Краткое описание стадий и схемы деления клеток посредством мейоза. Редукционное деление Процесс деления клеток

Узнать о виде деления клетки поможет данная статья. Мы расскажем кратко и понятно о мейозе, о фазах, которые сопровождают этот процесс, обозначим основные их особенности, узнаем, какие признаки характеризуют мейоз.

Что такое мейоз?

Редукционное деление клетки, другими словами - мейоз – это вид деления ядра, при котором число хромосом уменьшается в два раза.

В переводе с древнегреческого языка, мейоз обозначает уменьшение.

Данный процесс происходит в два этапа:

  • Редукционный ;

На этом этапе в процессе мейоза число хромосом в клетке уменьшается вдвое.

  • Эквационный ;

В ходе второго деления гаплоидность клеток сохраняется.

ТОП-4 статьи которые читают вместе с этой

Особенностью данного процесса является то, что протекает он только лишь в диплоидных, а также в чётных полиплоидных клетках. А всё потому, что в результате первого деления в профазе 1 в нечётных полиплоидах нет возможности обеспечить попарное слияние хромосом.

Фазы мейоза

В биологии деление происходит на протяжении четырёх фаз: профазы, метафазы, анафазы и телофазы . Мейоз не является исключением, особенностью данного процесса является то, что происходит он в два этапа, между которыми имеется короткая интерфаза .

Первое деление:

Профаза 1 является достаточно сложным этапом всего процесса в целом, состоит она из пяти стадий, которые внесены в следующую таблицу:

Стадия

Признак

Лептотена

Хромосомы укорачиваются, конденсируется ДНК и образуются тонкие нити.

Зиготена

Гомологичные хромосомы соединяются в пары.

Пахитена

По длительности самая длинная фаза, в ходе которой гомологические хромосомы плотно присоединяются друг к другу. В результате происходит обмен некоторых участков между ними.

Диплотена

Хромосомы частично деконденсируются, часть генома начинает выполнять свои функции. Образуется РНК, синтезируется белок, при этом хромосомы ещё соединены между собой.

Диакинез

Снова происходит конденсация ДНК, процессы образования прекращаются, ядерная оболочка исчезает, центриоли располагаются в противоположных полюсах, но хромосомы соединены между собой.

Заканчивается профаза образованием веретена деления, разрушением ядерных мембран и самого ядрышка.

Метофаза первого деления знаменательна тем, что хромосомы выстраиваются вдоль экваториальной части веретена деления.

Во время анафазы 1 сокращаются микротрубочки, биваленты разделяются и хромосомы расходятся к разным полюсам.

В отличие от митоза, на этапе анафазы к полюсам отходят целые хромосомы, которые состоят из двух хроматид.

На этапе телофазы деспирализуются хромосомы и образуется новая ядерная оболочка.

Рис. 1. Схема мейоза первого этапа деления

Второе деление имеет такие признаки:

  • Для профазы 2 характерна конденсация хромосом и разделение клеточного центра, продукты деления которого расходятся к противоположным полюсам ядра. Ядерная оболочка разрушается, образуется новое веретено деления, которое располагается перпендикулярно по отношению к первому веретену.
  • В ходе метафазы хромосомы вновь располагаются на экваторе веретена.
  • Во время анафазы хромосомы делятся и хроматиды располагаются по разным полюсам.
  • Телофаза обозначена деспирализацией хромосом и появлением новой ядерной оболочки.

Рис. 2. Схема мейоза второго этапа деления

В результате из одной диплоидной клетки путём такого деления получаем четыре гаплоидных клетки. Исходя из этого, делаем выводы, что мейоз - это форма митоза, в результате которого из диплоидных клеток половых желёз образуются гаметы.

Значение мейоза

В ходе мейоза на этапе профазы 1 происходит процесс кроссинговера - перекомбинация генетического материала. Помимо этого во время анафазы, как первого, так и второго деления, хромосомы и хроматиды расходятся к разным полюсам в случайном порядке. Это объясняет комбинативную изменчивость исходных клеток.

В природе мейоз имеет огромное значение, а именно:

  • Это один из основных этапов гаметогенеза;

Рис. 3. Схема гаметогенеза

  • Осуществляет передачу генетического кода при размножении;
  • Получаемые дочерние клетки не похожи на материнскую клетку, а также различаются между собой.

Мейоз очень важен для образования половых клеток, так как в результате оплодотворения гамет ядра сливаются. В противном случае в зиготе число хромосом было бы вдвое больше. Благодаря такому делению половые клетки гаплоидны, а при оплодотворении восстанавливается диплоидность хромосом.

Что мы узнали?

Мейоз - это вид деления эукариотической клетки, при котором из одной диплоидной клетки образуется четыре гаплоидных, путём уменьшения числа хромосом. Весь процесс проходит в два этапа - редукционного и эквационного, каждый из которых состоит из четырёх фаз - профазы, метафазы, анафазы и телофазы. Мейоз очень важен для образования гаметы, для передачи генетической информации будущим поколениям, а также осуществляет перекомбинацию генетического материала.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 757.

