Гущин подготовка к огэ по химии. Гиа по химии

Задание 1.Строение атома. Строение электронных оболочек атомов первых 20 элементов периодической системы Д.И.Менделеева.

Задание 2.Периодический закон и периодическая система химических элементов Д.И. Менделеева.

Задание 3. Строение молекул. Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая.

Задание 4.

Задание 5. Простые и сложные вещества. Основные классы неорганических веществ. Номенклатура неорганических соединений.

Скачать:


Предварительный просмотр:

Задание 1

Строение атома. Строение электронных оболочек атомов первых 20 элементов периодической системы Д.И.Менделеева.

Как определить число электронов, протонов и нейтронов в атоме?

  1. Число электронов равно порядковому номеру и числу протонов.
  2. Число нейтронов равно разности между массовым числом и порядковым номером.

Физический смысл порядкового номера, номера периода и номера группы.

  1. Порядковый номер равен числу протонов и электронов, заряду ядра.
  2. Номер А - группы равен числу электронов на внешнем слое (валентных электронов).

Максимальное число электронов на уровнях.

Максимальное число электронов на уровнях определяется по формуле N= 2· n 2 .

1 уровень – 2 электрона, 2 уровень – 8, 3 уровень - 18, 4 уровень – 32 электрона.

Особенности заполнения электронных оболочек у элементов А и В групп.

У элементов А - групп валентные (внешние) электроны заполняют последний слой, а у элементов В - групп – внешний электронный слой и частично предвнешний слой.

Степени окисления элементов в высших оксидах и летучих водородных соединениях.

Группы

VIII

С.О. в высшем оксиде = + № гр

Высший оксид

R 2 О

R 2 О 3

RО 2

R 2 О 5

RО 3

R 2 О 7

RО 4

С.О. в ЛВС = № гр - 8

ЛВС

Н 4 R

Н 3 R

Н 2 R

Строение электронных оболочек ионов.

У катиона – меньше электронов на величину заряда, у анионов - больше на величину заряда.

Например:

Сa 0 - 20 электронов, Сa2 + - 18 электронов;

S 0 – 16 электронов, S 2- - 18 электронов.

Изотопы.

Изотопы - разновидности атомов одного и того же химического элемента, имеющие одинаковое число электронов и протонов, но разную массу атома (разное число нейтронов).

Например:

Элементарные частицы

Изотопы

40 Ca

42 Ca

Обязательно уметь по таблице Д.И. Менделеева определять строение электронных оболочек атомов первых 20 элементов.

Предварительный просмотр:

http://mirhim.ucoz.ru

А 2. В 1.

Периодический закон и периодическая система химических элементов Д.И. Менделеева

Закономерности изменения химических свойств элементов и их соединений в связи с положением в периодической системе химических элементов.

Физический смысл порядкового номера, номера периода и номера группы .

Атомный (порядковый) номер химического элемента равен числу протонов и электронов, заряду ядра.

Номер периода равен числу заполняемых электронных слоёв.

Номер группы (А) равен числу электронов на внешнем слое (валентных электронов).

Формы существования

химического элемента и их свойства

Изменения свойств

В главных подгруппах (сверху вниз)

В периодах

(слева направо)

Атомы

Заряд ядра

Увеличивается

Увеличивается

Число энергетических уровней

Увеличивается

Не изменяется = номер периода

Число электронов на внешнем уровне

Не изменяется = номеру периода

Увеличивается

Радиус атома

Увеличиваются

Уменьшается

Восстановительные свойства

Увеличиваются

Уменьшаются

Окислительные свойства

Уменьшается

Увеличиваются

Высшая положительная степень окисления

Постоянная = номеру группы

Увеличивается от +1 до +7 (+8)

Низшая степень окисления

Не изменяется =

(8-№ группы)

Увеличивается от -4 до -1

Простые вещества

Металлические свойства

Увеличивается

Уменьшаются

Неметаллические свойства

Уменьшаются

Увеличивается

Соединения элементов

Характер химических свойств высшего оксида и высшего гидроксида

Усиление основных свойств и ослабление кислотных свойств

Усиление кислотных свойств и ослабление основных свойств

Предварительный просмотр:

http://mirhim.ucoz.ru

А 4

Степень окисления и валентность химических элементов.

