структуры.