Главная > Лекция

Лекция 15. Мейоз, гаметогенез

Мейоз особый способ деления эукариотических клеток, в результате которого образуются клетки со уменьшенным в два раза набором хромосом, образованные клетки имеют различный набор аллелей генов – генетически неодинаковы, эти клетки превращаются в гаметы (у животных) или споры (у растений и грибов). Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.Первое мейотическое деление (мейоз 1) называется редукционным , поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2 n 4 c ) образуются две гаплоидные (1 n 2 c ). Интерфаза 1 (в начале – 2 n 2 c , вконце – 2 n 4 c ) происходит обычно и сопровождается ростом, синтезом и накоплением веществ и энергии, необходимых для осуществления обоих делений, увеличением числа органоидов, удвоением центриолей, репликацией ДНК, которая завершается в профазе 1.Профаза 1 (2 n 4 c ). Самая продолжительная и сложная фаза мейоза. Состоит из ряда последовательных стадий.Лептотена, стадия тонких нитей. Хромосомы слабо конденсированы. Они уже двухроматидные (каждая хромосома состоит из двух сестринских хроматид), но хроматиды настолько сближены, что хромосомы имеют вид длинных одиночных тонких нитей. Теломеры хромосом еще прикреплены к ядерной мембране с помощью особых структур – прикрепительных дисков .Зиготена , стадия сливающихся нитей. Гомологичные хромосомы начинают притягиваться друг к другу сходными участками и конъюгируют. Конъюгацией называют процесс тесного сближения гомологичных хромосом. (Процесс конъюгации также называют синапсисом .). Начинается распад ядерной оболочки на фрагменты, происходит расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, продолжается конденсация двухроматидных хромосом. Происходит процесс, отсутствующий при митозе – конъюгация , процесс тесного сближения и гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом (это пара хромосом), или тетрадой (в биваленте четыре хроматиды). Полагают, что каждый ген приходит в соприкосновение с гомологичным ему геном другой хромосомы, количество бивалентов равно гаплоидному набору хромосом.П

Рис. . Кроссинговер

Ахитена, стадия толстых нитей. Процесс спирализации хромосом продолжается, причем в гомологичных хромосомах он происходит синхронно. Становится хорошо заметно, что хромосомы двухроматидные. В пахитене наблюдается особенно тесный контакт между хроматидами. Важнейшим событием пахитены является кроссинговер – обмен участками между несестринскими хроматидами гомологичных хромосом. Кроссинговер приводит к первой во время мейоза рекомбинации генов.Диплотена . Хромосомы в бивалентах перекручиваются и начинают отталкиваться друг от друга. Процесс отталкивания начинается в области центромеры и распространяется по всей длине бивалентов. Однако они все еще остаются связанными друг с другом в некоторых точках. Их называют хиазмы. Эти точки появляются в местах кроссинговера. В ходе гаметогенеза у человека может образовываться до 50 хиазм.Диакинез . Хромосомы максимально укорачиваются и утолщаются за счет спирализации хроматид, ядерная оболочка почти полностью разрушена. Происходит сползание хиазм к концам хроматид.Метафаза 1 (2 n 4 c ) происходит выстраивание бивалентов в экваториальной плоскости клетки, прикрепление микротрубочек веретена деления одним концом – к центриолям, другим – к центромерам хромосом, а не к центромерам хроматид, как это было при митозе.Анафаза 1 (2 n 4 c ) – случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая – к другому). Происходит вторая рекомбинация генетического материала – у каждого полюса оказывается гаплоидный набор двухроматидных хромосом, часть из них – отцовские, часть – материнские. Многие хроматиды в хромосомах после кроссинговера стали мозаичными , одновременно несут некоторые гены отца и матери.Телофаза 1 (1 n 2 c в каждой клетке). Происходит образование ядерных оболочек вокруг гаплоидных наборов двухроматидных хромосом, деление цитоплазмы. Из одной диплоидной клетки (2n4c) образовались две клетки с гаплоидным набором хромосом (n2c), поэтому это деление называют редукционным.И

Рис. . Изменение хромосомного набора и ДНК в 1 и 2 делении мейоза.

Нтерфаза 2, или интеркинез (1 n 2 c ) представляет собой перерыв между первым и вторым мейотическими делениями, продолжительность этого периода различается у разных организмов – в некоторых случаях обе дочерние клетки сразу вступают во второе деление, а иногда второе деление начинается через несколько месяцев или лет. Но так как хромосомы двухроматидные, во время интерфазы 2 не происходит репликация ДНК.Второе мейотическое деление (мейоз 2) называется эквационным . Профаза 2 (1 n 2 c ). Короче профазы 1, хроматин конденсирован, нет конъюгации и кроссинговера, происходят процессы, обычные для профазы – распад ядерных мембран на фрагменты, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.Метафаза 2 (1 n 2 c ). Двухроматидные хромосомы выстраиваются в экваториальной плоскости клетки, формируется метафазная пластинка.Создаются предпосылки для третьей рекомбинации генетического материала – многие хроматиды мозаичные и от их расположения на экваторе зависит, к какому полюсу они в дальнейшем отойдут. К центромерам хроматид прикрепляются нити веретена деления.Анафаза 2 (2 n 2с). Происходит деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), происходит третья рекомбинация генетического материала.Телофаза 2 (1 n 1 c в каждой клетке). Хромосомы деконденсируются, образуются ядерные оболочки, разрушаются нити веретена деления, появляются ядрышки, происходит деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.Биологическое значение мейоза . Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. С его помощью поддерживается постоянство хромосомного набора – после слияния гамет не происходит его удвоения. Благодаря мейозу образуются генетически различные клетки, т.к. в процессе мейоза трижды происходит перекомбинация генетического материала: за счет кроссинговера (профаза 1), за счет случайного, независимого расхождения гомологичных хромосом (анафаза 1) и за счет случайного расхождения хроматид (анафаза 2).Амитоз – прямое деление интерфазного ядра путем перетяжки без спирализации хромосом, без образования веретена деления. Дочерние клетки имеют неодинаковый генетический материал. Может ограничиваться только делением ядра, что приводит к образованию дву- и многоядерных клеток. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл. В норме наблюдается в высокоспециализированных тканях, в клетках, которым уже не предстоит делиться – в эпителии, печени.Гаметогенез . Гаметы формируются в половых железах – гонадах . Процесс развития гамет называется гаметогенезом . Процесс образования сперматозоидов называется сперматогенезом , а образование яйцеклеток – овогенезом (оогенезом ). Предшественники гамет – гаметоциты образуются на ранних стадиях развития зародыша за пределами половых желез, а затем мигрируют в них. В половых железах различают три разных участка (или зоны) – зона размножения, зона роста, зона созревания половых клеток. В этих зонах происходят фазы размножения, роста и созревания гаметоцитов. В сперматогенезе имеется еще одна фаза – фаза формирования.Фаза размножения. Диплоидные клетки в этой зоне половых желез (гонад) многократно делятся митозом. Количество клеток в гонадах растет. Их называют оогонии и сперматогонии .Фаза роста . В эту фазу происходит рост сперматогоний и оогоний, репликация ДНК. Образовавшиеся клетки называются ооциты 1-го порядка и сперматоциты 1-го порядка с набором хромосом и ДНК 2n4с .Фаза созревания. Сущность этой фазы – мейоз. Гаметоциты 1-го порядка вступают в первое мейотическое деление. В результате образуются гаметоциты 2-го порядка (n2с), которые вступают во второе мейотическое деление, и образуются клетки с гаплоидным набором хромосом (nc) – яйцеклетки и округлые сперматиды. Сперматогенез включает еще фазу формирования , во время которой сперматиды превращаются в сперматозоиды.Сперматогенез . Во время периода полового созревания диплоидные клетки в семенных канальцах семенников делятся митотически, в результате чего образуется множество более мелких клеток, называемых сперматогониями . Часть образовавшихся клеток может подвергаться повторным митотическим делениям, в результате чего образуются такие же клетки сперматогонии. Другая часть прекращает делиться и увеличивается в размерах, вступая в следующую фазу сперматогенеза – фазу роста.Клетки Сертоли обеспечивают механическую защиту, опору и питание развивающихся гамет. Увеличившиеся в размерах сперматогонии называются сперматоцитами 1-го порядка . Фаза роста соответствует интерфазе 1 мейоза, т.е. во время нее происходит подготовка клеток к мейозу. Главными событиями фазы роста является репликация ДНК и накопление питательных веществ.Сперматоциты 1-го порядка (2 n ) вступают в первое (редукционное) деление мейоза, после которого образуются сперматоциты 2-го порядка (n 2 c ). Сперматоциты 2-го порядка вступают во второе (эквационное) деление мейоза и образуются округлые сперматиды (nc ). Из одного сперматоцита 1-го порядка возникают четыре гаплоидные сперматиды. Фаза формирования характеризуется тем, что первично шаровидные сперматиды подвергаются ряду сложных преобразований, в результате которых образуются сперматозоиды. У