Степень окисления – условный заряд атома в соединении, вычисленный исходя из предположения, что все связи в этом соединении ионные (т.е. все связывающие электронные пары полностью смещены к атому более электроотрицательного элемента).

Правила определения степени окисления элемента в соединении:

  • С.О. свободных атомов и простых веществ равна нулю.
  • Сумма степеней окисления всех атомов в сложном веществе равна нулю.
  • Металлы имеют только положительную С.О.
  • С.О. атомов щелочных металлов (I(А) группа) +1.
  • С.О. атомов щелочноземельных металлов (II(А) группа)+2.
  • С.О. атомов бора, алюминия +3.
  • С.О. атомов водорода +1 (в гидридах щелочных и щелочноземельных металлов –1).
  • С.О. атомов кислорода –2 (исключения: в пероксидах –1, в OF 2 +2 ).
  • С.О. атомов фтора всегда - 1.
  • Степень окисления одноатомного иона совпадает с зарядом иона.
  • Высшая (максимальная, положительная) С.О. элемента равна номеру группы. Это правило не распространяется на элементы побочной подгруппы первой группы, степени окисления которых обычно превышают +1, а также на элементы побочной подгруппы VIII группы. Также не проявляют своих высших степеней окисления, равных номеру группы, элементы кислород и фтор.
  • Низшая (минимальная, отрицательная) С.О. для элементов неметаллов определяется по формуле: номер группы -8.

* С.О. – степень окисления

Валентность атома – это способность атома образовывать определенное число химических связей с другими атомами. Валентность не имеет знака.

Валентные электроны располагаются на внешнем слое у элементов А - групп, на внешнем слое и d – подуровне предпоследнего слоя у элементов В - групп.

Валентности некоторых элементов (обозначаются римскими цифрами).

постоянные

переменные

ХЭ

валентность

ХЭ

валентность

H, Na, K, Ag, F

Cl, Br, I

I (III, V, VII)

Be, Mg, Ca, Ba, O, Zn

Cu, Hg

II, I

Al, В

II, III

II, IV, VI

II, IV, VII

III, VI

I - V

III, V

C, Si

IV (II)

Примеры определения валентности и С.О. атомов в соединениях:

Формула

Валентности

С.О.

Структурная формула вещества

N III

N N

NF 3

N III, F I

N +3, F -1

F - N - F

NH 3

N III, Н I

N -3, Н +1

Н - N - Н

H 2 O 2

Н I, О II

Н +1, О –1

H-O-O-H

OF 2

О II, F I

О +2, F –1

F-O-F

*СО

С III, О III

С +2, О –2

Атом «С» передал в общее пользование два электрона, а более электроотрицательный атом «О» оттянул к себе два электрона:

У «С» не будет заветной восьмерки электронов на внешнем уровне – четыре своих и два общих с атомом кислорода. Атому «О» придется передать в общее пользование одну свою свободную электронную пару, т.е. выступить в роли донора. Акцептором будет атом «С».

Предварительный просмотр:

А3. Строение молекул. Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая.

Химическая связь – это силы взаимодействия между атомами или группами атомов, приводящие к образованию молекул, ионов, свободных радикалов, а также ионных, атомных и металлических кристаллических решеток.

Ковалентная связь – это связь, которая образуется между атомами с одинаковой электроотрицательностью или между атомами с небольшой разницей в значениях электроотрицательности.

Ковалентная неполярная связь образуется между атомами одинаковых элементов – неметаллов. Ковалентная неполярная связь образуется, если вещество простое, например, O 2 , H 2 , N 2 .

Ковалентная полярная связь образуется между атомами разных элементов – неметаллов.

Ковалентная полярная связь образуется, если вещество сложное, например, SO 3 , H 2 O, НСl, NH 3 .

Ковалентная связь классифицируется по механизмам образования:

обменный механизм (за счёт общих электронных пар);

донорно-акцепторный (атом - донор обладает свободной электронной парой и передаёт её в общее пользование с другим атомом - акцептором, у которого имеется свободная орбиталь). Примеры: ион аммония NH 4 + , угарный газ СО.

Ионная связь образуется между атомами, сильно отличающимися по электроотрицательности. Как правило, когда соединяются атомы металлов и неметаллов. Это связь между разноименно зараженными ионами.

Чем больше разница ЭО атомов, тем связь более ионная.

Примеры: оксиды, галогениды щелочных и щелочноземельных металлов, все соли (в том числе соли аммония), все щёлочи.

Правила определения электроотрицательности по периодической таблице:

1) слева направо по периоду и снизу вверх по группе электроотрицательность атомов увеличивается;

2) самый электроотрицательный элемент – фтор, так как инертные газы имеют завершенный внешний уровень и не стремятся отдавать или принимать электроны;

3) атомы неметаллов всегда более электроотрицательны, чем атомы металлов;

4) водород имеет низкую электроотрицательность, хотя расположен в верхней части периодической таблицы.

Металлическая связь – образуется между атомами металлов за счет свободных электронов, удерживающих положительно заряженные ионы в кристаллической решетке. Это связь между положительно заряженными ионами металлов и электронами.

Вещества молекулярного строения имеют молекулярную кристаллическую решетку, немолекулярного строения – атомную, ионную или металлическую кристаллическую решетку.

Типы кристаллических решеток:

1) атомная кристаллическая решетка: образуется у веществ с ковалентной полярной и неполярной связью (C, S, Si), в узлах решетки находятся атомы, эти вещества являются самыми твердыми и тугоплавкими в природе;

2) молекулярная кристаллическая решетка: образуется у веществ с ковалентной полярной и ковалентной неполярной связями, в узлах решетки находятся молекулы, эти вещества обладают небольшой твердостью, легкоплавкие и летучие;

3) ионная кристаллическая решетка: образуется у веществ с ионной связью, в узлах решетки находятся ионы, эти вещества твердые, тугоплавкие, нелетучие, но в меньшей степени, чем вещества с атомной решеткой;

4) металлическая кристаллическая решетка: образуется у веществ с металлической связью, эти вещества обладают теплопроводностью, электропроводностью ковкостью и металлическим блеском.

Предварительный просмотр:

http://mirhim.ucoz.ru

А5. Простые и сложные вещества. Основные классы неорганических веществ. Номенклатура неорганических соединений.

Простые и сложные вещества.

Простые вещества образованы атомами одного химического элемента (водород Н 2 , азот N 2 , железо Fe и т.д.), сложные вещества - атомами двух и более химических элементов (вода H 2 O – состоит из двух элементов (водород, кислород), серная кислот H 2 SO 4 – образована атомами трёх химических элементов (водород, сера, кислород)).

Основные классы неорганических веществ, номенклатура.

Оксиды – сложные вещества, состоящие из двух элементов, один из которых кислород в степени окисления -2.

Номенклатура оксидов

Названия оксидов состоят из слов «оксид» и названия элемента в родительном падеже (с указанием в скобках степени окисления элемента римскими цифрами): CuO – оксид меди (II), N 2 O 5 – оксид азота (V).

Характер оксидов:

ХЭ

основный

амфотерный

несолеобразующий

кислотный

металл

С.О.+1,+2

С.О.+2, +3, +4

амф. Ме – Ве, Аl, Zn, Cr, Fe, Mn

С.О.+5, +6, +7

неметалл

С.О.+1,+2

(искл. Cl 2 O)

С.О.+4,+5,+6,+7

Основные оксиды образуют типичные металлы со С.О. +1, +2 (Li 2 O, MgO, СаО, CuO и др.). Основными называются оксиды, которым соответствуют основания.