Рис. . Сперматогенез в семенных канальцах. Строение сперматозоида:

1 – головка; 2 – шейка; 3 – промежуточный отдел; 4 – жгутик; 5 – акросома; 6 – ядро; 7 – центриоли; 8 – митохондрии.

Человека сперматогенез начинается в период полового созревания, срок формирования сперматозоида – три месяца, т.е. каждые три месяца сперматозоиды обновляются. Сперматогенез происходит непрерывно и синхронно в миллионах клеток. Строение сперматозоида. Сперматозоид млекопитающих имеет форму длинной нити.Длина сперматозоида человека 50-60 мкм. В строении сперматозоида можно выделить «головку», «шейку» промежуточный отдел и хвостик. В головке находится ядро и акросома . Ядро содержит гаплоидный набор хромосом. Акросома (видоизмененный комплекс Гольджи) – органоид, содержащий ферменты, используемые для растворения оболочек яйцеклетки. В шейке расположены две центриоли, в промежуточном отделе – митохондрии. Хвостик представлен одним, у некоторых видов двумя и более жгутиками. Жгутик является органоидом движения и сходен по строению со жгутиками и ресничками простейших. Для движения жгутиков используется энергия макроэргических связей АТФ, синтез АТФ происходит в митохондриях. Сперматозоид открыт в 1677 году А.Левенгуком.Овогенез. В отличие от образования сперматозоидов, которое происходит только после достижения половой зрелости, процесс образования яйцеклеток у человека начинается еще в эмбриональном периоде и течет прерывисто. У зародыша полностью осуществляются фазы размножения и роста, и начинается фаза созревания. К моменту рождения девочки в ее яичниках находятся сотни тысяч овоцитов 1-го порядка, остановившихся, «застывших» на стадии диплотены профазы 1 мейоза.В период полового созревания мейоз возобновится: примерно каждый месяц под действием половых гормонов один из овоцитов 1-го порядка (редко два) будет доходить до метафазы 2 мейоза и овулировать на этой стадии. Мейоз может пройти до конца только при условии оплодотворения, проникновения сперматозоида, если оплодотворение не происходит, овоцит 2-го порядка погибает и выводится из организма.Овогенез осуществляется в яичниках, подразделяется на три фазы – размножения, роста и созревания. Во время фазы размножения диплоидные овогонии многократно делятся митозом. Фаза роста соответствует интерфазе 1 мейоза, т.е. во время нее происходит подготовка клеток к мейозу, клетки значительно увеличиваются в размерах вследствие накопления питательных веществ. Главным событием фазы роста является репликация ДНК. Во время фазы созревания клетки делятся мейозом. Во время первого деления мейоза они называются овоцитами 1-го порядка. В результате первого мейотического деления возникают две дочерние клетки: мелкая, называемая первым полярным тельцем , и более крупная – овоцит 2-го порядка .

Рис. . Оплодотворение:

1 – цитоплазма овоцита 2-го порядка; 2 – метафазная пластинка; 3 – полярные (редукционные тельца); 4 – блестящая оболочка; 5 – оплодотворение; 6 – сперматозоиды; 7 – фолликулярные клетки; 8 – женский пронуклеус; 9 – формирование мужского пронуклеуса; 10 – слияние пронуклеусов.


В

Рис. . Овогенез и сперматогенез:

1 – овоцит 1-го порядка; 2 – первое полярное тельце; 3 – овоцит 2-го порядка; 4 – деление первого полярного тельца; 5 – образование второго полярного тельца; 6 – три полярных тельца; 7 – ядро яйцеклетки, сливающееся с ядром сперматозоида; 8 – зигота; 9 – сперматоцит 1-го порядка; 10 – сперматоциты 2-го порядка; 11 – сперматиды; 12 – сперматозоиды.

Торое деление мейоза доходит до стадии метафазы 2, на этой стадии и происходит овуляция – овоцит выходит из яичника и попадает в маточные трубы. Если в овоцит проникает сперматозоид, второе мейотическое деление проходит до конца с образованием яйцеклетки и второго полярного тельца, а первое полярное тельце – с образованием третьего и четвертого полярных телец. Таким образом, в результате мейоза из одного овоцита 1-го порядка образуются одна яйцеклетка и три полярных тельца. Строение яйцеклеток. Форма яйцеклеток обычно округлая. Размеры яйцеклеток колеблются в широких пределах – от нескольких десятков микрометров до нескольких сантиметров (яйцеклетка человека – около 120 мкм). К особенностям строения яйцеклеток относятся: наличие оболочек, располагающихся поверх плазматической мембраны; и наличие в цитоплазме более

или менее большого количества запасных питательных веществ. У большинства животных яйцеклетки имеют дополнительные оболочки, располагающиеся поверх цитоплазматической мембраны. В зависимости от происхождения различают: первичные, вторичные и третичные оболочки . Первичные оболочки формируются из веществ, выделяемых овоцитом и, возможно, фолликулярными клетками. Образуется слой, контактирующий с цитоплазматической мембраной яйцеклетки. Он выполняют защитную функцию, обеспечивает видовую специфичность проникновения сперматозоида, т. е. не позволяет сперматозоидам других видов проникать в яйцеклетку. У млекопитающих эта оболочка называется блестящей . Вторичные оболочки образуются выделениями фолликулярных клеток яичника. Имеются далеко не у всех яйцеклеток. Вторичная оболочка яиц насекомых содержит канал – микропиле, через который сперматозоид проникает в яйцеклетку. Третичные оболочки образуются за счет деятельности специальных желез яйцеводов. Например, из секретов особых желез формируются белковая, подскорлуповая пергаментная, скорлуповая и надскорлуповая оболочки у птиц и рептилий.

Вторичные и третичные оболочки, как правило, образуются у яйцеклеток животных, зародыши которых развиваются во внешней среде. Поскольку у млекопитающих наблюдается внутриутробное развитие, их яйцеклетки имеют только первичную, блестящую оболочку, поверх которой располагается лучистый венец – слой фолликулярных клеток, доставляющих к яйцеклетке питательные вещества.

Яйцеклетка млекопитающих:

1 – овоцит 2-го порядка на стадии метафазы 2; 2 – блестящая оболочка; 3 – лучистый венец; 4 – первое полярное тельце.


Типы яйцеклеток хордовых животных:

1 – алецитальная; 2 – изолецитальная; 3 – умеренно телолецитальная; 4 – резко телолецитальная.


В яйцеклетках происходит накопление запаса питательных веществ, которые называют желтком. Он содержит жиры, углеводы, РНК, минеральные вещества, белки, причем основную его массу составляют липопротеиды и гликопротеиды. Желток содержится в цитоплазме обычно в виде желточных гранул. Количество питательных веществ, накапливаемых в яйцеклетке, зависит от условий, в которых происходит развитие зародыша. Так, если развитие яйцеклетки происходит вне организма матери и приводит к формированию крупных животных, то желток может составлять более 95% объема яйцеклетки. Яйцеклетки млекопитающих, развивающиеся внутри тела матери, содержат малое количество желтка – менее 5%, так как питательные вещества, необходимые для развития эмбрионы получают от матери.В зависимости от количества содержащегося желтка различают следующие типы яйцеклеток: алецитальные (не содержат желтка или имеют незначительное количество желточных включений – млекопитающие, плоские черви); изолецитальные (с равномерно распределенным желтком – ланцетник, морской еж); умеренно телолецитальные (с неравномерно распределенным желтком – рыбы, земноводные); резко телолецитальные (желток занимает большую часть, и лишь небольшой участок цитоплазмы на анимальном полюсе свободен от него – птицы).В связи с накоплением питательных веществ, у яйцеклеток появляется полярность. Противоположные полюсы называются вегетативным и анимальным . Поляризация проявляется в том, что происходит изменение местоположения ядра в клетке (оно смещается в сторону анимального полюса), а также в особенностях распределения цитоплазматических включений (во многих яйцах количества желтка возрастает от анимального к вегетативному полюсу).Яйцеклетка человека была открыта в 1827 году К.М.Бэром.Оплодотворение. Оплодотворение – процесс слияния половых клеток, приводящий к образованию зиготы. Собственно процесс оплодотворения начинается в момент контакта сперматозоида и яйцеклетки. В момент такого контакта плазматическая мембрана акросомального выроста и прилежащая к ней часть мембраны акросомального пузырька растворяются, фермент гиалуронидаза и другие биологически активные вещества, содержащиеся в акросоме, выделяются наружу и растворяют участок яйцевой оболочки. Чаще всего сперматозоид полностью втягивается в яйцо, иногда жгутик остается снаружи и отбрасывается. С момента проникновения сперматозоида в яйцо гаметы перестают существовать, так как образуют единую клетку – зиготу. Ядро сперматозоида набухает, его хроматин разрыхляется, ядерная оболочка растворяется, и он превращается в мужской пронуклеус. Это происходит одновременно с завершением второго деления мейоза ядра яйцеклетки, которое возобновилось благодаря оплодотворению. Постепенно ядро яйцеклетки превращается в женский пронуклеус. Пронуклеусы перемещаются к центру яйцеклетки, происходит репликация ДНК, и после их слияния набор хромосом и ДНК зиготы становится 2n4c . Объединение пронуклеусов и представляет собой собственно оплодотворение. Таким образом, оплодотворение заканчивается образованием зиготы с диплоидным ядром.В зависимости от количества особей, принимающих участие в половом размножении, различают: перекрестное оплодотворение – оплодотворение, в котором принимают участие гаметы, образованные разными организмами; самооплодотворение – оплодотворение, при котором сливаются гаметы, образованные одним и тем же организмом (ленточные черви).Партеногенез – девственное размножение, одна из форм полового размножения, при котором из не происходит оплодотворения, из неоплодотворенной яйцеклетки развивается новый организм. Встречается у ряда видов растений, беспозвоночных и позвоночных животных, кроме млекопитающих, у которых партеногенетические зародыши погибают на ранних стадиях эмбриогенеза. Партеногенез может быть искусственным и естественным.Искусственный партеногенез вызывается человеком путем активизации яйцеклетки воздействием на нее различными веществами, механическим раздражением, повышением температуры и т.д.При естественном партеногенезе яйцо начинает дробиться и развиваться в эмбрион без участия сперматозоида, только под влиянием внутренних или внешних причин. При постоянном (облигатном ) партеногенезе яйца развиваются только партеногенетически, например, у кавказских скальных ящериц. Все животные этого вида – только самки При факультативном партеногенезе зародыши развиваются и партеногенетически и половым путем. Классический пример – у пчел семяприемник матки устроен так, что она может откладывать оплодотворенные и неоплодотворенные яйца, из неоплодотворенных развиваются трутни. Оплодотворенные яйца развиваются в личинок рабочих пчел – недоразвитых самок, или в цариц – в зависимости от характера питания личинки. При циклическом партеногенезе происходит чередование партеногенеза с обычным половым размножением – все лето у дафний и тлей партеногенетическое размножение и рождаются только самки, а осенью появляются и самцы и самки и происходит половое размножение.Партеногенетически могут размножаться и личинки некоторых животных, такой партеногенез называется педогенезом . Например, у сосальщиков наблюдается партеногенетическое размножение на стадии личинок.Ключевые термины и понятия 1. Мейоз. 2. Редукционное, эквационное деления. 3. Бивалент, тетрада. 4. Конъюгация. 5. Кроссинговер. 6. Амитоз. 7. Сперматогонии, сперматоциты 1-го-, 2-го порядка, сперматиды. 8. Акросома. 9. Овогонии, овоциты 1-го-, 2-го порядка. 10. Блестящая оболочка, лучистый венец. 11. Анимальный и вегетативный полюса яйцеклетки. 12. Партеногенез облигатный, факультативный, циклический. 13. Педогенез.Основные вопросы для повторения