Кислотные оксиды образуют неметаллы со С.О. более +2 и металлы со С.О. от +5 до +7 (SO 2 , SeO 2 , Р 2 O 5 , As 2 O 3 , СO 2 , SiO 2 , CrO 3 и Mn 2 O 7 ). Кислотными называются оксиды, которым соответствуют кислоты.

Амфотерные оксиды образованы амфотерными металлами со С.О. +2, +3, +4 (BeO, Cr 2 O 3 , ZnO, Al 2 O 3 , GeO 2 , SnO 2 и РЬО). Амфотерными называются оксиды, которые проявляют химическую двойственность.

Несолеобразующие оксиды – оксиды неметаллов со С.О.+1,+2 (СО, NO, N 2 O, SiO).

Основания (основные гидроксиды ) - сложные вещества, которые состоят из

Иона металла (или иона аммония) и гидроксогруппы (-OH).

Номенклатура оснований

После слова «гидроксид» указывают элемент и его степень окисления (если элемент проявляет постоянную степень окисления, то её можно не указывать):

КОН – гидроксид калия

Сr(OH) 2 – гидроксид хрома (II)

Основания классифицируют:

1) по растворимости в воде основания делятся на растворимые (щелочи и NH 4 OH) и нерастворимые (все остальные основания);

2) по степени диссоциации основания подразделяют на сильные (щелочи) и слабые (все остальные).

3) по кислотности, т.е. по числу гидроксогрупп, способных замещаться на кислотные остатки: на однокислотные (NaOH), двухкислотные , трехкислотные .

Кислотные гидроксиды (кислоты) - сложные вещества, которые состоят из атомов водорода и кислотного остатка.

Кислоты классифицируют:

a) по содержанию атомов кислорода в молекуле - на бескислородные (Н C l) и кислородсодержащие (H 2 SO 4 );

б) по основности, т.е. числу атомов водорода, способных замещаться на металл - на одноосновные (HCN), двухосновные (H 2 S) и т.д.;

в) по электролитической силе - на сильные и слабые. Наиболее употребляемыми сильными кислотами являются разбавленные водные растворы HCl, HBr, HI, HNO 3 , H 2 S, HClO 4 .

Амфотерные гидроксиды образованы элементами с амфотерными свойствами.

Соли – сложные вещества, образованные атомами металлов, соединёнными с кислотными остатками.

Средние (нормальные) соли - сульфид железа(III).

Кислые соли - атомы водорода в кислоте замещены атомами металла частично. Они получаются при нейтрализации основания избытком кислоты. Чтобы правильно назвать кислую соль, необходимо к названию нормальной соли прибавить приставку гидро- или дигидро- в зависимости от числа атомов водорода, входящих в состав кислой соли.

Например, KHCO 3 – гидрокарбонат калия, КH 2 PO 4 – дигидроортофосфат калия

Нужно помнить, что кислые соли могут образовывать двух и более основные кислоты, как кислородсодержащие, так и бескислородные кислоты.

Основные соли - гидроксогруппы основания (OH ) частично замещены кислотными остатками. Чтобы назвать основную соль, необходимо к названию нормальной соли прибавить приставку гидроксо- или дигидроксо- в зависимости от числа ОН - групп, входящих в состав соли.

Например, (CuOH) 2 CO 3 - гидроксокарбонат меди (II).

Нужно помнить, что основные соли способны образовывать лишь основания, содержащие в своём составе две и более гидроксогрупп.

Двойные соли - в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами.

Смешанные соли - в их составе присутствует два различных аниона.

Гидратные соли (кристаллогидраты ) - в их состав входят молекулы кристаллизационной воды . Пример: Na 2 SO 4 ·10H 2 O.


Особенности КИМ - 2014

src="../new.jpg" width=22 height=21 border=0 Align=right>

В 2014 г. на выбор органов управления образованием субъектов РФ предлагаются 2 модели экзаменационной работы по химии.