    Характеристика профазы и метафазы первого деления мейоза.

Профаза 2 (1n2c ). Короче профазы 1, хроматин конденсирован, нет конъюгации и кроссинговера, происходят процессы, обычные для профазы – распад ядерных мембран на фрагменты, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n2c ). Двухроматидные хромосомы выстраиваются в экваториальной плоскости клетки, формируется метафазная пластинка.
Создаются предпосылки для третьей рекомбинации генетического материала – многие хроматиды мозаичные и от их расположения на экваторе зависит, к какому полюсу они в дальнейшем отойдут. К центромерам хроматид прикрепляются нити веретена деления.

Анафаза 2 (2n2с). Происходит деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами),происходит третья рекомбинация генетического материала.

Телофаза 2 (1n1c в каждой клетке). Хромосомы деконденсируются, образуются ядерные оболочки, разрушаются нити веретена деления, появляются ядрышки, происходит деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

5. Отличие мейоза I от мейоза II

1.Первому делению предшествует ннтерфаза с редупликацией хромомом, при втором делении редпликации генетического материала нет, то есть отсутствует синтетическая стадия.

2.Профаза первого деления длительная.

3.В первом делении происходит конъюгация хромосом и
кроссинговер.

4.В первом делении к полюсам расходятся гомологичные хромосомы (биваленты, состоящие из пары хроматид), а во втором – хроматиды.

Мейоз: 1 - лептотена; 2 - зиготена; 3 - пахитена; 4 - диплотена; 5 - диакинез; 6 - метафаза 1; 7 - анафаза 1; 8 - телофаза 1; 9 - профаза 2; 10 - метафаза 2; 11 - анафаза 2; 12 - телофаза 2.

6. Отличия мейоза от митоза

1. В митозе одно деление, а в мейозе – два (из-за этого получается 4 клетки).

2. В профазе первого деления мейоза происходит конъюгация (тесное сближение гомологичных хромосом) и кроссинговер (обмен участками гомологичных хромосом), это приводит к перекомбинации (рекомбинации) наследственной информации.

3. В анафазе первого деления мейоза происходит независимое расхождение гомологичных хромосом (к полюсам клетки расходятся двуххроматидные хромосомы). Это приводит к рекомбинации и редукции.

4. В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, поскольку они и так двойные.

5. После митоза получается две клетки, а после мейоза – четыре.

6. После митоза получаются соматические клетки (клетки тела), а после мейоза – половые клетки (гаметы – сперматозоиды и яйцеклетки; у растений после мейоза получаются споры).

7. После митоза получаются одинаковые клетки (копии), а после мейоза – разные (происходит рекомбинация наследственной информации).

8. После митоза количество хромосом в дочерних клетках остается таким же, как было в материнской, а после мейоза уменьшается в 2 раза (происходит редукция числа хромосом; если бы её не было, то после каждого оплодотворения число хромосом возрастало бы в два раза; чередование редукции и оплодотворения обеспечивает постоянство числа хромосом).