- Демовесия-1 : по структуре аналогична работе 2013 г. Однако в содержание части С внесены существенные изменения:
- Задание С1 предусматривает расстановку коэффициентов в ОВР методом электронного баланса (аналогично С1 ЕГЭ, на более простых реакциях). Оценивается в три первичных балла.
- Задание С2 - расчетная задача (аналогично С2 прошлых лет). Оценивается в три первичных балла.
- Задание С3 - мысленный эксперимент: для заданного набора веществ спланировать двухстадийный синтез нового вещества, написав уравнения реакций, указать признаки их протекания. Написать ионное уравнение одной из реакций. Оценивается в пять первичных баллов.
Максимальный первичный балл за выполнение части С увеличился до 11 баллов, за выполнение всей работы - до 34 баллов.

- Демовесия-2 : усилена практико-ориентированная составляющая, в связи с чем в экзаменационную работу включено задание для выполнения реального химического эксперимента (С4). Задание С4 является продолжением задания С3, которое оценивается в данном случае в 4 балла, максимальная оценка задания С4 - 5 баллов, общая оценка части С - 15 баллов.

Проведение химического эксперимента осуществляется в специальном помещении – химической лаборатории (список оборудования и реактивов приводится в спецификации).

Для наблюдения за проведением химического эксперимента должны обязательно приглашаться специалисты-химики, которые являются одновременно и экспертами по оценке его выполнения.

На химический эксперимент дополнительно выделяется 20 минут. Для организации экзамена по второй модели могут быть использованы:
Методические материалы по организации и проведению ученического химического эксперимента в рамках государственной (итоговой) аттестации (ГИА) 2014 г. выпускников IX классов по химии. /Каверина А.А., Добротин Д.Ю., Молчанова Г.Н. – ФГБНУ «Федеральный институт педагогических измерений», - М, 2013. (

Вариант

контрольных измерительных материалов для

проведения в 2017 году основного государственного

экзамена по ХИМИИ

Инструкция по выполнению работы

Экзаменационная работа состоит из двух частей, включающих в себя 22 задания. Часть 1 содержит 19 заданий с кратким ответом, часть 2 содержит 3 задания с развёрнутым ответом.

На выполнение экзаменационной работы по химии отводится 2 часа (120 минут).

Ответы к заданиям 1–15 записываются в виде одной цифры, которая соответствует номеру правильного ответа. Эту цифру запишите в поле ответа в тексте работы, а затем перенесите в бланк ответов № 1.

Ответы к заданиям 16–19 записываются в виде последовательности цифр. Эту последовательность цифр запишите в поле ответа в тексте работы, а затем перенесите в бланк ответов № 1.

К заданиям 20–22 следует дать полный развёрнутый ответ, включающий в себя необходимые уравнения реакций и расчёты. Задания выполняются на бланке ответов № 2.

При выполнении работы Вы можете пользоваться Периодической системой химических элементов Д.И. Менделеева, таблицей растворимости солей, кислот и оснований в воде, электрохимическим рядом напряжений металлов и непрограммируемым калькулятором.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Часть 1

Ответом к заданиям 1–15 является одна цифра, которая соответствует номеру правильного ответа. Запишите эту цифру в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки.

    Хи­ми­че­ско­му эле­мен­ту 3-го пе­ри­о­да VA-груп­пы со­от­вет­ству­ет схема рас­пре­де­ле­ния элек­тро­нов по слоям:

Ответ:

    Ион­ная свя­зь ха­рак­тер­на для каж­до­го из двух ве­ществ:

1) хло­рид калия и хло­ро­во­до­род

2) хло­рид бария и оксид на­трия

3) хло­рид на­трия и оксид уг­ле­ро­да(IV)

4) оксид лития и хлор

Ответ:

    Слож­ным яв­ля­ет­ся каж­дое из двух ве­ществ

1) вода и хлор

2) вода и во­до­род

3) во­до­род и кварц

4) бен­зол и вода

Ответ:

    Наи­боль­шее ко­ли­че­ство по­ло­жи­тель­ных ионов об­ра­зу­ет­ся при дис­со­ци­а­ции 1 моль