7. Биологическое значение мейоза

Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. С его помощью поддерживается постоянство хромосомного набора – после слияния гамет не происходит его удвоения. Благодаря мейозу образуются генетически различные клетки, т.к. в процессе мейоза трижды происходит перекомбинация генетического материала: за счет кроссинговера (профаза 1), за счет случайного, независимого расхождения гомологичных хромосом (анафаза 1) и за счет случайного расхождения хроматид (анафаза 2).

8. Способы размножения организмов

9. Отличие полового размножения от бесполого

10. Основные формы бесполого размножения: деление на два (митоз), множественное деление (шизогония), почкование, фрагментация, спорообразование, вегетативное размножение, полиэмбриония).

Бесполое размножение – процесс возникновения дочерних особей из одно или группы соматических клеток материнского организма. Этот способ размножения более древний. В его основе лежит митотическое деление клеток. Значение бесполого размножения заключается в быстром увеличении числа особей, почти не различающихся между собой. Различают следующие формы бесполого размножения:

1.Деление надвое – приводит к возникновению из одного родительского организма двух дочерних. Является преобладающей формой деления у прокариот и простейших. Различные одноклеточные животные делятся по-разному. Так, жгутиковые делятся продольно, а инфузории – поперечно. Такое деление встречается и у многоклеточных животных – кишечнополостных (продольное деление у медуз) и червей (поперечное деление у кольчатых червей).

3.Почкование – на теле материнского организма возникает скопление клеток, которое растет и постепенно приобретает сходство с материнской особью. Затем дочерняя особь отделяется и начинает вести самостоятельное существование. Такое размножение распространено среди низших многоклеточных (губки, кишечнополостные, мшанки, некоторые черви и оболочники). Иногда дочерние особи не отделяются полностью от родительской, что приводит к образованию колоний.

4.Фрагментация – происходит распад тела многоклеточного организма на части, которые в дальнейшем превращаются в самостоятельные особи (плоские черви, иглокожие).

5.Спорами – дочерний организм развивается из специализированной клетки-споры.

Различают две основные формы бесполого размножения растений: вегетативное размножение и спорообразование. Вегетативное размножение одноклеточных растений осуществляется простым делением одной клетки на две. У грибов формы его более разнообразны – спорообразование (плесневые грибы, шляпочные) и почкование (дрожжи). У покрытосеменных растений вегетативное размножение происходит за счет вегетативных (неполовых) органов – корня, стебля, листа.

У некоторых видов животных наблюдается полиэмбриония бесполое размножение зародыша, образовавшегося путем полового размножения. Например, у броненосцев на стадии бластулы происходит разделение клеточного материала первоначально одного зародыша между 4–8 зародышами, из которых в последствии развиваются полноценные особи. В результате полиэмбрионии у человека рождаются однояйцовые близнецы.

11. Основные формы полового размножения у одноклеточных организмов (конъюгация, копуляция) и у многоклеточных организмов (без оплодотворения (партеногенез) и с оплодотворением).

Половое размножение – наблюдается в жизненных циклах всех основных групп организмов. Распространенность полового размножения объясняется тем, что оно обеспечивает значительное генетическое разнообразие и, следовательно, фенотипическую изменчивость потомства.

В основе полового размножения лежит половой процесс, суть которого сводится к объединению в наследственном материале для развития потомка генетической информации от двух разных источников – родителей.

Одной из форм полового процесса является конъюгация. При этом происходит временное соединение двух особей с целью обмена (рекомбинации) наследственным материалом, например, у инфузорий. В результате появляются особи генетически отличные от родительских организмов, которые в дальнейшем осуществляют бесполое размножение. Число инфузорий после конъюгации не изменяется, поэтому говорить в прямом смысле о размножении в этом случае нельзя.

У простейших половой процесс может осуществляться и в форме копуляции – слияния двух особей в одну, объединение и рекомбинация наследственного материала. Далее такая особь размножается делением.

Для участия в половом размножении в родительских организмах вы-рабатываются гаметы – клетки, специализированные к обеспечению генеративной функции. Слияние материнской и отцовской гамет приводит к возникновению зиготы – клетки, представляющей собой дочернюю особь на первой, наиболее ранней стадии индивидуального развития.

У некоторых организмов зигота образуется в результате объединения гамет, которые не отличаются по строению – явление изогамии. У большинства же видов половые клетки по структурным и функциональным признакам делятся на материнские (яйцеклетки) и отцовские (сперматозоиды).

Иногда развитие дочернего организма происходит из неоплодотворенной яйцеклетки. Это явление называют девственным развитием или партеногенезом. Источником наследственного материала для развития потомка в этом случае обычно служит ДНК яйцеклетки – явление гиногенеза. Реже наблюдается андрогенез – развитие потомка из клетки с цитоплазмой ооцита и ядром сперматозоида. Ядро женской гаметы в случае андрогенеза погибает.

12. Биологическое значение полового размножения

На определенном этапе эволюции у многоклеточных организмов половой процесс как способ обмена генетической информацией между особями в пределах вида оказался связанным с размножением. При половом размножении возникающие новые особи обычно отличаются от родительских и друг от друга комбинацией аллелей генов. Новые сочетания хромосом и генов проявляются у потомков новым сочетанием признаков. В результате возникает большое разнообразие особей в пределах одного вида. Таким образом, биологическое значение полового размножения заключается не только в самовоспроизведении, но и в обеспечении исторического развития видов, то есть жизни как таковой. Это позволяет считать половое размножение биологически более прогрессивным, чем бесполое.

13. Сперматогенез

Процесс образования мужских половых клеток – сперматогенез. В результате образуются сперматозоиды.

В сперматогенезе различают 4 периода: размножение, рост, созревание (мейоз) и формирование (рис. 3).

В период размножения исходные недифференцированные половые клетки сперматогонии , или гонии делятся путем обычного митоза. Проделав несколько таких делений, они вступают в период роста. На этой стадии их называют сперматоцитами I порядка (или цитами I ). Они усиленно ассимилируют питательные вещества, укрупняются, претерпевают глубокую физико-химическую перестройку, в результате которой подготавливаются к третьему периоду – созреванию, или мейозу .

В мейозе сперматоциты I проходят два процесса клеточного деления. В первом делении (редукционном) происходит уменьшение числа хромосом (редукция). В результате из одного цита I возникает две равновеликие клетки – сперматоциты II порядка, или циты II. Затем наступает второе деление созревания. Оно протекает как обычный соматический митоз, но при гаплоидном числе хромосом. Такое деление называется эквационным («эквацио» – равенство), так как образуются две тождественные, т.е. полностью равноценные клетки, которые называются сперматидами.

В четвертом периоде – формирования – округлая сперматида приобретает форму зрелой мужской половой клетки: у нее вырастает жгутик, уплотняется ядро, образуется оболочка. В результате всего процесса сперматогенеза из каждой исходной недифференцированной сперматогонии получается 4 зрелых половых клетки, содержащих по гаплоидному набору хромосом.

На рис. 4 представлена схема процессов сперматогенеза и спермиогенеза у человека. Сперматогенез происходит в извитых семенных канальцах семенников.Развитие сперматозоидов начинается в период пренатального развития при закладке генеративных тканей, затем возобновляется в период наступления половозрелости и продолжается до старости.

Мужские половые клетки не развиваются одиночно, они растут в клонах и объединены между собой цитоплазматическими мостиками. Цитоплазматические мостики имеются между сперматогониями, сперматоцитами и сперматидами. В конце фазы формирования сперматозоиды освобождаются от цитоплазматических мостиков. У человека максимум дневной продуктивности сперматозоидов 108, продолжительность существования сперматозоида во влагалище до 2,5 ч, а в шейке матки до 48 ч.

14. Овогенез. Понятие о менструальном цикле

Процесс развития женских половых клеток называется овогенезом (оогенезом).

В овогенезе различают 3 периода: размножение, рост и созревание.

Недифференцированные женские половые клетки – овогонии – размножаются так же, как и сперматогонии, путем обычного митоза.

После деления они становятся овоцитами I порядка и переходят в период роста. Рост овоцитов длится очень долго – недели, месяцы и даже годы.

Затем овоцит I порядка вступает в период созревания, или мейоз. Здесь тоже совершаются редукционное и эквационное деления. Процессы деления в ядре протекают так же, как при мейозе сперматоцитов, но судьба цитоплазмы совершенно иная. При редукционном делении одно ядро увлекает с собой бульшую часть цитоплазмы , а на долю другого остается лишь незначительная ее часть. Поэтому образуется только одна полноценная клетка – овоцит II порядка, и вторая крошечная – направительное, или редукционное, тельце, которое может делиться на два редукционных тельца.

При втором, эквационном делении несимметричное распределение цитоплазмы повторяется и опять образуется одна крупная клетка – овотида и третье полярное тельце. Овотида по составу ядра и функционально является вполне зрелой половой клеткой.

Период формирования, в отличие от сперматогенеза, в овогенезе отсутствует.

Таким образом, в овогенезе из одной овогонии возникает только одна зрелая яйцеклетка. Полярные тельца остаются недоразвитыми и вскоре погибают и фагоцитируются другими клетками. Зрелые женские гаметы называют яйцеклетками или яйцами, а отложенные в воду – икрой.

Развитие женских половых клеток происходит в яичниках. Период размно-жения наступает у оогоний еще у зародыша и прекращается к моменту рождения девочки.

Период роста при оогенезе более продолжительный, т.к. кроме подготовки к мейозу осуществляется накопление запаса питательных веществ, которые будут необходимы в дальнейшем для первых дроблений зиготы. В фазе малого роста происходит образование большого количества разных типов РНК.

В период большого роста фолликулярные клетки яичника образуют несколько слоев вокруг ооцита I порядка, что способствует переносу питательных веществ, синтезированных в других местах, в цитоплазму ооцита.

У человека период роста ооцитов может составлять 12–50 лет. После завершения периода роста ооцит I порядка вступает в период созревания.

В результате при оогенезе получается 4 клетки, из которых только одна станет в дальнейшем яйцеклеткой, а остальные 3 (полярные тельца) редуцируются. Биологическая значимость этого этапа оогенеза – сохранить все накопленные вещества цитоплазмы около одного гаплоидного ядра для обеспечения нормального питания и развития оплодотворенной яйцеклетки.

При оогенезе у женщин на стадии второй метафазы образуется блок, который снимается во время оплодотворения, и фаза созревания заканчивается только после проникновения сперматозоида в яйцеклетку.

Процесс оогенеза у женщин – это циклический процесс, повторяющийся примерно через каждые 28 дней (начиная с периода роста и заканчивая период только после оплодотворения). Этот цикл называется менструальным.

Отличительные особенности сперматогенеза и овогенеза у человека представлены в таблице 3.

Мейоз (греч. meiosis – уменьшение, убывание) или редукционное деление. В результате мейоза происходит уменьшение числа хромосом, т.е. из диплоидного набора хромосом (2п) образуется гаплоидный (n).

Мейоз состоит из 2-х последовательных делений:
I деление называется редукционное или уменьшительное.
II деление называется эквационное или уравнительное, т.е. идет по типу митоза (значит число хромосом в материнской и дочерних клетках остается прежним).

Биологический смысл мейоза заключается в том, что из одной материнской клетки с диплоидным набором хромосом образуется четыре гаплоидные клетки, таким образом количество хромосом уменьшается в два раза, а количество ДНК в четыре раза. В результате такого деления образуются половые клетки (гаметы) у животных и споры у растений.

Фазы называются также как и в митозе, а перед началом мейоза клетка также проходит интерфазу.