1) сер­ной кис­ло­ты

2) фос­фа­та на­трия

3) нит­ра­та же­ле­за(III)

4) суль­фи­да калия

Ответ:

    В ре­ак­цию с водой при ком­нат­ной тем­пе­ра­ту­ре всту­па­ют оба ве­ще­ства пары

1) кис­ло­род и уг­ле­род

2) маг­ний и сера

3) алю­ми­ний и фос­фор

4) на­трий и каль­ций

Ответ:

    Среди ве­ществ: Zn, Al 2 O 3 , Cu(OH) 2 , BaCl 2 - в ре­ак­цию с рас­тво­ром сер­ной кис­ло­ты всту­па­ет(-ют)

4) че­ты­ре

Ответ:

    Верны ли суж­де­ния о спо­со­бах раз­де­ле­ния сме­сей?

А. Вы­па­ри­ва­ние от­но­сят к фи­зи­че­ским спо­со­бам раз­де­ле­ния сме­сей.

Б. Раз­де­ле­ние смеси воды и эта­но­ла воз­мож­но спо­со­бом филь­тро­ва­ния.

1) верно толь­ко А

2) верно толь­ко Б

3) верны оба суж­де­ния

4) оба суж­де­ния не­вер­ны

Ответ:

    Элемент углерод является окислителем в реакции

2СО + O 2 = 2CO 2

CO 2 + 2Mg = 2MgO + C

CH 4 + 2O 2 = CO 2 + 2H 2 O

C + 2H 2 SO 4 = CO 2 + 2H 2 O + 2SO 2

Ответ:

Ответом к заданиям 16–19 является последовательность цифр, которые следует записать в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Ответ записывайте без пробелов, запятых и других дополнительных символов.

Каждую цифру пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами.

При выполнении заданий 16, 17 из предложенного перечня ответов выберите два правильных и запишите в таблицу цифры, под которыми они указаны.

16. Общим для маг­ния и крем­ния яв­ля­ет­ся

1) на­ли­чие трёх элек­трон­ных слоёв в их ато­мах

2) су­ще­ство­ва­ние со­от­вет­ству­ю­щих им про­стых ве­ществ в виде двух­атом­ных мо­ле­кул

3) то, что они от­но­сят­ся к ме­тал­лам

4) то, что зна­че­ние их элек­тро­от­ри­ца­тель­но­сти мень­ше, чем у фос­фо­ра

5) об­ра­зо­ва­ние ими выс­ших ок­си­дов с общей фор­му­лой ЭО 2

Ответ:

При выполнении заданий 18, 19 к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ВЕЩЕСТВА

РЕАКТИВ

H 2 SO 4 и HNO 3

MgBr 2 и MgCl 2

AgNO 3 и Zn(NO 3) 2

Ответ:

    Установите соответствие между названием вещества и реагентами, с которыми это вещество может взаимодействовать.

Ответ:

Не забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы.

Часть 2

Для ответов на задания 20–22 используйте БЛАНК ОТВЕТОВ № 2.

Запишите сначала номер задания (20, 21 или 22), а затем развёрнутый ответ к нему. Ответы записывайте чётко и разборчиво.

20. Используя метод электронного баланса, составьте уравнение реакции

KMnO 4 + KOH → K 2 MnO 4 + O 2 + H 2 O

Определите окислитель и восстановитель.

21. К 376 г раствора с массовой долей нитрата меди (II) 7,5% добавили избыток раствора гидроксида калия. Определите массу выпавшего осадка.

22. Даны вещества: Zn, HCl (р-р), H 3 PO 4 , AgNO 3 , NH 4 Cl, Ba(NO 3) 2 . Используя воду и необходимые вещества только из этого списка, получите в две стадии нитрат цинка. Опишите признаки проводимых реакций. Для реакции ионного обмена напишите сокращенное ионное уравнение реакции.

Для кого предназначены эти тесты?

Данные материалы предназначены для школьников, готовящихся к ОГЭ-2018 по химии . Их также можно использовать для самоконтроля при изучении школьного курса химии. Каждый посвящен определенной теме, которая встретится девятикласснику на экзамене. Номер теста - это номер соответствующего задания в бланке ОГЭ.

Как устроены тематические тесты?

Будут ли на этом сайте публиковаться другие тематические тесты?

Безусловно! Я планирую разместить тесты по 23 темам, по 10 заданий в каждом. Следите за обновлениями!

  • Тематический тест № 11. Химические свойства кислот и оснований. (Готовится к выпуску!)
  • Тематический тест № 12. Химические свойства средних солей. (Готовится к выпуску!)
  • Тематический тест № 13. Разделение смесей и очистка веществ. (Готовится к выпуску!)
  • Тематический тест № 14. Окислители и восстановители. Окислительно-восстановительные реакции. (Готовится к выпуску!)
  • Что еще есть на этом сайте для готовящихся к ОГЭ-2018 по химии?

    Вам кажется, что чего-то не хватает? Вам хотелось бы расширить какие-то разделы? Нужны какие-то новые материалы? Что-то надо исправить? Нашли ошибки?


    Успехов всем готовящимся к ОГЭ и ЕГЭ!

    ОГЭ по химии сдается только по выбору ученика, это испытание не входит в перечень обязательных. Выбирают химию ученики, которые после 9-го класса планируют поступать в профильный 10-й класс школы или специализированный колледж, техникум. Для поступления в медицинское училище требуется сдавать не только химию, но и биологию. Экзамен подразумевает ориентацию в теории, успешное применение ее на практике. Испытуемому необходимо решить немало заданий разных уровней сложности из широкого спектра тем. Чтобы определиться в том, на какие темы обратить внимание, ознакомьтесь с Программой подготовки в ОГЭ по химии.


    Экзамен состоит из заданий, который делятся на два логических блока:

    • В первую часть входят задания на знание теории: здесь нужно дать краткий ответ – цифра, последовательность чисел, слово.
    • Во второй части – несколько вопросов, на которые нужно дать развернутые, полные ответы, провести лабораторный эксперимент, написать заключения, выполнить расчеты. Крайне важно умение пользоваться специальным оборудованием, использовать алгоритмы решения задач разного уровня сложности.
    В 2018 году минимальный порог составил 9 баллов – это минимум, который позволит получить минимальную оценку и аттестат.
    На экзамене у испытуемого есть подсказки: таблицы растворимости солей, кислот, оснований в воде, периодическая таблица Менделеева, таблицы напряжений металлов. При условии умения пользоваться этими материалами, можно решить многие задания без трудностей.


    • Главный совет, актуальный на каждом экзамене – планируйте свое обучение. Без четкого плана вы не сможете достичь высокого уровня подготовки. Чтобы планирование было максимально эффективным, ознакомьтесь с – в ней указаны темы и разделы, на которые нужно обратить особое внимание.
    • Оцените свои силы: наиболее простой способ – онлайн тестирование. По факту прохождения теста, вы получаете результат, и можете оценить – какие типы заданий и темы вызывают у вас наибольшие трудности.
    • Когда вы определили проблемные темы, уделите им большее внимание, чем остальным. Для обучения возьмите учебники, справочники.
    • Обязательно решайте задачи! Чем больше задач вы решите для подготовки, тем проще будет на экзамене.
    • Задавайте вопросы: найдите специалиста, который сможет вам помочь в проблемных ситуациях. Это может быть репетитор или школьный учитель. Только специалист может помочь вам проанализировать свои ошибки и больше не совершать их.
    • Научитесь пользоваться подсказками – теми таблицами, которые можно брать с собой на экзамен.
    • Изучать теорию - мало, очень важно тренироваться выполнять тесты. Данная форма проверки знаний у многих вызывает трудности, особенно, если на уроках она не использовалась. Решайте больше тестовых заданий разных типов, чтобы на экзамене они не вызывали страха и непонимания.
    • «Решу ОГЭ по химии» поможет вам подготовиться к экзамену и успешно сдать его, рационально используя отведенное время, без стресса.