Профаза I – самая продолжительная фаза и ее условно делят на 5 стадий:
1) Лептонема (лептотена) – или стадия тонких нитей. Идет спирализация хромосом, хромосома состоит из 2-х хроматид, на еще тонких нитях хроматид видны утолщения или сгустки хроматина, которые называются – хромомерами.
2) Зигонема (зиготена, греч. сливающиеся нити) - стадия парных нитей. На этой стадии попарно сближаются гомологичные хромосомы (одинаковые по форме величине), они притягиваются и прикладываются друг к другу по всей длине, т.е. коньюгируют в области хромомеров. Это похоже на замок «молния». Пару гомологичных хромосом называют биваленты. Число бивалентов равно гаплоидному набору хромосом.
3) Пахинема (пахитена , греч. толстая) – стадия толстых нитей. Идет дальнейшая спирализация хромосом. Затем каждая гомологичная хромосома расщепляется в продольном направлении и становится хорошо видно, что каждая хромосома состоит из двух хроматид такие структуры называют тетрадами, т.е. 4 хроматиды. В это время идет кроссинговер, т.е. обмен гомологичными участками хроматид.
4) Диплонема (диплотена) – стадия двойных нитей. Гомологичные хромосомы начинают отталкиваться, отходят друг от друга, но сохраняют взаимосвязь при помощи мостиков – хиазм, это места где произойдет кроссинговер. В каждом соединении хроматид (т.е. хиазме), осуществляется обмен участками хроматид. Хромосомы спирализуются и укорачиваются.
5) Диакинез – стадия обособленных двойных нитей. На этой стадии хромосомы полностью уплотнены и интенсивно окрашиваются. Ядерная оболочка и ядрышки разрушаются. Центриоли перемещаются к полюсам клетки и образуют нити веретена деления. Хромосомный набор профазы I составляет - 2n4c.
Таким образом, в профазу I происходит:
1. конъюгация гомологичных хромосом;
2. образование бивалентов или тетрад;
3. кроссинговер.

В зависимости от конъюгирования хроматид могут быть различные виды кроссинговера: 1 – правильный или неправильный; 2 – равный или неравный; 3 – цитологический или эффективный; 4 – единичный или множественный.

Метафаза I – спирализация хромосом достигает максимума. Биваленты выстраиваются вдоль экватора клетки, образуя метафазную пластинку. К центромерам гомологичных хромосом крепятся нити веретена деления. Биваленты оказываются соединенными с разными полюсами клетки.
Хромосомный набор метафазы I составляет - 2n4c.

Анафаза I – центромеры хромосом не делятся, фаза начинается с деления хиазм. К полюсам клетки расходятся целые хромосомы, а не хроматиды. В дочерние клетки попадает только по одной из пары гомологичных хромосом, т.е. идет их случайное перераспределение. На каждом полюсе, оказывается, по набору хромосом - 1п2с, а в целом хромосомный набор анафазы I составляет - 2n4c.

Телофаза I – по полюсам клетки находится целые хромосомы, состоящие из 2-х хроматид, но количество их стало в 2 раза меньше. У животных и некоторых растений хроматиды деспирализуются. Вокруг них на каждом полюсе формируется ядерная мембрана.
Затем идет цитокинез
. Хромосомный набор образовавшихся после первого деления клеток составляет - n2c.

Между I и II делениями нет S-периода и не идет репликация ДНК, т.к. хромосомы уже удвоены и состоят из сестринских хроматид, поэтому интерфазу II называют интеркинезом – т.е. происходит перемещение между двумя делениями.

Профаза II – очень короткая и идет без особых изменений, если в телофазу I не образуется ядерная оболочка, то сразу образуются нити веретена деления.

Метафаза II – хромосомы выстраиваются вдоль экватора. Нити веретена деления крепятся к центромерам хромосом.
Хромосомный набор метафазы II составляет - n2c.

Анафаза II – центромеры делятся и нити веретена деления разводят хроматиды к разным полюсам. Сестринские хроматиды называются дочерними хромосомами(или материнские хроматиды это и будут дочерние хромосомы).
Хромосомный набор анафазы II составляет - 2n2c.

Телофаза II – хромосомы деспирализуются, растягиваются и после этого плохо различимы. Образуются ядерные оболочки, ядрышки. Телофаза II завершается цитокинезом.
Хромосомный набор после телофазы II составляет – nc.

Схема мейотического деления

Образованием специализированных половых клеток , или гамет , из недифференцированных стволовых .

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса .

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов . Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет . Определенные ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).

Фазы мейоза

Мейоз состоит из двух последовательных делений с короткой интерфазой между ними.

  • Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:
  • Фаза лептотены или лептонемы - конденсация ДНК с образованием хромосом в виде тонких нитей.
  • Зиготена или зигонема - коньюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами.
  • Пахитена или пахинема - кроссинговер (перекрест) обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.
  • Диплотена или диплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой.
  • Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; гомологичные хромосомы остаются соединёнными между собой.
  • Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки.
  • Анафаза I - микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе .
  • Телофаза I

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

  • Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.
  • Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
  • Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.
  • Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.

См. также

Ссылки

  • Митоз, мейоз, гаметогенез, оплодотворение и эмбриональное развитие - лекция факультета молекулярной и биологической физики МФТИ

Wikimedia Foundation . 2010 .

Смотреть что такое "Редукционное деление" в других словарях:

    Широко употреблявшееся ранее назв. одного из двух делений мейоза того, при к ром происходит расхождение гомологичных хромосом. В действительности Р. д. осуществляется путём кроссинговера у одной части бивалента при первом, а у др. части при… … Биологический энциклопедический словарь

    редукционное деление - ЭМБРИОЛОГИЯ ЖИВОТНЫХ РЕДУКЦИОННОЕ ДЕЛЕНИЕ – первое деление мейоза, приводящее к уменьшению числа хромосом в дочерних клетках в 2 раза. Часть мейоза, приводящая к формированию гаплоидных клеток … Общая эмбриология: Терминологический словарь